
Research Article

Deep Learning Based Abstractive Text Summarization:
Approaches, Datasets, Evaluation Measures, and Challenges

Dima Suleiman and Arafat Awajan

Princess Sumaya University for Technology, Amman, Jordan

Correspondence should be addressed to Dima Suleiman; d.suleiman@psut.edu.jo

Received 24 April 2020; Revised 1 July 2020; Accepted 25 July 2020; Published 24 August 2020

Academic Editor: Dimitris Mourtzis

Copyright © 2020 Dima Suleiman and Arafat Awajan. *is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In recent years, the volume of textual data has rapidly increased, which has generated a valuable resource for extracting and
analysing information. To retrieve useful knowledge within a reasonable time period, this information must be summarised. *is
paper reviews recent approaches for abstractive text summarisation using deep learning models. In addition, existing datasets for
training and validating these approaches are reviewed, and their features and limitations are presented. *e Gigaword dataset is
commonly employed for single-sentence summary approaches, while the Cable News Network (CNN)/Daily Mail dataset is
commonly employed for multisentence summary approaches. Furthermore, the measures that are utilised to evaluate the quality
of summarisation are investigated, and Recall-Oriented Understudy for Gisting Evaluation 1 (ROUGE1), ROUGE2, and ROUGE-
L are determined to be the most commonly applied metrics. *e challenges that are encountered during the summarisation
process and the solutions proposed in each approach are analysed. *e analysis of the several approaches shows that recurrent
neural networks with an attention mechanism and long short-term memory (LSTM) are the most prevalent techniques for
abstractive text summarisation.*e experimental results show that text summarisation with a pretrained encoder model achieved
the highest values for ROUGE1, ROUGE2, and ROUGE-L (43.85, 20.34, and 39.9, respectively). Furthermore, it was determined
that most abstractive text summarisation models faced challenges such as the unavailability of a golden token at testing time, out-
of-vocabulary (OOV) words, summary sentence repetition, inaccurate sentences, and fake facts.

1. Introduction

Currently, there are vast quantities of textual data available,
including online documents, articles, news, and reviews that
contain long strings of text that need to be summarised [1].
*e importance of text summarisation is due to several
reasons, including the retrieval of significant information
from a long text within a short period, easy and rapid loading
of the most important information, and resolution of the
problems associated with the criteria needed for summary
evaluation [2]. Due to the evolution and growth of automatic
text summarisation methods, which have provided signifi-
cant results in many languages, these methods need to be
reviewed and summarised. *erefore, in this review, we
surveyed the most recent methods and focused on the
techniques, datasets, evaluation measures, and challenges of

each approach, in addition to the manner in which each
method addressed challenges.

Applications such as search engines and news websites
use text summarisation [1]. In search engines, previews are
produced as snippets, and news websites generate headlines
to describe the news to facilitate knowledge retrieval [3, 4].
Text summarisation can be divided into several categories
based on function, genre, summary context, type of sum-
marizer, and number of documents [5]; one specific text
summarisation classification approach divides the summa-
risation process into extractive and abstractive categories [6].

Extractive summarisation extracts or copies some parts
from the original text based on scores computed using either
statistical features or linguistic features, while abstractive
summarisation rephrases the original text to generate new
phrases that may not be in the original text, which is

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9365340, 29 pages
https://doi.org/10.1155/2020/9365340

mailto:d.suleiman@psut.edu.jo
https://orcid.org/0000-0001-5601-4928
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9365340

considered a difficult task for a computer. As abstractive text
summarisation requires an understanding of the document
to generate the summary, advanced machine learning
techniques and extensive natural language processing (NLP)
are required. *us, abstractive summarisation is harder than
extractive summarisation since abstractive summarisation
requires real-word knowledge and semantic class analysis [7].
However, abstractive summarisation is also better than ex-
tractive summarisation since the summary is an approximate
representation of a human-generated summary, which makes
it more meaningful [8]. For both types, acceptable summa-
risation should have the following: sentences that maintain
the order of the main ideas and concepts presented in the
original text, minimal to no repetition, sentences that are
consistent and coherent, and the ability to remember the
meaning of the text, even for long sentences [7]. In addition,
the generated summary must be compact while conveying
important information about the original text [2, 9].

Abstractive text summarisation approaches include
structured and semantic-based approaches. Structured ap-
proaches encode the crucial features of documents using
several types of schemas, including tree, ontology, lead and
body phrases, and template and rule-based schemas, while
semantic-based approaches are more concerned with the
semantics of the text and thus rely on the information
representation of the document to summarise the text.
Semantic-based approaches include the multimodal se-
mantic method, information item method, and semantic
graph-based method [10–17].

Deep learning techniques were employed in abstractive
text summarisation for the first time in 2015 [18], and the
proposed model was based on the encoder-decoder archi-
tecture. For these applications, deep learning techniques
have provided excellent results and have been extensively
employed in recent years.

Raphal et al. surveyed several abstractive text summa-
risation processes in general [19]. *eir study differentiated
between different model architectures, such as reinforce-
ment learning (RL), supervised learning, and attention
mechanism. In addition, comparisons in terms of word
embedding, data processing, training, and validation had
been performed. However, there are no comparisons of the
quality of several models that generated summaries.

Furthermore, both extractive and abstractive summa-
risation models were summarised in [20, 21]. In [20], the
classification of summarisation tasks was based on three factors:
input factors, purpose factors, and output factors. Dong and
Mahajani et al. surveyed only five abstractive summarisation
models each. On the other hand, Mahajani et al. focused on the
datasets and training techniques in addition to the architecture
of several abstractive summarisationmodels [21]. However, the
quality of the generated summary of the different techniques
and the evaluation measures were not discussed.

Shi et al. presented a comprehensive survey of several
abstractive text summarisation models, which are based on
sequence-to-sequence encoder-decoder architecture for
convolutional and RNN seq2seq models. *e focus was the
structure of the network, training strategy, and the algorithms
employed to generate the summary [22]. Although several

papers have analysed abstractive summarisation models, few
papers have performed a comprehensive study [23]. More-
over, most of the previous surveys covered the techniques
until 2018, even though surveys were published in 2019 and
2020, such as [20, 21]. In this review, we addressed most of the
recent deep learning-based RNN abstractive text summa-
risation models. Furthermore, this survey is the first to ad-
dress recent techniques applied in abstractive summarisation,
such as Transformer.

*is paper provides an overview of the approaches,
datasets, evaluationmeasures, and challenges of deep learning-
based abstractive text summarisation, and each topic is
discussed and analysed. We classified the approaches based on
the output type into: single-sentence summary and multi-
sentence summary approaches. Also, within each classification,
we compared between the approaches in terms of architecture,
dataset, dataset preprocessing, evaluation, and results. *e
remainder of this paper is organised as follows: Section 2
introduces a background of several deep learning models and
techniques, such as the recurrent neural network (RNN),
bidirectional RNN, attention mechanisms, long short-term
memory (LSTM), gated recurrent unit (GRU), and sequence-
to-sequencemodels. Section 3 describes themost recent single-
sentence summarisation approaches, while the multisentence
summarisation approaches are covered in Section 4. Section 5
and Section 6 investigate datasets and evaluation measures,
respectively. Section 7 discusses the challenges of the sum-
marisation process and solutions to these challenges. Con-
clusions and discussion are provided in Section 8.

2. Background

Deep learning analyses complex problems to facilitate the
decision-making process. Deep learning attempts to imitate
what the human brain can achieve by extracting features at
different levels of abstraction. Typically, higher-level layers
have fewer details than lower-level layers [24]. *e output
layer will produce an output by nonlinearly transforming the
input from the input layer.*e hierarchical structure of deep
learning can support learning. *e level of abstraction of a
certain layer will determine the level of abstraction of the
next layer since the output of one layer will be the input of
the next layer. In addition, the number of layers determines
the deepness, which affects the level of learning [25].

Deep learning is applied in several NLP tasks since it
facilitates the learning of multilevel hierarchal representa-
tions of data using several data processing layers of nonlinear
units [24, 26–28]. Various deep learning models have been
employed for abstractive summarisation, including RNNs,
convolutional neural networks (CNNs), and sequence-to-
sequence models. We will cover deep learning models in
more detail in this section.

2.1. RNN Encoder-Decoder Summarization. RNN encoder-
decoder architecture is based on the sequence-to-sequence
model. *e sequence-to-sequence model maps the input
sequence in the neural network to a similar sequence that
consists of characters, words, or phrases. *is model is

2 Mathematical Problems in Engineering

utilised in several NLP applications, such as machine
translation and text summarisation. In text summarisation,
the input sequence is the document that needs to be
summarised, and the output is the summary [29, 30], as
shown in Figure 1.

An RNN is a deep learning model that is applied to
process data in sequential order such that the input of a
certain state depends on the output of the previous state
[31, 32]. For example, in a sentence, the meaning of a word is
closely related to the meaning of the previous words. An
RNN consists of a set of hidden states that are learned by the
neural network. An RNN may consist of several layers of
hidden states, where states and layers learn different features.
*e last state of each layer represents the whole inputs of the
layer since it accumulates the values of all previous states [5].
For example, the first layer and its state can be employed for
part-of-speech tagging, while the second layer learns to
create phrases. In text summarisation, the input for the RNN
is the embedding of words, phrases, or sentences, and the
output is the word embedding of the summary [5].

In the RNN encoder-decoder model, at the encoder side,
at certain hidden states, the vector representation of the
current input word and the output of the hidden states of all
previous words are combined and fed to the next hidden
state. As shown in Figure 1, the vector representation of the
wordW3 and the output of the hidden states he1 and he2 are
combined and fed as input to the hidden states he3. After
feeding all the words of the input string, the output gen-
erated from the last hidden state of the encoder are fed to the
decoder as a vector referred to as the context vector [29]. In
addition to the context vector, which is fed to the first hidden
state of the decoder, the start-of-sequence symbol 〈SOS〉 is
fed to generate the first word of the summary from the
headline (assumeW5, as shown in Figure 1). In this case,W5
is fed as the input to the next decoder hidden state. Each
generated word is passed as an input to the next decoder
hidden state to generate the next word of the summary. *e
last generated word is the end-of-sequence symbol 〈EOS〉.
Before generating the summary, each output from the de-
coder will take the form of a distributed representation
before it is sent to the softmax layer and attention mech-
anism to generate the next summary [29].

2.2.BidirectionalRNN. Bidirectional RNN consists of forward
RNNs and backward RNNs. Forward RNNs generate a se-
quence of hidden states after reading the input sequence from
left to right. On the other hand, the backward RNNs generate a
sequence of hidden states after reading the input sequence from
right to left. *e representation of the input sequence is the
concatenation of the forward and backward RNNs [33].
*erefore, the representation of each word depends on the
representation of the preceding (past) and following (future)
words. In this case, the context will contain the words to the left
and the words to the right of the current word [34].

Using bidirectional RNN enhances the performance. For
example, if we have the following input text “Sara ate a
delicious pizza at dinner tonight,” in this case, assume that
we want to predict the representation of the word “dinner,”

using bidirectional RNN and the forward LSTMs represent
“Sara ate a delicious pizza at” while the backward LSTM
represents “tonight.” Considering the word “tonight” when
representing the word “dinner” provides better results.

On the other hand, using the bidirectional RNN at the
decoder size minimizes the probability of the wrong pre-
diction. *e reason for this is that the unidirectional RNN
only considers the previous prediction and reason only
about the past. *erefore, if there is an error in previous
prediction, the error will accumulate in all subsequent
predictions, and this problem can be addressed using the
bidirectional RNN [35].

2.3. Gated Recurrent Neural Networks (LSTM and GRU).
Gated RNNs are employed to solve the problem of vanishing
gradients, which occurs when training a long sequence using
an RNN. *is problem can be solved by allowing the gra-
dients to backpropagate along a linear path using gates,
where each gate has a weight and a bias. Gates can control
and modify the amount of information that flows between
hidden states. During training, the weights and biases of the
gates are updated. *e most popular gated RNNs are LSTM
[36] and GRU [37], which are two variants of an RNN.

2.3.1. Long Short-Term Memory (LSTM). *e repeating unit
of the LSTM architecture consists of input/read, memory/
update, forget, and output gates [5, 7], but the chaining
structure is the same as that of an RNN.*e four gates share
information with each other; thus, information can flow in
loops for a long period of time. *e four gates of each LSTM
unit, which are shown in Figures 2 and 3, are discussed here.

(1) Input Gate. In the first timestep, the input is a vector that is
initialised randomly, while in subsequent steps, the input of the
current step is the output (content of the memory cell) of the
previous step. In all cases, the input is subject to element-wise
multiplication with the output of the forget gate. *e multi-
plication result is added to the current memory gate output.

(2) Forget Gate. A forget gate is a neural network with one
layer and a sigmoid activation function. *e value of the
sigmoid function will determine if the information of the
previous state should be forgotten or remembered. If the
sigmoid value is 1, then the previous state will be remem-
bered, but if the sigmoid value is 0, then the previous state
will be forgotten. In language modelling, for example, the
forget gate remembers the gender of the subject to produce
the proper pronouns until it finds a new subject. *ere are
four inputs for the forget gate: the output of the previous
block, the input vector, the remembered information from
the previous block, and the bias.

(3) Memory Gate. *e memory gate controls the effect of the
remembered information on the new information. *e
memory gate consists of two neural networks. *e first
network has the same structure as the forget gate but a
different bias, and the second neural network has a tanh
activation function and is utilised to generate the new

Mathematical Problems in Engineering 3

++++

+X CtCt–1

Ht–1

Xt

σ σ σ

X

Tanh

Tanh

X

Ht

Ht

Input
vector

Memory
from

previous
block

Output
of

previous
block

Output
of

current
block

Element-wise
multiplication

Element-wise
summation/

concatenation

Memory
from

current
block

Sigmoid

Hyperbolic
tangent

Bias

0 1 2 3

Figure 2: LSTM unit architecture [5].

he1

W1 W2 W3 W4

he2 he3 he4 hd1

<SOS> W5

W5 W6 W7 <EOS>

W6 W7

hd2 hd3 hd4

Context

vector

Encoder Decoder

Figure 1: Sequence-to-sequence; the last hidden state of the encoder is fed as input to the decoder with the symbol EOS [51].

++++

X

σ σ

H
t

+ C
tC

t–1

H
t–1

X
t

0 1 2 3

σ Tanh

Tanh

X

H
t

X

(a)

++++

X

σ σ

H
t

+ C
tC

t–1

H
t–1

X
t

0 1 2 3

σ Tanh

Tanh

X

H
t

X

(b)

Figure 3: Continued.

4 Mathematical Problems in Engineering

information. *e new information is formed by adding the
old information to the result of the element-wise multi-
plication of the output of the two memory gate neural
networks.

(4) Output Gate. *e output gates control the amount of new
information that is forwarded to the next LSTM unit. *e
output gate is a neural network with a sigmoid activation
function that considers the input vector, the previous hidden
state, the new information, and the bias as input. *e output
of the sigmoid function is multiplied by the tanh of the new
information to produce the output of the current block.

2.3.2. Gated Recurrent Unit (GRU). A GRU is a simplified
LSTM with two gates, a reset gate and an update gate, and
there is no explicit memory. *e previous hidden state in-
formation is forgotten when all the reset gate elements ap-
proach zero; then, only the input vector affects the candidate
hidden state. In this case, the update gate acts as a forget gate.
LSTM and GRU are commonly employed for abstractive
summarisation since LSTM has a memory unit that provides
extra control; however, the computation time of the GRU is
reduced [38]. In addition, while it is easier to tune the pa-
rameters with LSTM, the GRU takes less time to train [30].

2.4. Attention Mechanism. *e attention mechanism was
employed for neural machine translation [33] before being
utilised for NLP tasks such as text summarisation [18]. A
basic encoder-decoder architecture may fail when given long
sentences since the size of encoding is fixed for the input
string; thus, it cannot consider all the elements of a long
input. To remember the input that has a significant impact
on the summary, the attention mechanism was introduced
[29]. *e attention mechanism is employed at each output
word to calculate the weight between the output word and
every input word; the weights add to one. *e advantage of
using weights is to show which input word must receive
attention with respect to the output word. *e weighted
average of the last hidden layers of the decoder in the current

step is calculated after passing each input word and fed to the
softmax layer along the last hidden layers [39].

2.5. Beam Search. Beam search and greedy search are very
similar; however, while greedy search considers only the best
hypothesis, beam search considers b hypotheses, where b
represents the beam width or beam size [5]. In text sum-
marisation tasks, the decoder utilises the final encoder
representation to generate the summary from the target
vocabulary. In each step, the output of the decoder is a
probability distribution over the target word.*us, to obtain
the output word from the learned probability, several
methods can be applied, including (1) greedy sampling,
which selects the distribution mode, (2) 1-best or beam
search, which selects the best output, and (3) n-best or beam
search, which select several outputs. When n-best beam
search is employed, the top b most relevant target words are
selected from the distribution and fed to the next decoder
state. *e decoder keeps only the top k1 of k words from the
different inputs and discards the rest.

2.6. Distributed Representation (Word Embedding). A word
embedding is a word distributional vector representation
that represents the syntax and semantic features of words
[40]. Words must be converted to vectors to handle various
NLP challenges such that the semantic similarity between
words can be calculated using cosine similarity, Euclidean
distance, etc. [41–43]. In NLP tasks, the word embeddings of
the words are fed as inputs to neural network models. In the
recurrent neural network encoder-decoder architecture,
which is employed to generate the summaries, the input of
the model is the word embedding of the text, and the output
is the word embedding of the summary.

In NLP, there are several word embedding models, such as
Word2Vec, GloVe, FastText, and Bidirectional Encoder Rep-
resentations from Transformers (BERT), which are the most
recently employed word embedding models [41, 44–47]. *e
Word2Vec model consists of two approaches, skip-gram and
continuous bag-of-words (CBOW), which both depend on the
context window [41]. On the other hand, GloVe represents the

++++

X

σ σ

H
t

+ C
t

C
t-1

H
t-1

X
t

0 1 2 3

σ Tanh

Tanh

X

H
t

X

(c)

++++

X

σ σ

H
t

+ C
t

C
t–1

H
t–1

X
t

0 1 2 3

σ Tanh

Tanh

X

H
t

X

(d)

Figure 3: LSTM unit gates [5]: (a) input gate; (b) forget gate; (c) memory gate; (d) output gate.

Mathematical Problems in Engineering 5

global vector, which is based on statistics of the global corpus
instead of the context window [44]. FastText extends the skip-
gram of the Word2Vec model by using the subword internal
information to address the out-of-vocabulary (OOV) terms
[46]. In FastText, the subword components are composed to
build the vector representation of the words, which facilitates
representation of the word morphology and lexical similarity.
*e BERT word embedding model is based on a multilayer
bidirectional transformer encoder [47, 48]. Instead of using
sequential recurrence, the transformer neural network utilises
parallel attention layers. BERTcreates a single large transformer
by combining the representations of the words and sentences.
Furthermore, BERT is pretrained with an unsupervised ob-
jective over a large amount of text.

2.7. Transformers. *e contextual representations of language
are learned from large corpora. One of the new language
representations, which extend word embedding models, is
referred to as BERTmentioned in the previous section [48]. In
BERT, two tokens are inserted to the text.*e first token (CLS)
is employed to aggregate the whole text sequence information.
*e second token is (SEP); this token is inserted at the end of
each sentence to represent it. *e resultant text consists of
tokens, where each token is assigned three types of embed-
dings: token, segmentation, and position embeddings. Token
embedding is applied to indicate the meaning of a token.
Segmentation embedding identifies the sentences, and position
embedding determines the position of the token. *e sum of
the three embeddings is fed to the bidirectional transformer as
a single vector. Pretrained word embedding vectors are more
precise and rich with semantic features. BERT has the ad-
vantage of fine-tuning (based on the objectives of certain tasks)
and feature-based methods. Moreover, transformers compute
the presentation of the input and output by using self-atten-
tion, where the self-attention enables the learning of the rel-
evance between the “word-pair” [47].

3. Single-Sentence Summary

Recently, the RNN has been employed for abstractive text
summarisation and has provided significant results.
*erefore, we focus on abstractive text summarisation based
on deep learning techniques, especially the RNN [49]. We
discussed the approaches that have applied deep learning for
abstractive text summarisation since 2015. RNN with an
attention mechanism was mostly utilised for abstractive text
summarisation. We classified the research according to
summary type (i.e., single-sentence or multisentence sum-
mary), as shown in Figure 4. We also compared the ap-
proaches in terms of encoder-decoder architecture, word
embedding, dataset and dataset preprocessing, and evalu-
ations and results. *is section covers single-sentence
summary methods, while Section 4 covers multisentence
summary methods. Single-sentence summary methods in-
clude a neural attention model for abstractive sentence
summarisation [18], abstractive sentence summarisation
with attentive RNN (RAS) [39], quasi-RNN [50], a method
for generating news headlines with RNNs [29], abstractive
text summarisation using an attentive sequence-to-sequence

RNN [38], neural text summarisation [51], selective
encoding for abstractive sentence summarisation (SEASS)
[52], faithful to the original: fact aware neural abstractive
summarization (FTSumg) [53], and the improving trans-
former with sequential context [54].

3.1. Abstractive Summarization Architecture

3.1.1. Feedforward Architecture. Neural networks were first
employed for abstractive text summarisation by Rush et al.
in 2015, where a local attention-based model was utilised to
generate summary words by conditioning it to input sen-
tences [18].*ree types of encoders were applied: the bag-of-
words encoder, the convolution encoder, and the attention-
based encoder. *e bag-of-words model of the embedded
input was used to distinguish between stop words and
content words; however, this model had a limited ability to
represent continuous phrases.*us, a model that utilised the
deep convolutional encoder was employed to allow the
words to interact locally without the need for context. *e
convolutional encoder model can alternate between tem-
poral convolution and max-pooling layers using the stan-
dard time-delay neural network (TDNN) architecture;
however, it is limited to a single output representation. *e
limitation of the convolutional encodermodel was overcome
by the attention-based encoder.*e attention-based encoder
was utilised to exploit the learned soft alignment to weight
the input based on the context to construct a representation
of the output. Furthermore, the beam-search decoder was
applied to limit the number of hypotheses in the summary.

3.1.2. RNN Encoder-Decoder Architecture

(1) LSTM-RNN. An abstractive sentence summarisationmodel
that employed a conditional recurrent neural network (RNN)
to generate the summary from the input is referred to as a
recurrent attentive summariser (RAS) [39]. A RAS is an ex-
tension of the work in [18]. In [18], the model employed a
feedforward neural network, while the RAS employed an RNN-
LSTM. *e encoder and decoder in both models were trained
using sentence-summary pair datasets, but the decoder of the
RAS improved the performance since it considered the position
information of the input words. Furthermore, previous words
and input sentences were employed to produce the next word
in the summary during the training phase.

Lopyrev [29] proposed a simplified attention mechanism
that was utilised in an encoder-decoder RNN to generate
headlines for news articles. *e news article was fed into the
encoder one word at a time and then passed through the
embedding layer to generate the word representation. *e
experiments were conducted using simple and complex
attention mechanisms. In the simple attention mechanism,
the last layer after processing the input in the encoding was
divided into two parts: one part for calculating the attention
weight vector, and one part for calculating the context
vector, as shown in Figure 5(a). However, in the complex
attention mechanism, the last layer was employed to cal-
culate the attention weight vector and context vector without

6 Mathematical Problems in Engineering

fragmentation, as shown in Figure 5(b). In both figures, the
solid lines indicate the part of the hidden state of the last
layer that is employed to compute the context vector, while
the dashed lines indicate the part of the hidden state of the
last layer that is applied to compute the attention weight
vector. *e same difference was seen on the decoder side: in

the simple attention mechanism, the last layer was divided
into two parts (one part was passed to the softmax layer, and
the other part was applied to calculate the attention weight),
while in the complex attention mechanism, no such division
was made. A beam search at the decoder side was performed
during testing to extend the sequence of the probability.

Abstractive summarization apporaches based on
recurrent neural network + attention mechanism

Single-sentence summary

A neural attention model for abstractive
sentence summarization (ABS)

Abstractive sentence summarization with
attentive recurrent neural networks (RAS)

Quasi-recurrent neural network
(QRNN) + CNN

Generating news headlines
with recurrent neural networks

Abstractive text summarization using attentive
sequence-to-sequence RNNs

Selective encoding for abstractive sentence
summarization (SEASS)

Faithful to the original: fact aware neural
abstractive summarization (FTSumg)

Improving transformer with sequential context
representations for abstractive text

summarization (RCT)

Multisentence summary

Get to the point: summarization with
pointer-generator networks

Reinforcement learning (RL)

Generative adversarial network for abstractive
text summarization

Exploring semantic phrases (ATSDL) + CNN

Bidirectional attentional encoder-decoder
model and bidirectional beam search

Key information guide network

Improving abstraction in
text summarization

Dual encoding for abstractive text
summarization (DEATS)

Bidirectional decoder
(BiSum)

Text summarization with pretrained encoders

A text abstraction summary model based on
BERT word embedding and reinforcement

learning

Transformer-based model for single-document
neural summarization

Text summarization method based on double
attention pointer network (DAPT)

Figure 4: Taxonomy of several approaches that use a recurrent neural network and attention mechanism in abstractive text summarisation
based on the summary type.

Mathematical Problems in Engineering 7

*e encoder-decoder RNN and sequence-to-sequence
models were utilised in [55], which mapped the inputs to the
target sequences; the same approach was also employed in
[38, 51]. *ree different methods for global attention were
proposed for calculating the scoring functions, including dot
product scoring, the bilinear form, and the scalar value
calculated from the projection of the hidden states of the
RNN encoder [38]. *e model applied LSTM cells instead of
GRU cells (both LSTM and GRU are commonly employed
for abstractive summarisation tasks since LSTM has a
memory unit that provides control but the computation time
of GRU is lower). *ree models were employed: the first
model applied unidirectional LSTM in both the encoder and
the decoder; the second model was implemented using
bidirectional LSTM in the encoder and unidirectional LSTM
in the decoder; and the third model utilised a bidirectional
LSTM encoder and an LSTM decoder with global attention.
*e first hidden state of the decoder is the concatenation of
all backward and forward hidden states of the encoder. *e
use of attention in an encoder-decoder neural network
generates a context vector at each timestep. For the local
attention mechanism, the context vector is conditioned on a
subset of the encoder’s hidden states, while for the global
attention mechanism, the vector is conditioned on all the
encoder’s hidden states. After generating the first decoder
output, the next decoder input is the word embedding of the
output of the previous decoder step. *e affine transfor-
mation is used to convert the output of the decoder LSTM to
a dense vector prediction due to the long training time
needed before the number of hidden states is the same as the
number of words in the vocabulary.

Khandelwal [51] employed a sequence-to-sequence
model that consists of an LSTM encoder and LSTM decoder
for abstractive summarisation of small datasets. *e decoder
generated the output summary after reading the hidden
representations generated by the encoder and passing them
to the softmax layer. *e sequence-to-sequence model does
not memorize information, so generalization of the model is
not possible. *us, the proposed model utilised imitation
learning to determine whether to choose the golden token
(i.e., reference summary token) or the previously generated
output at each step.

(2) GRU-RNN. A combination of the elements of the RNN and
convolutional neural network (CNN) was employed in an
encoder-decoder model that is referred to as a quasi-recurrent
neural network (QRNN) [50]. In the QRNN, the GRU was
utilised in addition to the attention mechanism. *e QRNN
was applied to address the limitation of parallelisation, which
aimed to obtain the dependencies of the words in previous
steps via convolution and “fo-pooling,” which were performed
in parallel, as shown in Figure 6.*e convolution in theQRNN
can be either mass convolution (considering previous time-
steps only) or centre convolution (considering future time-
steps). *e encoder-decoder model employed two neural
networks: the first network applied the centre convolution of
QRNN and consisted ofmultiple hidden layers that were fed by
the vector representation of the words, and the second network
comprised neural attention and considered as input the en-
coder hidden layers to generate one word of a headline. *e
decoder accepted the previously generated headline word and
produced the next word of the headline; this process continued
until the headline was completed.

SEASS is an extension of the sequence-to-sequence re-
current neural network that was proposed in [52]. *e se-
lective encoding for the abstractive sentence summarisation
(SEASS) approach includes a selective encoding model that
consists of an encoder for sentences, a selective gate network,
and a decoder with an attention mechanism, as shown in
Figure 7. *e encoder uses a bidirectional GRU, while the
decoder uses a unidirectional GRU with an attention
mechanism. *e encoder reads the input words and their
representations. *e meaning of the sentences is applied by
the selective gate to choose the word representations for
generating the word representations of the sentence. To
produce an excellent summary and accelerate the decoding
process, a beam search was selected as the decoder.

On the other hand, dual attention was applied in [53].
*e proposed dual attention approach consists of three
modules: two bidirectional GRU encoders and one dual
attention decoder. *e decoder has a gate network for
context selection, as shown in Figure 8, and employs copying
and coverage mechanisms. *e outputs of the encoders are
two context vectors: one context vector for sentences and
one context vector for the relation, where the relationmay be

Context

Attention
weight

Word1 Word2 Word3 <EOS>

Headline

(a)

Context

Word1 Word2 Word3 <EOS>

Headline

Attention
weight

(b)

Figure 5: (a) Simple attention and (b) complex attention [29].

8 Mathematical Problems in Engineering

---- ---- ---- ---- ---- ---- →

---- ---- ---- ---- ---- ---- →

Convolutional

Max-pool

Convolutional

Max-pool

Convolutional

fo-pool

Convolutional

fo-pool

LSTM CNN QRNN

Linear

LSTM/

linear

Linear

LSTM/

linear

Figure 6: Comparison of the CNN, LSTM, and QRNN models [50].

E
n

co
d

er

Word3Word1 Word2 Word4 Word5

MLP

hi
S

Selective gate
network

Attention Ct

So�max

Yt

Maxout

GRU

St

Ct–1 St–1

Yt–1

Decoder

Figure 7: Selective encoding for abstractive sentence summarisation (SEASS) [52].

S
e
n

te
n

c
e

e
n

c
o

d
e
r

Word3Word1 Word2 Word4 Word5

Attention So�max

Yt

GRU

St

Ct–1
St–1

Ct
x Ct

r

Context selection

MLP

Rel3Rel1 Rel2 Rel4 Rel5

Attention

R
e
la

ti
o

n

e
n

c
o

d
e
r

Ct
x

Ct
r

Ct

Dual attention

decoder

Yt–1

Figure 8: Faithful to the original [53].

Mathematical Problems in Engineering 9

a triple or tuple relation. A triple relation consists of the
subject, predicate, and object, while the tuple relation
consists of either (subject and predicate) or (predicate and
subject). Sometimes the triple relation cannot be extracted;
in this case, two tuple relations are utilised. *e decoder gate
merges both context vectors based on their relative
association.

(3) Others. *e long-sequence poor semantic representa-
tion of abstractive text summarisation approaches, which
are based on an RNN encoder-decoder framework, was
addressed using the RC-Transformer (RCT) [54]. An RCT
is an RNN-based abstractive text summarisation model
that is composed of two encoders (RC encoder and
transformer encoder) and one decoder. *e transformer
shows an advantage in parallel computing in addition to
retrieving the global context semantic relationships. On the
other hand, sequential context representation was achieved
by a second encoder of the RCT-Transformer. Word or-
dering is very crucial for abstractive text summarisation,
which cannot be obtained by positioning encoding.
*erefore, an RCT utilised two encoders to address the
problem of a shortage of sequential information at the word
level. A beam search was utilised at the decoder. Fur-
thermore, Cai et al. compared the speed of the RCTmodel
and that of the RNN-based model and concluded that the
RCT is 1.4x and 1.2x faster.

3.2. Word Embedding. In the QRNN model, GloVe word
embedding, which was pretrained using the Wikipedia and
Gigaword datasets, was performed to represent the text and
summary [50]. In the first model, the proposed model by
Jobson et al., the word embedding, randomly initialised
and updated during training, while GloVe word embed-
ding was employed to represent the words in the second
and third models [38]. In a study by Cai et al., Transformer
was utilised [54].

3.3. Dataset and Dataset Preprocessing. In the model that
was proposed by Rush et al., datasets were preprocessed via
PTB tokenization by using “#” to replace all digits, con-
version of all letters to lowercase letters, and the use of
“UNK” to replace words that occurred fewer than 5 times
[18]. *e model was trained with any input-output pairs due
to the shortage of constraints for generating the output. *e
training process was carried out on the Gigaword datasets,
while the summarisation evaluation was conducted on
DUC2003 and DUC2004 [18]. Furthermore, the proposed
model by Chopra et al. was trained using the Gigaword
corpus with sentence separation and tokenisation [39]. To
form sentence-summary pairs, each headline of the article
was paired with the first sentence of the article. *e same
preprocessing steps of the data in [18] were performed in
[39]. Moreover, the Chopra et al. model was evaluated using
the DUC2004 dataset, which consists of 500 pairs.

Gigaword datasets were also employed by the QRNN
model [50]. Furthermore, articles that started with sentences

that contained more than 50 words or headlines with more
than 25 words were removed. Moreover, the words in the
articles and their headlines were converted to lowercase
words, and the data points were split into short, medium,
and long sentences, based on the lengths of the sentences, to
avoid extra padding.

Lopyrev and Jobson et al. trained the model using
Gigaword after processing the data. In the Lopyrev model,
the most crucial preprocessing steps for both the text and the
headline were tokenisation and character conversion to
lowercase [29]. In addition, only the characters of the first
paragraph were retained, and the length of the headline was
fixed between 25 and 50 words. Moreover, the no-headline
articles were disregarded, and the 〈unk〉 symbol was used to
replace rare words.

Khandelwal employed the Association for Computa-
tional Linguistics (ACL) Anthology Reference Corpus,
which consists of 16,845 examples for training and 500
examples for testing, and they were considered small
datasets, in experiments [51]. *e abstract included the first
three sentences, and the unigram that overlaps between the
title and the abstract was also calculated. *ere were 25
tokens in the summary, and there were a maximum of 250
tokens in the input text.

*e English Gigaword dataset, DUC2004 corpus, and
MSR-ATC were selected to train and test the SEASS model
[52]. Moreover, the experiments of the Cao et al. model were
conducted using the Gigaword dataset [53]. *e same
preprocessing steps of the data in [18] were performed in
[52, 53]. Moreover, RCT also employed the Gigaword and
DUC2004 datasets in experiments [54].

3.4. Evaluation and Results. Recall-Oriented Understudy
for Gisting Evaluation 1 (ROUGE1), ROUGE2, and
ROUGE-L were utilised to evaluate the Rush et al. model,
and values of 28.18, 8.49, and 23.81, respectively, were
obtained [18]. *e experimental results of the Chopra et al.
model showed that although DUC2004 was too complex
for the experiments, on the Gigaword corpus, the proposed
model outperformed state-of-the-art methods in terms of
ROUGE1, ROUGE2, and ROUGE-L [39]. *e values of
ROUGE1, ROUGE2, and ROUGE-L were 28.97, 8.26, and
24.06, respectively. On the other hand, BLEU was
employed to evaluate the Lopyrev model [29], while
Khandelwal utilised perplexity [51]. *e SEASS model was
evaluated using ROUGE1, ROUGE2, and ROUGE-L, and
the results of the three measures were 36.15, 17.54, and
33.63, respectively [52]. Moreover, ROUGE1, ROUGE2,
and ROUGE-L were selected for evaluating the Cao et al.
model [53]. *e values of ROUGE1, ROUGE2, and
ROUGE-L were 37.27, 17.65, and 34.24, respectively, and
the results showed that fake summaries were reduced by
80%. In addition, the RCT was evaluated using ROUGE1,
ROUGE2, and ROUGE-L with values 37.27, 18.19, and
34.62 compared with the Gigaword dataset. *e results
showed that the RCT model outperformed other models
by generating a high-quality summary that contains silent
information [54].

10 Mathematical Problems in Engineering

4. Multisentence Summary

In this section, multisentence summary and deep learning-
based abstractive text summarisation are discussed. Multi-
sentence summary methods include the get to the point
method (summarisation with pointer-generator networks)
[56], a deep reinforced model for abstractive summarization
(RL) [57], generative adversarial network for abstractive text
summarization [58], semantic phrase exploration (ATSDL)
[30], bidirectional attention encoder-decoder and bidirec-
tional beam search [35], key information guide network [59],
text summarisation abstraction improvement [60], dual
encoding for abstractive text summarisation (DEATS) [61],
and abstractive document summarisation via bidirectional
decoder (BiSum) [62], the text abstraction summary model
based on BERT word embedding and RL [63], transformer-
basedmodel for single documents neural summarisation [64],
text summarisation with pretrained encoders [65], and text
summarisation method based on the double attention pointer
network [49]. *e pointer-generator [55] includes single-
sentence andmultisentence summaries. Additional details are
presented in the following sections.

4.1. Abstractive Summarization Architecture

4.1.1. LSTM RN. A novel abstractive summarisationmethod
was proposed in [56]; it generated a multisentence summary
and addressed sentence repetition and inaccurate infor-
mation. See et al. proposed a model that consists of a single-
layer bidirectional LSTM encoder, a single-layer unidirec-
tional LSTM decoder, and the sequence-to-sequence at-
tention model proposed by [55]. *e See et al. model
generates a long text summary instead of headlines, which
consists of one or two sentences. Moreover, the attention
mechanism was employed, and the attention distribution
facilitated the production of the next word in the summary
by telling the decoder where to search in the source words, as
shown in Figure 9. *is mechanism constructed the
weighted sum of the hidden state of the encoder that fa-
cilitated the generation of the context vector, where the
context vector is the fixed size representation of the input.
*e probability (Pvocab) produced by the decoder was
employed to generate the final prediction using the context
vector and the decoder’s last step. Furthermore, the value of
Pvocab was equal to zero for OOV words. RL was employed
for abstractive text summarisation in [57]. *e proposed
method in [57], which combined RL with supervised word
prediction, was composed of a bidirectional LSTM-RNN
encoder and a single LSTM decoder.

Two models—generative and discriminative mod-
els—were trained simultaneously to generate abstractive

summary text using the adversarial process [58]. *e

maximum likelihood estimation (MLE) objective function

employed in previous sequence-sequence models suffers

from two problems: the difference between the training loss

and the evaluation metric, and the unavailability of a golden

token at testing time, which causes errors to accumulate

during testing. To address the previous problems, the

proposed approach exploited the adversarial framework. In
the first step of the adversarial framework, reinforcement
learning was employed to optimize the generator, which
generates the summary from the original text. In the second
step, the discriminator, which acts as a binary classifier,
classified the summary as either a ground-truth summary or
a machine-generated summary. *e bidirectional LSTM
encoder and attention mechanism were employed, as shown
in [56].

Abstract text summarisation using the LSTM-CNN
model based on exploring semantic phrases (ATSDL) was
proposed in [30]. ATSDL is composed of two phases: the
first phase extracts the phrases from the sentences, while the
second phase learns the collocation of the extracted phrases
using the LSTM model. To generate sentences that are
general and natural, the input and output of the ATSDL
model were phrases instead of words, and the phrases were
divided into three main types, i.e., subject, relation, and
object phrases, where the relation phrase represents the
relation between the input phrase and the output phrase.*e
phrase was represented using a CNN layer. *ere are two
main reasons for choosing the CNN: first, the CNN was
efficient for sentence-level applications, and second, training
was efficient since long-term dependency was unnecessary.
Furthermore, to obtain several vectors for a phrase, multiple
kernels with different widths that represent the dimen-
sionality of the features were utilised.Within each kernel, the
maximum feature was selected for each row in the kernel via
maximum pooling. *e resulting values were added to
obtain the final value for each word in a phrase. Bidirectional
LSTM was employed instead of a GRU on the encoder side
since parameters are easy to tune with LSTM. Moreover, the
decoder was divided into two modes: a generate mode and a
copy mode. *e generate mode generated the next phrase in
the summary based on previously generated phrases and the
hidden layers of the input on the encoder side, while the
copy mode copied the phrase after the current input phrase
if the current generated phrase was not suitable for the
previously generated phrases in the summary. Figure 10
provides additional details.

Bidirectional encoder and decoder LSTM-RNNs were
employed to generate abstractive multisentence summaries
[35]. *e proposed approach considered past and future
context on the decoder side when making a prediction as it
employed a bidirectional RNN. Using a bidirectional RNN
on the decoder side addressed the problem of summary
imbalance. An unbalanced summary could occur due to
noise in a previous prediction, which will reduce the quality
of all subsequent summaries. *e bidirectional decoder
consists of two LSTMs: the forward decoder and the
backward decoder. *e forward decoder decodes the in-
formation from left to right, while the backward decoder
decodes the information from right to left. *e last hidden
state of the forward decoder is fed as the initial input to the
backward decoder, and vice versa. Moreover, the researcher
proposed a bidirectional beam-search method that generates
summaries from the proposed bidirectional model. Bidi-
rectional beam search combined information from the past
and future to produce a better summary. *erefore, the

Mathematical Problems in Engineering 11

output summary was balanced by considering both past and
future information and by using a bidirectional attention
mechanism. In addition, the input sequence was read in
reverse order based on the conclusion that LSTM learns
better when reading the source in reverse order while re-
membering the order of the target [66, 67]. A softmax layer
was employed on the decoder side to obtain the probability
of each target word in the summary over the vocabulary
distribution by taking the output of the decoder as input for
the softmax layer. *e decoder output depends on the in-
ternal representation of the encoder, i.e., the context vector,
the current hidden state of the decoder, and the summary
words previously generated by the decoder hidden states.
*e objective of training is to maximise the probability of the
alignment between the sentence and the summary from both
directions. During training, the input of the forward decoder

is the previous reference summary token. However, during
testing, the input of the forward decoder is the token
generated in the previous step. *e same situation is true for
the backward decoder, where the input during training is the
future token from the summary. Nevertheless, the bidi-
rectional decoder has difficulty during testing since the
complete summary must be known in advance; thus, the full
backward decoder was generated and fed to the forward
decoder using a unidirectional backward beam search.

A combination of abstractive and extractive methods
was employed in the guiding generation model proposed by
[59]. *e extractive method generates keywords that are
encoded by a key information guide network (KIGN) to
represent key information. Furthermore, to predict the final
summary of the long-term value, the proposed method
applied a prediction guide mechanism [68]. A prediction

Word1 Word2 Word4 Word5Word3 Word6 Word7

Context vector

……..

A
tt

en
ti

o
n

d
is

tr
ib

u
ti

o
n

E
n

co
d

er
 h

id
d

en
st

at
es

Word_Sum1<Start>

……..

D
ec

o
d

er
 h

id
d

en
st

at
es

V
o

ca
b

u
la

ry

d
is

tr
ib

u
ti

o
n

Figure 9: Baseline sequence-to-sequence model with attention mechanism [56].

……..……..

P
h

ra
se

 e
n

co
d

er

P
h

ra
se

s
H

id
d

en

st
at

es

Encoder Decoder

Phrase vector

Words in a phrase

Convolution

M
ax

-p
o

o
li

n
g

Figure 10: Semantic-unit-based LSTM model [30].

12 Mathematical Problems in Engineering

guide mechanism is a feedforward single-layer neural net-
work that predicts the key information of the final summary
during testing. *e encoder-decoder architecture baseline of
the proposed model is similar to that proposed by Nallapati
et al. [55], where both the bidirectional LSTM encoder and
the unidirectional LSTM decoder were employed. Both
models applied the attention mechanism and softmax layer.
Moreover, the process of generating the summary was
improved by proposing KIGN, which considers as input the
keywords extracted using the TextRank algorithm. In KIGN,
key information is represented by concatenating the last
forward hidden state and first backward hidden state. KIGN
employs the attention mechanism and pointer mechanism.
In general, the attention mechanism hardly identifies the
keywords; thus, to identify keywords, the output of KIGN
will be fed to the attention mechanism. As a result, the
attentionmechanismwill be highly affected by the keywords.
However, to enable the pointer network to identify the
keywords, which are the output of KIGN, the encoder
context vector and hidden state of the decoder will be fed to
the pointer network, and the output will be employed to
calculate the soft switch. *e soft switch determines whether
to copy the target from the original text or generate it from
the vocabulary of the target, as shown in Figure 11.

*e level of abstraction in the generated summary of the
abstractive summarisation models was enhanced via the two
techniques proposed in [60]: decoder decomposition and the
use of a novel metric for optimising the overlap between the
n-gram summary and the ground-truth summary. *e de-
coder was decomposed into a contextual network and
pretrained language model, as shown in Figure 12. *e
contextual network applies the source document to extract
the relevant parts, and the pretrained language model is
generated via prior knowledge. *is decomposition method
facilitates the addition of an external pretrained language
model that is related to several domains. Furthermore, a
novel metric was employed to generate an abstractive
summary by including words that are not in the source
document. Bidirectional LSTM was utilised in the encoder,
and the decoder applied 3-layer unidirectional weight-
dropped LSTM. In addition, the decoder utilised a temporal
attention mechanism, which applied the intra-attention
mechanism to consider previous hidden states. Further-
more, a pointer network was introduced to alternate be-
tween copying the output from the source document and
selecting it from the vocabulary. As a result, the objective
function combined between force learning and maximum
likelihood.

A bidirectional decoder with a sequence-to-sequence
architecture, which is referred to as BiSum, was employed to
minimise error accumulation during testing [62]. Errors
accumulate during testing as the input of the decoder is the
previously generated summary word, and if one of the
generated word summaries is incorrect, then the error will
propagate through all subsequent summary words. In the
bidirectional decoder, there are two decoders: a forward
decoder and a backward decoder. *e forward decoder
generates the summary from left to right, while the backward
decoder generates the summary from right to left. *e

forward decoder considers a reference from the backward
decoder. However, there is only a single-layer encoder. *e
encoder and decoder employ an LSTM unit, but while the
encoder utilises bidirectional LSTM, the decoders use uni-
directional LSTM, as shown in Figure 13. To understand the
summary generated by the backward decoder, the attention
mechanism is applied in both the backward decoder and the
encoder. Moreover, to address the problem of out-of-vo-
cabulary words, an attention mechanism is employed in
both decoders.

A double attention pointer network, which is referred to
as (DAPT), was applied to generate an abstractive text
summarisation model [49]. *e encoder utilised bidirec-
tional LSTM, while the decoder utilised unidirectional
LSTM. *e encoder key features were extracted using a self-
attention mechanism. At the decoder, the beam search was
employed. Moreover, more coherent and accurate sum-
maries were generated. *e repetition problem was
addressed using an improved coverage mechanism with a
truncation parameter. *e model was optimised by gener-
ating a training model that is based on RL and scheduled
sampling.

4.1.2. GRU-RNN. Dual encoding using a sequence-to-se-
quence RNN was proposed as the DEATS method [61]. *e
dual encoder consists of two levels of encoders, i.e., primary
and secondary encoders, in addition to one decoder, and all
of them employ a GRU. *e primary encoder considers
coarse encoding, while the secondary encoder considers fine
encoding. *e primary encoder and decoder are the same as
the standard encoder-decoder model with an attention
mechanism, and the secondary encoder generates a new
context vector that is based on previous output and input.
Moreover, an additional context vector provides meaningful
information for the output. *us, the repetition problem of
the generated summary that was encountered in previous
approaches is addressed.*e semantic vector is generated on
both levels of encoding: in the primary encoder, the semantic
vector is generated for each input, while in the secondary
encoder, the semantic vector is recalculated after the im-
portance of each input word is calculated. *e fixed-length
output is partially generated at each stage in the decoder
since it decodes in stages.

Figure 14 elaborates the DEATS process. *e primary
encoder produces a hidden state hp

j for each input j and
content representation cp. Next, the decoder decodes a fixed-
length output, which is referred to as the decoder content
representation cd. *e weight αj can be calculated using the
hidden states hp

j and the content representations cp and cd.
In this stage, the secondary encoder generates new hidden
states or semantic context vectors hs

m, which are fed to the
decoder. Moreover, DEATS uses several advanced tech-
niques, including a pointer-generator, copy mechanism, and
coverage mechanism.

Wang et al. proposed a hybrid extractive-abstractive text
summarisation model, which is based on combining the
reinforcement learning with BERTword embedding [63]. In
this hybrid model, a BERTfeature-based strategy was used to

Mathematical Problems in Engineering 13

generate contextualised token embedding. *is model
consists of two submodels: abstractive agents and extractive
agents, which are bridged using RL. Important sentences are
extracted using the extraction model and rewritten using the
abstraction model. A pointer-generator network was utilised
to copy some parts of the original text, where the sentence-
level and word-level attentions are combined. In addition, a
beam search was performed at the decoder. In abstractive
and extractive models, the encoder consists of a bidirectional
GRU, while the decoder consists of a unidirectional GRU.

*e training process consists of pretraining and full training
phases.

Egonmwan et al. proposed to use sequence-to-sequence
and transformer models to generate abstractive summaries
[64]. *e proposed summarisation model consists of two
modules: an extractive model and an abstractive model. *e
encoder transformer has the same architecture shown in
[48]; however, instead of receiving the document repre-
sentation as input, it receives sentence-level representation.
*e architecture of the abstractive model consists of a single-

Word1Word2 Word4Word5Word3 Word6Word7

……..

E
n

co
d

er
 h

id
d

en
st

at
es

Word_
Sum1

<Start>
Word_
Sum2

……..

+

Word_
Sum1

<Start>
Word_
Sum2

+

……..

Decoder

L
an

gu
ag

e
m

o
d

el

C
o

n
te

xt
u

al
 m

o
d

el

ht
dec

ct
temp ct

int Fusion
layer

Figure 12: Decoder decomposed into a contextual model and a language model [60].

Word1Word2 Word4 Word5Word3 Word6 Word7

Attention

……..

E
n

co
d

er
 h

id
d

en
st

at
es

Word_Sum1<Start>

……..

D
ec

o
d

er
 h

id
d

en
st

at
es

Key
Word1

K

Key
Word2

Key
Word3

Key
Word4

……..

K
ey

 i
n

fo
rm

at
io

n

gu
id

e
n

et
w

o
rk

Pointer So�max

St

Ct

Figure 11: Key information guide network [59].

14 Mathematical Problems in Engineering

layer unidirectional GRU at the encoder and single-layer
unidirectional GRU at the decoder. *e input of the encoder
is the output of the transformer. A beam search was per-
formed during inference at the decoder, while greedy-
decoding was employed during training and validation.

4.1.3. Others. BERT is employed to represent the sentences
of the document to express its semantic [65]. Liu et al.
proposed abstractive and extractive summarisation models
that are based on encoder-decoder architecture.*e encoder
used a BERT pretrained document-level encoder, while the
decoder utilised a transformer that is randomly initialised
and trained from scratch. In the abstractive model, the
optimisers of the encoder and decoder are separated.
Moreover, two stages of fine-tuning are utilised at the en-
coder: one stage in extractive summarisation and one stage
in abstractive summarisation. At the decoder side, a beam
search was performed; however, the coverage and copy
mechanisms were not employed since these twomechanisms

need additional tuning of the hyperparameters. *e repe-
tition problem was addressed by producing different sum-
maries by using trigram-blocking. *e OOV words rarely
appear in the generated summary.

4.2.Word Embedding. *e word embedding of the input for
the See et al. model was learned from scratch instead of using
a pretrained word embedding model [56]. On the other
hand, both the input and output tokens applied the same
embedding matrix Wemb, which was generated using the
GloVe word embedding model in the Paulus et al. model
[57]. Another word embedding matrix referred to as Wout
was applied in the token generation layer. Additionally, a
sharing weighting matrix was employed by both the shared
embedding matrix Wemb and the Wout matrix. *e sharing
weighting matrixes improved the process of generating
tokens since they considered the embedding syntax and
semantic information.

Word_
Sum1

<Start> Word_
Sum2

Word1Word2 Word4Word5Word3 Word6Word7P
ri

m
ar

y
en

co
d

er
h

id
d

en
 s

ta
te

s

Word1Word2 Word4 Word5Word3 Word6 Word7S
ec

o
n

d
ar

y
en

co
d

er
h

id
d

en
 s

ta
te

s

D
ec

o
d

er
h

id
d

en
 s

ta
te

s

CdCp

α1 α2 α3 α4 α5 α6 α7
h1
s h2

s h3
s h4

s h5
s h6

s h7
s

h1
p

h2
p

h3
p

h4
p

h5
p

h6
p

h7
p

Figure 14: Dual encoding model [61].

Word1 Word2 Word4 Word5Word3 Word6 Word7

……..

Encoder

Word_

Sum1
<Start>

Word_

Sum2

F
o

rw
a
rd

 d
e
c
o

d
e
r

……..

Context vector

Word_

Sumn-1

Word_

Sumn

B
a
ck

w
a
rd

d
e
c
o

d
e
r

……..

Context vector

Context vector

Figure 13: Abstractive document summarisation via bidirectional decoder (BiSum) [62].

Mathematical Problems in Engineering 15

*e discriminator input sequence of the Liu et al. model
was encoded using a maximum pooling CNN, where the
result was passed to the softmax layer [58]. On the other
hand, the word embedding that was applied in the Al-Sabahi
et al. model was learned from scratch using the CNN/Daily
Mail datasets with 128 dimensions [35]. Egonmwan et al.
[64] used pretrained GloVe word embedding. BERT word
embedding was utilised in the models proposed by Wang
et al. [63] and Liu et al. [65].

4.3. Dataset and Dataset Preprocessing. Experiments were
conducted with the See et al. [56], Al-Sabahi et al. [35], and
Li et al. [59] models using CNN/Daily Mail datasets, which
consist of 781 tokens paired with 56 tokens on average;
287,226 pairs, 13,368 pairs, and 11,490 pairs were utilised for
training, validation, and testing, respectively [56]. In the
model proposed by Paulus et al., the document was pre-
processed using the same method applied in [55]. *e
proposed model was evaluated using two datasets: the CNN/
Daily News dataset and the New York Times dataset. *e
CNN/Daily Mail dataset was utilised by Liu et al. for training
their model [58].

*e ATSDL model consisted of three stages: text pre-
processing, phrase extractions, and summary generation [30].
During text preprocessing, the CoreNLP tool was employed
to segment the words, reduce themorphology, and resolve the
coreference. *e second stage of the ATSDL model was
phrase extraction, which included the acquisition, refinement
and combination of phrases. In addition, multiorder semantic
parsing (MOSP), which was proposed to create multilayer
binary semantics, was applied for phrase extraction. *e first
step of MOSP was to perform Stanford NLP parsing, which is
a specialised tool that retrieved the lexical and syntactic
features from the preprocessed sentences. Next, dependency
parsing was performed to create a binary tree by determining
the root of the tree, which represents the relational phrase. If
the child node has children, then the child is considered a new
root with children; this process continues recursively until
there are no children for the root. In this case, the tree
structure is completed. Accordingly, the compound phrases
can be explored via dependency parsing. However, one of the
important stages of phrase extraction is refinement, during
which redundant and incorrect phrases are refined before
training by applying simple rules. First, the phrase triples at
the topmost level are exploited since they carry the most
semantic information. Second, triple phrases with subject and
object phrases and no nouns are deleted since the noun
contains a considerable amount of conceptual information.
Triple phrases without a verb in a relational phrase are de-
leted. Moreover, phrase extraction includes phrase combi-
nation, during which phrases with the same meaning are
combined to minimise redundancy and the time required to
train the LSTM-RNN. To achieve the goal of the previous task
and determine whether two phrases can be combined, a set of
artificial rules are applied. *e experiments were conducted
using the CNN and Daily Mail datasets, which consisted of
92,000 text sources and 219,000 text sources, respectively.

*e Kryściński et al. [60] model was trained using a CNN/
Daily Mail dataset, which was preprocessed using the method
from 56[55, 56]. *e experiments of DEATS were conducted
using the CNN/Daily Mail dataset and DUC2004 corpus [61].
*e experiments of the BiSum model were performed using
the CNN/Daily Mail dataset [62]. In theWang et al. proposed
model, CNN/Daily Mail and DUC2002 were employed in
experiments [63] while the Egonmwan et al. model employed
the CNN/Daily and Newsroom datasets in experiments [64].
Experiments were conducted with the Liu et al. [65] model
using three benchmark datasets, including CNN/Daily Mail,
New York Times Annotated Corpus (NYT), and XSum.
Experiments were also conducted with the DAPT model
using the CNN/Daily Mail and LCSTS datasets [49].

4.4. Evaluation and Results. *e evaluation metrics
ROUGE1, ROUGE2, and ROUGE-L, with values of 39.53,
17.28, and 36.38, respectively, were applied to measure the
performance of the See et al. model [56], which out-
performed previous approaches by at least two points in
terms of the ROUGE metrics. Reinforcement learning with
the intra-attention model achieved the following results:
ROUGE1, 41.16; ROUGE2, 15.75; and ROUGE-L, 39.08
[57]. *e results for the maximum likelihood model were
39.87, 15.82, and 36.9 for ROUGE1, ROUGE2, and ROUGE-
L, respectively. Overall, the proposed approach yielded high-
quality generated summaries [57].

ROUGE1, ROUGE2, and ROUGE-L were utilised to
evaluate the Liu et al. model, which obtained values of 39.92,
17.65, and 36.71, respectively [58]. In addition, a manual
qualitative evaluation was performed to evaluate the quality
and readability of the summary. Two participants evaluated
the summaries of 50 test examples that were selected ran-
domly from the datasets. Each summary was given a score
from 1 to 5, where 1 indicates a low level of readability and 5
indicates a high level of readability.

ROUGE1 and ROUGE2 were used to evaluate the
ATSDL model [30]. *e value of ROUGE1 was 34.9, and the
value of ROUGE2 was 17.8. Furthermore, ROUGE1,
ROUGE2, and ROUGE-L were applied as evaluation metrics
of the Al-Sabahi et al. and Li et al. models, and the values of
42.6, 18.8, and 38.5, respectively, were obtained for the Al-
Sabahi et al. model [35], while the values of 38.95, 17.12, and
35.68, respectively, were obtained for the Li et al. model [58].

*e evaluation of the Kryściński et al. model was con-
ducted using quantitative and qualitative evaluations [60].
*e quantitative evaluations included ROUGE1, ROUGE2,
and ROUGE-L, and the values of 40.19, 17.38, and 37.52,
respectively, were obtained. Additionally, a novel score re-
lated to the n-gram was employed to measure the level of
abstraction in the summary. *e qualitative evaluation in-
volved the manual evaluation of the proposed model. Five
participants evaluated 100 full-text summaries in terms of
relevance and readability by giving each document a value
from 1 to 10. Furthermore, for comparison purposes, full-
text summaries from two previous studies [56, 58] were
selected. *e evaluators graded the output summaries
without knowing which model generated them.

16 Mathematical Problems in Engineering

Moreover, ROUGE1, ROUGE2, and ROUGE-L were
applied for evaluating DEATS, and the values of 40.85, 18.08,
and 37.13, respectively, were obtained for the CNN/Daily
Mail dataset [61]. *e experimental results of the BiSum
model showed that the values of ROUGE1, ROUGE2, and
ROUGE-L were 37.01, 15.95, and 33.66, respectively [62].

Several variations in the Wang et al. model were
implemented. *e best results were achieved by the BEAR
(large +WordPiece) model, where the WordPiece tokeniser
was utilised. *e values of ROUGE1, ROUGE2, and
ROUGE-L were 41.95, 20.26, and 39.49, respectively [63]. In
Egonmwan et al. model, the values of ROUGE1 and
ROUGE2 were 41.89 and 18.90, respectively, while the value
of ROUGE3was 38.92. Several variations in the Liu et al. [65]
model were evaluated using ROUGE1, ROUGE2, and
ROUGE-L, where the best model, which is referred to as
BERTSUMEXT (large), achieved the values of 43.85, 20.34,
and 39.90 for ROUGE1, ROUGE2, and ROUGE-L, re-
spectively, over the CNN/Daily Mail datasets. Moreover, the
model was evaluated by a human via a question and an-
swering paradigm, where 20 documents were selected for
evaluation. *ree values were chosen for evaluating the
answer: a score of 1 indicates the correct answer; a score of
0.5 indicates a partially correct answer; and a score of 0
indicates a wrong answer. ROUGE1, ROUGE2, and
ROUGE-L for the DAPT model over the CNN/Daily Mail
datasets were 40.72, 18.28, and 37.35, respectively.

Finally, the pointer-generator approach was applied on
the single-sentence and multisentence summaries. Atten-
tion encoder-decoder RNNs were employed to model the
abstractive text summaries [55]. Both the encoder and
decoder have the same number of hidden states. Addi-
tionally, the proposed model consists of a softmax layer for
generating the words based on the vocabulary of the target.
*e encoder and decoder differ in terms of their compo-
nents. *e encoder consists of two bidirectional GRU-
RNNs—a GRU-RNN for the word level and a GRU-RNN
for the sentence level—while the decoder uses a unidi-
rectional GRU-RNN, as shown in Figure 15. Furthermore,
the decoder uses batching, where the vocabulary at the
decoder for each minibatch is restricted to the words in the
batch of the source document. Instead of considering every
vocabulary, only certain vocabularies were added based on
the frequency of the vocabulary in the target dictionary to
decrease the size of the decoder softmax layer. Several
linguistic features were considered in addition to the word
embedding of the input words to identify the key entities of
the document. Linguistic and statistical features included
TF-IDF statistics and the part-of-speech and named-entity
tags of the words. Specifically, the part-of-speech tags were
stored in matrixes for each tag type that was similar to word
embedding, while the TF-IDF feature was discretised in
bins with a fixed number, where one-hot representation
was employed to represent the value of the bins. *e one-
hot matrix consisted of the number of bin entries, where
only one entry was set to one to indicate the value of the TF-
IDF of a certain word. *is process permitted the TF-IDF
to be addressed in the same way as any other tag by
concatenating all the embeddings into one long vector, as

shown in Figure 16. *e experiments were conducted using
the annotated Gigaword corpus with 3.8M training ex-
amples, the DUC corpus, and the CNN/Daily Mail corpus.
*e preprocessing methods included tokenisation and
part-of-speech and name-entity generation. Additionally,
the Word2Vec model with 200 dimensions was applied for
word embedding and trained using the Gigaword corpus.
Additionally, the hidden states had 400 dimensions in both
the encoder and the decoder. Furthermore, datasets with
multisentence summaries were utilised in the experiments.
*e values of ROUGE1, ROUGE2, and ROUGE-L were
higher than those of previous work on abstractive sum-
marisation, with values of 35.46, 13.3, and 32.65,
respectively.

Finally, for both single-sentence summary and multi-
sentence summary models, the components of the encoder
and decoder of each approach are displayed in Table 1.
Furthermore, dataset preprocessing and word embedding of
several approaches are appeared in Table 2 while training,
optimization, mechanism, and search at the decoder are
presented in Table 3.

5. Datasets for Text Summarization

Various datasets were selected for abstractive text summa-
risation, including DUC2003, DUC2004 [69], Gigaword
[70], and CNN/Daily Mail [71]. *e DUC datasets are
produced for the Document Understanding Conference;
although their quality is high, they are small datasets that are
typically employed to evaluate summarisation models. *e
DUC2003 and DUC2004 datasets consist of 500 articles. *e
Gigaword dataset from the Stanford University Linguistics
Department was the most common dataset for model
training in 2015 and 2016. Gigaword consists of approxi-
mately 10 million documents from seven news sources,
including the New York Times, Associated Press, and
Washington Post. Gigaword is one of the largest and most
diverse summarisation datasets even though it contains
headlines instead of summaries; thus, it is considered to
contain single-sentence summaries.

Recent studies utilised the CNN/Daily Mail datasets for
training and evaluation. *e CNN/Daily Mail datasets
consist of bullet points that describe the articles, where
multisentence summaries are created by concatenating the
bullet points of the article [5]. CNN/Daily Mail datasets that
are applied in abstractive summarisation were presented by
Nallapati et al. [55]. *ese datasets were created by modi-
fying the CNN/Daily Mail datasets that were generated by
Hermann et al. [71]. *e Hermann et al. datasets were
utilised for extractive summarisation. *e abstractive
summarisation CNN/Daily Mail datasets have 286,817 pairs
for training and 13,368 pairs for validation, while 11,487
pairs were applied in testing. In training, the source doc-
uments have 766 words (on average 29.74 sentences), while
the summaries have 53 words (on average 3.72 sentences)
[55].

In April 2018, NEWSROOM, a summarisation dataset
that consists of 1.3 million articles collected from social
media metadata from 1998 to 2017, was produced [72]. *e

Mathematical Problems in Engineering 17

W1

POS

NER

TF

IDF

W1

POS

NER

TF

IDF

W1

POS

NER

TF

IDF

W1

POS

NER

TF

IDF

W1

POS

NER

TF

IDF

Word_

Sum1

<Start> Word_

Sum2

E
n

c
o

d
e
r

h
id

d
e
n

 s
ta

te
s

D
e
c
o

d
e
r

h
id

d
e
n

 s
ta

te
s

W1

POS

NER

TF

IDF

Figure 16: Word embedding concatenated with discretized TF-IDF, POS, and NER one-embedding vectors [55].

Word_

Sum1

<Start> Word_

Sum2

Word1 Word2 Word4 Word5Word3 Word6

W
o

rd
-l

e
v

e
l

h
id

d
e
n

 s
ta

te
s

Decoder

hidden states

Encoder

hidden states

S
e
n

te
n

c
e
-l

e
v

e
l

h
id

d
e
n

 s
ta

te
s

Figure 15: Word-level and sentence-level bidirectional GRU-RNN [55].

Table 1: Encoder and decoder components.

Reference Year Encoder Decoder

[18] 2015 Bag-of-words, convolutional, and attention-based
[29] 2015 RNN with LSTM units and attention RNN with LSTM units and attention
[39] 2016 RNN-LSTM decoder RNN Word-based
[50] 2016 GRU+QRNN+ attention GRU+RNN QRNN
[38] 2016 Unidirectional RNN attentive encoder-decoder LSTM Unidirectional RNN attentive encoder-decoder LSTM

Bidirectional LSTM Unidirectional LSTM
Bidirectional LSTM Decoder that had global attention

[51] 2016 LSTM-RNN LSTM-RNN
[55] 2016 Two bidirectional GRU-RNN GRU-RNN unidirection
[52] 2017 Bidirectional GRU Unidirectional GRU
[53] 2017 Bidirectional GRU Unidirectional GRU
[56] 2017 Single-layer bidirectional LSTM+ attention Single-layer unidirectional LSTM
[57] 2017 Bidirectional LSTM-RNN+ intra-attention single LSTM decoder + intra-attention
[58] 2018 Bidirectional LSTM Unidirectional LSTM
[30] 2018 Bidirectional LSTM Unidirectional LSTM
[35] 2018 Bidirectional LSTM Bidirectional LSTM
[59] 2018 Bidirectional LSTM Unidirectional LSTM
[60] 2018 Bidirectional LSTM 3-layer unidirectional LSTM
[61] 2018 Bidirectional GRU Unidirectional GRU
[62] 2018 Bidirectional LSTM Two-decoder unidirectional LSTM
[63] 2019 Bidirectional GRU Unidirectional GRU
[64] 2019 Unidirectional GRU Unidirectional GRU
[49] 2020 Bidirectional LSTM Unidirectional LSTM

18 Mathematical Problems in Engineering

NEWSROOM dataset consists of 992,985 pairs for training
and 108,612 and 108,655 pairs for validation and testing,
respectively [22]. *e quality of the summaries is high, and
the style of the summarisation is diverse. Figure 17 displays
the number of surveyed papers that applied each of the

datasets. Nine research papers utilised Gigaword, fourteen
papers employed the CNN/Daily Mail datasets (largest
number of papers on the list), and one study applied the ACL
Anthology Reference, DUC2002, DUC2004, New York
Times Annotated Corpus (NYT), and XSum datasets.

Table 2: Dataset preprocessing and word embedding.

Reference Authors Dataset preprocessing Input (word embedding)

[18] Rush et al.
PTB tokenization by using “#” to replace all digits,
converting all letters to lower case, and “UNK” to
replace words that occurred fewer than 5 times

Bag-of-words of the input sentence embedding

[39] Chopra et al.
PTB tokenization by using “#” to replace all digits,
converting all letters to lower case, and “UNK” to
replace words that occurred fewer than 5 times

Encodes the position information of the input words

[55]
Nallapati
et al.

Part-of-speech and name-entity tags generating and
tokenization

(i) Encodes the position information of the input
words

(ii) *e input text was represented using the
Word2Vec model with 200 dimensions that was

trained using Gigaword corpus
(iii) Continuous features such as TF-IDF were

represented using bins and one-hot representation for
bins

(iv) Lookup embedding for part-of-speech tagging and
name-entity tagging

[52] Zhou et al.
PTB tokenization by using “#” to replace all digits,
converting all letters to lower case, and “UNK” to
replace words that occurred fewer than 5 times

Word embedding with size equal to 300

[53] Cao et al.
Normalization and tokenization, using the “#” to

replace digits, convert the words to lower case, and
“UNK” to replace the least frequent words.

GloVe word embedding with dimension size equal to
200

[54] Cai et al. Byte pair encoding (BPE) was used in segmentation Transformer

[50] Adelson et al.
Converting the article and their headlines to lower case

letters
GloVe word embedding

[29] Lopyrev
Tokenization, converting the article and their

headlines to lower case letters, using the symbol 〈unk〉
to replace rare words

*e input was represented using the distributed
representation

[38] Jobson et al.

*e word embedding randomly initialised and
updated during training while GloVe word embedding
was used to represent the words in the second and

third models

[56] See et al.
*e word embedding of the input for was learned from
scratch instead of using a pretrained word embedding

model
[57] Paulus et al. *e same as in [55] GloVe

[58] Liu et al.
CNN maximum pooling was used to encode the

discriminator input sequence

[30] Song et al.
*e words were segmented using CoreNLP tool,

resolving the coreference and reducing the
morphology

Convolutional neural network was used to represent
the phrases

[35]
Al-Sabahi

et al.
*e word embedding is learned from scratch during

training with a dimension of 128
[59] Li et al. *e same as in [55] Learned from scratch during training

[60]
Kryściński

et al.
*e same as in [55] Embedding layer with a dimension of 400

[61] Yao et al.
*e word embedding is learned from scratch during

training with a dimension of 128
[62] Wan et al. No word segmentation Embedding layer learned during training
[65] Liu et al. BERT
[63] Wang et al. Using WordPiece tokenizer BERT

[64]
Egonmwan

et al.
GloVe word embedding with dimension size equal to

300

Mathematical Problems in Engineering 19

Table 4 lists the datasets that are used to train and validate
the summarisation methods in the research papers listed in
this work.

6. Evaluation Measures

*e package ROUGE is employed to evaluate the text
summarisation techniques by comparing the generated

summary with a manually generated summary [73]. *e
package consists of several measures to evaluate the per-
formance of text summarisation techniques, such as
ROUGE-N (ROUGE1 and ROUGE2) and ROUGE-L, which
were employed in several studies [38]. ROUGE-N is n-gram
recall such that ROUGE1 and ROUGE2 are related to
unigrams and bigrams, respectively, while ROUGE-L is
related to the longest common substring. Since the manual

Table 3: Training, optimization, mechanism, and search at the decoder.

Reference Authors Training and optimization Mechanism Search at decoder (siz)

[18] Rush et al.
Stochastic gradient descent to

minimise negative log-likelihood
Beam search

[39] Chopra et al.
Minimizing negative log-likelihood
using end-to-end using stochastic

gradient descent

Encodes the position information of
the input words

Beam search

[55]
Nallapati
et al.

Optimize the conditional likelihood
using Adadelta

Pointer mechanism Beam search (5)

[52] Zhou et al.
Stochastic gradient descent, Adam
optimizer, optimizing the negative

log-likelihood
Attention mechanism Beam search (12)

[53] Cao et al.
Adam optimizer, optimizing the

negative log-likelihood
Copy mechanism, coverage

mechanism, dual-attention decoder
Beam search (6)

[54] Cai et al.
Cross entropy is used as the loss

function
Attention mechanism Beam search (5)

[50] Adelson et al. Adam Attention mechanism

[29] Lopyrev RMSProp adaptive gradient method
Simple and complex attention

mechanism
Beam search

[38] Jobson et al.
Adadelta, minimising the negative
log probability of prediction word

Bilinear attention mechanism,
pointer mechanism

[56] See et al. Adadelta
Coverage mechanism, attention
mechanism, pointer mechanism

Beam search (4)

[57] Paulus et al. Adam, RL
Intradecoder attention mechanism,

pointer mechanism, copy
mechanism, RL

Beam search (5)

[58] Liu et al.
Adadelta stochastic gradient

descent
Attention mechanism, pointer

mechanism, copy mechanism, RL

[30] Song et al.
Attention mechanism, copy

mechanism

[35]
Al-Sabahi

et al.
Adagrad

Pointer mechanism, coverage
mechanism, copy mechanism

Bidirectional beam search

[59] Li et al. Adadelta
Attention mechanism, pointer
mechanism, copy mechanism,
prediction guide mechanism

Beam search

[60]
Kryściński

et al.
Asynchronous gradient descent

optimizer
Temporal attention and intra-

attention pointer mechanism, RL
Beam search

[61] Yao et al. RL, Adagrad
Attention mechanism, pointer
mechanism, copy mechanism,

coverage mechanism, RL
Beam search (4)

[62] Wan et al. Adagrad
Attention mechanism, pointer

mechanism
Beam-search backward (2) and

forward (4)
[65] Liu et al. Adam Self-attention mechanism Beam search (5)

[63] Wang et al.
Gradient of reinforcement learning,
Adam, cross-entropy loss function

Attention mechanism, pointer
mechanism, copy mechanism, new

coverage mechanism
Beam search

[64]
Egonmwan

et al.
Adam Self-attention mechanism

Greedy-decoding during training
and validation. Beam search at

decoding during testing

[49] Peng et al.
Adam, gradient descent, cross-

entropy loss
Coverage mechanism, RL, double
attention pointer network (DAPT)

Beam search (5)

20 Mathematical Problems in Engineering

evaluation of automatic text summarisation is a time-con-
suming process and requires extensive effort, ROUGE is

employed as a standard for evaluating text summarisation.
ROUGE-N is calculated using the following equation:

ROUGE −N �
∑ S ∈ REFERENCE SUMMARIES{ }∑ gramn ∈ Countmatch gramn()

∑ S ∈ REFERENCE SUMMARIES{ }∑ gramn ∈ Count gramn()
, (1)

where S is the reference summary, n is the n-gram length,
and Countmatch (gramn) is the maximum number of
matching n-gram words between the reference summary
and the generated summary. Count (gramn) is the total
number of n-gram words in the reference summary [73].

ROUGE-L is the longest common subsequence (LCS),
which represents the maximum length of the common
matching words between the reference summary and the

generated summary. LCS calculation does not necessarily
require the match words to be consecutive; however, the
order of occurrence is important. In addition, no predefined
number of match words is required. LCS considers only the
main in-sequence, which is one of its disadvantages since the
final score will not include other matches. For example,
assume that the reference summary R and the automatic
summary A are as follows:

Gigaword CNN/Daily
Mail

ACL DUC2004DUC2002 NewsroomNYT XSum

Datasets

N
u

m
b

er
 o

f
re

se
ar

ch
es

0
2
4
6
8

10
12
14
16

Datasets

Figure 17: *e number of research papers that used the Gigaword, CNN/Daily Mail, ACL DUC2002, DUC2004, NYT, Newsroom, and
XSum datasets [61].

Table 4: Abstractive summarisation datasets.

Reference Training Summarization Evaluation

[18] Gigaword DUC2003 and DUC2004
[39] Gigaword DUC2004
[50] Gigaword Gigaword
[29] Gigaword Articles from BBC, *e Wall Street Journal, Guardian, Huffington Post, and Forbes
[38] Gigaword —
[54] Gigaword and DUC2004 Gigaword and DUC2004
[51] ACL anthology reference ACL anthology reference
[52] Gigaword and DUC2004 Gigaword and DUC2004
[53] Gigaword and DUC2004 Gigaword and DUC2004
[56] CNN/Daily Mail CNN/Daily Mail
[57] CNN/Daily and New York Times CNN/Daily and New York Times
[58] CNN/Daily Mail CNN/Daily Mail
[30] CNN/Daily Mail CNN/Daily Mail
[35] CNN/Daily Mail CNN/Daily Mail
[59] CNN/Daily Mail CNN/Daily Mail
[60] CNN/Daily Mail CNN/Daily Mail
[61] CNN/Daily Mail CNN/Daily Mail
[55] Gigaword DUC CNN/Daily Mail Gigaword DUC CNN/Daily Mail
[62] CNN/Daily Mail CNN/Daily Mail
[65] CNN/Daily Mail, NYT, and XSum CNN/Daily Mail, NYT, and XSum
[63] CNN/Daily Mail and DUC2002 CNN/Daily Mail and DUC2002
[64] CNN/Daily Mail and Newsroom CNN/Daily Mail and Newsroom
[49] CNN/Daily Mail CNN/Daily Mail

Mathematical Problems in Engineering 21

R: Ahmed ate the apple.

A: the apple Ahmed ate.

In this case, ROUGE-L will consider either “Ahmed ate”
or “the apple” but not both, similar to LCS.

Tables 5 and 6 present the values of ROUGE1, ROUGE2,
and ROUGE-L for the text summarisation methods in the
various studies reviewed in this research. In addition, Per-
plexity was employed in [18, 39, 51], and BLEU was utilised
in [29]. *e models were evaluated using various datasets.
*e other models applied ROUGE1, ROUGE2, and
ROUGE-L for evaluation. It can be seen that the highest
values of ROUGE1, ROUGE2, and ROUGE-L for text
summarisation with the pretrained encoder model were
43.85, 20.34, and 39.9, respectively [65]. Even though
ROUGE was employed to evaluate abstractive summa-
risation, it is better to obtain new methods to evaluate the
quality of summarisation. *e new evaluation metrics must
consider novel words and semantics since the generated
summary contains words that do not exist in the original
text. However, ROUGE was very suitable for extractive text
summarisation.

Based on our taxonomy, we divided the results of
ROUGE1, ROUGE2, and ROUGE-L into two groups. *e
first group considered single-sentence summary approaches,
while the second group considered multisentence summary
approaches. Figure 18 compares several deep learning
techniques in terms of ROUGE1, ROUGE2, and ROUGE-L
for the Gigaword datasets, consisting of single-sentence
summary documents. *e highest values for ROUGE1,
ROUGE2, and ROUGE-L were achieved by the RCTmodel
[54]. *e values for ROUGE1, ROUGE2, and ROUGE-L
were 37.27, 18.19, and 34.62, respectively.

Furthermore, Figure 19 compares the ROUGE1,
ROUGE2, and ROUGE-L values for abstractive text sum-
marisation methods for the CNN/Daily Mail datasets, which
consist of multisentence summary documents. *e highest
values of ROUGE1, ROUGE2, and ROUGE-L were achieved
for text summarisation with a pretrained encoder model.
*e values for ROUGE1, ROUGE2, and ROUGE-L were
43.85, 20.34, and 39.9, respectively [65]. It can be clearly seen
that the best model in the single-sentence summary and
multisentence summary is the models that employed BERT
word embedding and were based on transformers. *e
ROUGE values for the CNN/Daily Mail datasets are larger
than those for the Gigaword dataset, as Gigaword is utilised
for single-sentence summaries as it contains headlines that
are treated as summaries, while the CNN/DailyMail datasets
are multisentence summaries. *us, the summaries in the
CNN/Daily Mail datasets are longer than the summaries in
Gigaword.

Liu et al. selected two human elevators to evaluate the
readability of the generated summary of 50 test examples of 5
models [58]. *e value of 5 indicates that the generated
summary is highly readable, while the value of 1 indicates
that the generated summary has a low level of readability. It
can be clearly seen from the results that the Liu et al. model
was better than the other four models in terms of ROUGE1,
ROUGE2, and human evaluation, even though the model is

not optimal with respect to the ROUGE-L value. In addition
to quantitative measures, qualitative evaluationmeasures are
important. Kryściński et al. also performed qualitative
evaluation to evaluate the quality of the generated summary
[60]. Five human evaluators evaluated the relevance and
readability of 100 randomly selected test examples, where
two values are utilised: 1 and 10.*e value of 1 indicates that
the generated summary is less readable and less relevance
while the value of 10 indicates that the generated summary is
readable and very relevance. *e results showed that, in
terms of readability, the model proposed by Kryściński et al.
is slightly inferior to See et al. [56] and Liu et al. [58] models
with mean values of 6.35, 6.76, and 6.79 for Kryściński et al.,
to See et al. and Liu et al., respectively. On the other hand,
with respect to the relevance, the means values of the three
models are relevance with values of 6.63, 6.73, and 6.74 for
Kryściński et al., to See et al. and Liu et al., respectively.
However, the Kryściński et al. model was the best in terms of
ROUGE1, ROUGE2, and ROUGE-L.

Liu et al. evaluated the quality of the generated summary
in terms of succinctness, informativeness, and fluency in
addition to measuring the level of retaining key information,
which was achieved by human evaluation [65]. In addition,
qualitative evaluation evaluated the output in terms of
grammatical mistakes. *ree values were selected for eval-
uating 20 test examples: 1 indicates a correct answer, 0.5
indicates a partially correct answer, and 0 indicates an in-
correct answer. We can conclude that quantitative evalua-
tions, which include ROUGE1, ROUGE2, and ROUGE-L,
are not enough for evaluating the generated summary of
abstractive text summarisation, especially when measuring
readability, relevance, and fluency. *erefore, qualitative
measures, which can be achieved by manual evaluation, are
very important. However, qualitative measures without
quantitative measures are not enough due to the small
number of testing examples and evaluators.

7. Challenges and Solutions

Text summarisation approaches have faced various chal-
lenges; although some have been solved, others still need to
be addressed. In this section, these challenges and their
possible solutions are discussed.

7.1. Unavailability of the Golden Token during Testing.
Due to the availability of golden tokens (i.e., reference
summary tokens) during training, previous tokens in the
headline can be input into the decoder at the next step.
However, during testing, the golden tokens are not available;
thus, the input for the next step in the decoder will be limited
to the previously generated output word. To solve this issue,
which becomes more challenging when addressing small
datasets, different solutions have been proposed. For ex-
ample, in reference [51], the data-as-demonstrator (DaD)
model [74] is utilised. In DaD, at each step, based on a coin
flip, either a gold token is utilised during training or the
previous step is employed during both testing and training.
In this manner, at least the training step receives the same

22 Mathematical Problems in Engineering

input as testing. In all cases, the first input of the decoder is
the 〈EOS〉 token, and the same calculations are applied to
compute the loss. In [29], teacher forcing is employed to
address this challenge: during training, instead of feeding the
expected word from the headline, 10% of the time, the
generated word of the previous step is fed back [75, 76].

Moreover, the mass convolution of the QRNN is applied in
[50] since the dependency of words generated in the future is
difficult to determine.

7.2.Out-of-Vocabulary (OOV)Words. One of the challenges
that may occur during testing is that the central words of the
test document may be rare or unseen during training; these
words are referred to as OOV words. In 61[55, 61], a
switching decoder/pointer was employed to address OOV
words by using pointers to point to their original positions in
the source document. *e switch on the decoder side is used
to alternate between generating a word and using a pointer,
as shown in Figure 20 [55]. When the switch is turned off,
the decoder will use the pointer to point to the word in the
source to copy it to the memory. When the switch is turned
on, the decoder will generate a word from the target vo-
cabularies. Conversely, researchers in [56] addressed OOV
words via probability generation Pgen, where the value is
calculated from the context vector and decoder state, as
shown in Figure 21. To generate the output word, Pgen
switches between copying the output words from the input
sequence and generating them from the vocabulary. Fur-
thermore, the pointer-generator technique is applied to
point to input words to copy them. *e combination be-
tween the words in the input and the vocabulary is referred
to the extended vocabulary. In addition, in [57], to generate
the tokens on the decoder side, the decoder utilised the
switch function at each timestep to switch between gener-
ating the token using the softmax layer and using the pointer
mechanism to point to the input sequence position for

Table 5: Evaluation measures of several deep learning abstractive text summarisation methods over the Gigaword dataset.

Reference Year Authors Model ROUGE1 ROUGE2 ROUGE-L

[18] 2015 Rush et al. ABS+ 28.18 8.49 23.81
[39] 2016 Chopra et al. RAS-Elman (k� 10) 28.97 8.26 24.06
[55] 2016 Nallapati et al. Words-lvt5k-1sent 28.61 9.42 25.24
[52] 2017 Zhou et al. SEASS 36.15 17.54 33.63
[53] 2018 Cao et al. FTSumg 37.27 17.65 34.24
[54] 2019 Cai et al. RCT 37.27 18.19 34.62

Table 6: Evaluation measures of several abstractive text summarisation methods over the CNN/Daily Mail datasets.

Reference Year Authors Model ROUGE1 ROUGE2 ROUGE-L

[55] 2016 Nallapati et al. Words-lvt2k-temp-att 35.46 13.30 32.65
[56] 2017 See et al. Pointer-generator + coverage 39.53 17.28 36.38
[57] 2017 Paulus et al. Reinforcement learning, with intra-attention 41.16 15.75 39.08
[57] 2017 Paulus et al. Maximum-likelihood +RL, with intra-attention 39.87 15.82 36.90
[58] 2018 Liu et al. Adversarial network 39.92 17.65 36.71
[30] 2018 Song et al. ATSDL 34.9 17.8 —
[35] 2018 Al-Sabahi et al. Bidirectional attentional encoder-decoder 42.6 18.8 38.5
[59] 2018 Li et al. Key information guide network 38.95 17.12 35.68
[60] 2018 Kryściński et al. ML+RL ROUGE+Novel, with LM 40.19 17.38 37.52
[61] 2018 Yao et al. DEATS 40.85 18.08 37.13
[62] 2018 Wan et al. BiSum 37.01 15.95 33.66
[63] 2019 Wang et al. BEAR (large +WordPiece) 41.95 20.26 39.49
[64] 2019 Egonmwan et al. TRANS-ext + filter + abs 41.89 18.9 38.92
[65] 2020 Liu et al. BERTSUMEXT (large) 43.85 20.34 39.90
[49] 2020 Peng et al. DAPT+ imp-coverage (RL+MLE (ss)) 40.72 18.28 37.35

ROUGE1 ROUGE2 ROUGE-L

0

5

10

15

20

25

30

35

40

ABS+

RAS-Elman (k = 10)

SEASS

Words-lvt5k-1sent (Gigaword)

FTSumg

RCT

Figure 18: ROUGE1, ROUGE2, and ROUGE-L scores of several
deep learning abstractive text summarisation methods for the
Gigaword dataset.

Mathematical Problems in Engineering 23

unseen tokens to copy them. Moreover, in [30], rare words
were addressed by using the location of the phrase, and the
resulting summary was more natural. Moreover, in 35
[35, 58, 60], the OOV problem was addressed by using
the pointer-generator technique employed in [56], which
alternates between generating a new word and coping the
word from the original input text.

7.3. Summary Sentence Repetition and Inaccurate Information
Summary. *e repetition of phrases and generation of in-
coherent phrases in the generated output summary are two

challenges that must be considered. Both challenges are due
to the summarisation of long documents and the production
of long summaries using the attention-based encoder-de-
coder RNN [57]. In [35, 56], repetition was addressed by
using the coverage model to create the coverage vector by
aggregating the attention over all previous timesteps. In [57],
repetition was addressed by using the key attention mech-
anism, where for each input token, the encoder intra-
temporal attention records the weights of the previous
attention. Furthermore, the intratemporal attention uses the
hidden states of the decoder at a certain timestep, the
previously generated words, and the specific part of the
encoded input sequence, as shown in Figure 22, to prevent
repetition and attend to the same sequence of the input at a
different step of the decoder. However, the intra-attention
encoder mechanism cannot address all the repetition
challenges, especially when a long sequence is generated.
*us, the intradecoder attention mechanism was proposed
to allow the decoder to consider more previously generated
words. Moreover, the proposed intradecoder attention
mechanism is applicable to any type of the RNN decoder.
Repetition was also addressed by using an objective function
that combines the cross-entropy loss maximum likelihood
and gradient reinforcement learning to minimise the ex-
posure bias. In addition, the probability of trigram p (yt) was
proposed to address repetition in the generated summary,
where yt is the trigram sequence. In this case, the value of
p (yt) is 0 during a beam search in the decoder when the
same trigram sequence was already generated in the output
summary. Furthermore, in [60], the heuristic proposed by
[57] was employed to reduce repetition in the summary.
Moreover, in [61], the proposed approach addressed repe-
tition by exploiting the encoding features generated using a
secondary encoder to remember the previously generated
decoder output, and the coverage mechanism is utilised.

7.4. Fake Facts. Abstractive summarisation may generate
summaries with fake facts, and 30% of summaries generated
from abstractive text summarisation suffer from this
problem [53]. With fake facts, there may be a mismatch
between the subject and the object of the predicates. *us, to
address this problem, dependency parsing and open in-
formation extraction (e.g., open information extraction
(OpenIE)) are performed to extract facts.

*erefore, the sequence-to-sequence framework with
dual attention was proposed, where the generated summary
was conditioned by the input text and description of the
extracted facts. OpenIE facilitates entity extraction from a
relation, and Stanford CoreNLP was employed to provide
the proposed approach with OpenIE and the dependency
parser. Moreover, the decoder utilised copying and coverage
mechanisms.

7.5. Other Challenges. *e main issue of the abstractive text
summarisation dataset is the quality of the reference sum-
mary (Golden summary). In the CNN/Daily Mail dataset,
the reference summary is the highlight of the news. Every
highlight represents a sentence in the summary; therefore,

0

5

10

15

20

25

30

35

40

45

50

ROUGE1 ROUGE2 ROUGE-L

Pointer-generator + coverage

Reinforcement learning, with intra-attention

Maximum-likelihood + RL, with intra-attention

Adversarial network

ATSDL

Bidirectional attentional encoder-decoder

Key information guide network

ML + RL ROUGE + novel, with LM

DEATS

Words-lvt2k-temp-att (CNN/Daily Mail)

BiSum

BERTSUMEXT (large)

BEAR (large + wordPiece)

TRANS-ext + �lter + abs

DAPT + imp-coverage (RL + MLE (ss))

Figure 19: ROUGE1, ROUGE2, and ROUGE-L scores of ab-
stractive text summarisation methods for the CNN/Daily Mail
datasets.

24 Mathematical Problems in Engineering

the number of sentences in the summary is equal to the
number of highlights. Sometimes, the highlights do not
address all crucial points in the summary. *erefore, a high-
quality dataset needs high effort to become available.
Moreover, in some languages, such as Arabic, the multi-
sentence dataset for abstractive summarisation is not
available. Single-sentence abstractive Arabic text summa-
risation is available but is not free.

Another issue of abstractive summarisation is the use of
ROUGE for evaluation. ROUGE provides reasonable results
in the case of extractive summarisation. However, in ab-
stractive summarisation, ROUGE is not enough as ROUGE
depends on exact matching between words. For example, the

words book and books are considered different using any
one of the ROUGE metrics. *erefore, a new evaluation
measure must be proposed to consider the context of the
words (words that have the same meaning must be con-
sidered the same even if they have a different surface form).
In this case, we propose to use METEOR which was used
recently in evaluating machine translation and automatic
summarisation models [77]. Moreover, METEOR considers
stemming, morphological variants, and synonyms. In ad-
dition, in flexible order language, it is better to use ROUGE
without caring about the order of the words.

*e quality of the generated summary can be improved
using linguistic features. For example, we proposed the use

Encoder hidden states Decoder hidden states

Word1 Word2 Word4 Word5 Word6 Word7Word3

G P P G G

Figure 20: *e generator/pointer switching model [55].

Word1 Word2 Word4 Word5Word3 Word6 Word7

Context vector

……..

A
tt

en
ti

o
n

d
is

tr
ib

u
ti

o
n

E
n

co
d

er
 h

id
d

en
st

at
es

Word_Sum1<Start>

……..

D
ec

o
d

er
 h

id
d

en
st

at
es

V
o

ca
b

u
la

ry
d

is
tr

ib
u

ti
o

n

X (1 – Pgen) X Pgen

Pgen

Figure 21: Pointer-generator model [56].

Mathematical Problems in Engineering 25

of dependency parsing at the encoder in a separate layer at
the top of the first hidden state layer. We proposed the use of
the word embedding, which was built by considering the
dependency parsing or part-of-speech tagging. At the de-
coder side, the beam-search quality can be improved by
considering the part-of-speech tagging of the words and its
surrounding words.

Based on the new trends and evaluation results, we think
that the most promising feature among all the features is the
use of the BERTpretrained model. *e quality of the models
that are based on the transformer is high and will yield
promising results.

8. Conclusion and Discussion

In recent years, due to the vast quantity of data available on
the Internet, the importance of the text summarisation
process has increased. Text summarisation can be divided
into extractive and abstractive methods. An extractive text
summarisationmethod generates a summary that consists of
words and phrases from the original text based on linguistics
and statistical features, while an abstractive text summa-
risation method rephrases the original text to generate a
summary that consists of novel phrases. *is paper reviewed
recent approaches that applied deep learning for abstractive
text summarisation, datasets, and measures for evaluation of
these approaches. Moreover, the challenges encountered
when employing various approaches and their solutions
were discussed and analysed. *e overview of the reviewed
approaches yielded several conclusions. *e RNN and at-
tention mechanism were the most commonly employed
deep learning techniques. Some approaches applied LSTM
to solve the gradient vanishing problem that was encoun-
tered when using an RNN, while other approaches applied a
GRU. Additionally, the sequence-to-sequence model was
utilised for abstractive summarisation. Several datasets were
employed, including Gigaword, CNN/Daily Mail, and the

New York Times. Gigaword was selected for single-sentence
summarisation, and CNN/Daily Mail was employed for
multisentence summarisation. Furthermore, ROUGE1,
ROUGE2, and ROUGE-L were utilised to evaluate the
quality of the summaries. *e experiments showed that the
highest values of ROUGE1, ROUGE2, and ROUGE-L were
obtained in text summarisation with a pretrained encoder
mode, with values of 43.85, 20.34, and 39.9, respectively. *e
best results were achieved by the models that apply
Transformer. *e most common challenges faced during the
summarisation process were the unavailability of a golden
token at testing time, the presence of OOV words, summary
sentence repetition, sentence inaccuracy, and the presence of
fake facts. In addition, there are several issues that must be
considered in abstractive summarisation, including the
dataset, evaluation measures, and quality of the generated
summary.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare no conflicts of interest.

References

[1] M. Allahyari, S. Pouriyeh, M. Assefi et al., “Text summari-
zation techniques: a brief survey,” International Journal of
Advanced Computer Science and Applications, vol. 8, no. 10,
2017.

[2] A. B. Al-Saleh and M. E. B. Menai, “Automatic Arabic text
summarization: a survey,” Artificial Intelligence Review,
vol. 45, no. 2, pp. 203–234, 2016.

[3] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams, “Fast
generation of result snippets in web search,” in Proceedings of
the 30th Annual international ACM SIGIR Conference on

Word1 Word2 Word4 Word5Word3 Word6 Word7

……..

Encoder

+

Word_

Sum1
<Start>

Word_

Sum2

+

HC C

Decoder

……..

Figure 22: A new word is added to the output sequence by combining the current hidden state “H” of the decoder and the two context
vectors, marked as “C” [57].

26 Mathematical Problems in Engineering

Research and Development in information Retrieval-SIGIR’07,
p. 127, Amsterdam, *e Netherlands, 2007.

[4] E. D. Trippe, “A vision for health informatics: introducing the
SKED framework an extensible architecture for scientific
knowledge extraction from data,” 2017, http://arxiv.org/abs/
1706.07992.

[5] S. Syed, Abstractive Summarization of Social Media Posts: A
case Study using Deep Learning, Master’s thesis, Bauhaus
University, Weimar, Germany, 2017.

[6] D. Suleiman and A. A. Awajan, “Deep learning based ex-
tractive text summarization: approaches, datasets and eval-
uation measures,” in Proceedings of the 2019 Sixth
International Conference on Social Networks Analysis, Man-
agement and Security (SNAMS), pp. 204–210, Granada, Spain,
2019.

[7] Q. A. Al-Radaideh and D. Q. Bataineh, “A hybrid approach
for Arabic text summarization using domain knowledge and
genetic algorithms,” Cognitive Computation, vol. 10, no. 4,
pp. 651–669, 2018.

[8] C. Sunitha, A. Jaya, and A. Ganesh, “A study on abstractive
summarization techniques in Indian languages,” Procedia
Computer Science, vol. 87, pp. 25–31, 2016.

[9] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the
special issue on summarization,” Computational Linguistics,
vol. 28, no. 4, pp. 399–408, 2002.

[10] A. Khan and N. Salim, “A review on abstractive summari-
zation methods,” Journal of @eoretical and Applied Infor-
mation Technology, vol. 59, no. 1, pp. 64–72, 2014.

[11] N. Moratanch and S. Chitrakala, “A survey on abstractive text
summarization,” in Proceedings of the 2016 International
Conference on Circuit, Power and Computing Technologies
(ICCPCT), pp. 1–7, Nagercoil, India, 2016.

[12] S. Shimpikar and S. Govilkar, “A survey of text summarization
techniques for Indian regional languages,” International
Journal of Computer Applications, vol. 165, no. 11, pp. 29–33,
2017.

[13] N. R. Kasture, N. Yargal, N. N. Singh, N. Kulkarni, and
V. Mathur, “A survey on methods of abstractive text sum-
marization,” International Journal for Research in Emerging
Science andTechnology, vol. 1, no. 6, p. 5, 2014.

[14] P. Kartheek Rachabathuni, “A survey on abstractive sum-
marization techniques,” in Proceedings of the 2017 Interna-
tional Conference on Inventive Computing and Informatics
(ICICI), pp. 762–765, Coimbatore, 2017.

[15] S. Yeasmin, P. B. Tumpa, A. M. Nitu, E. Ali, and M. I. Afjal,
“Study of abstractive text summarization techniques,”
American Journal of Engineering Research, vol. 8, 2017.

[16] A. Khan, N. Salim, H. Farman et al., “Abstractive text
summarization based on improved semantic graph ap-
proach,” International Journal of Parallel Programming,
vol. 46, no. 5, pp. 992–1016, 2018.

[17] Y. Jaafar and K. Bouzoubaa, “Towards a new hybrid approach
for abstractive summarization,” Procedia Computer Science,
vol. 142, pp. 286–293, 2018.

[18] A. M. Rush, S. Chopra, and J. Weston, “A neural attention
model for abstractive sentence summarization,” in Proceed-
ings of the 2015 Conference on Empirical Methods in Natural
Language Processing, Lisbon, Portugal, 2015.

[19] N. Raphal, H. Duwarah, and P. Daniel, “Survey on abstractive
text summarization,” in Proceedings of the 2018 International
Conference on Communication and Signal Processing (ICCSP),
pp. 513–517, Chennai, 2018.

[20] Y. Dong, “A survey on neural network-based summarization
methods,” 2018, http://arxiv.org/abs/1804.04589.

[21] A. Mahajani, V. Pandya, I. Maria, and D. Sharma, “A com-
prehensive survey on extractive and abstractive techniques for
text summarization,” in Ambient Communications and
Computer Systems, Y.-C. Hu, S. Tiwari, K. K. Mishra, and
M. C. Trivedi, Eds., vol. 904, pp. 339–351, Springer, Singapore,
2019.

[22] T. Shi, Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy,
Neural Abstractive Text Summarization with Sequence-To-
Sequence Models: A Survey, http://arxiv.org/abs/1812.02303,
2020.

[23] A. Joshi, E. Fidalgo, E. Alegre, and U. de León, “Deep learning
based text summarization: approaches, databases and eval-
uation measures,” in Proceedings of the International Con-
ference of Applications of Intelligent Systems, Spain, 2018.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[25] D. Suleiman, A. Awajan, andW. Al Etaiwi, “*e use of hidden
Markov model in natural Arabic language processing: a
survey,” Procedia Computer Science, vol. 113, pp. 240–247,
2017.

[26] H. Wang and D. Zeng, “Fusing logical relationship infor-
mation of text in neural network for text classification,”
Mathematical Problems in Engineering, vol. 2020, pp. 1–16,
2020.

[27] J. Yi, Y. Zhang, X. Zhao, and J. Wan, “A novel text clustering
approach using deep-learning vocabulary network,” Mathe-
matical Problems in Engineering, vol. 2017, pp. 1–13, 2017.

[28] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent
trends in deep learning based natural language processing
[review article],” IEEE Computational Intelligence Magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[29] K. Lopyrev, Generating news headlines with recurrent neural
networks, p. 9, 2015, https://arxiv.org/abs/1512.01712.

[30] S. Song, H. Huang, and T. Ruan, “Abstractive text summa-
rization using LSTM-CNN Based Deep Learning,” Multi-
media Tools and Applications, 2018.

[31] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic re-
current neural networks: theory and applications,” IEEE
Transactions on Neural Networks, vol. 5, no. 2, pp. 153–156,
1994.

[32] A. J. Robinson, “An application of recurrent nets to phone
probability estimation,” IEEE Transactions on Neural Net-
works, vol. 5, no. 2, pp. 298–305, 1994.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in
Proceedings of the International Conference on Learning
Representations, Canada, 2014, http://arxiv.org/abs/1409.
0473.

[34] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, Nov. 1997.

[35] K. Al-Sabahi, Z. Zuping, and Y. Kang, Bidirectional Atten-
tional Encoder-Decoder Model and Bidirectional Beam Search
for Abstractive Summarization, Cornell University, Ithaca,
NY, USA, 2018, http://arxiv.org/abs/1809.06662.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] K. Cho, “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha,
Qatar, 2014.

[38] E. Jobson and A. Gutiérrez, Abstractive Text Summarization
Using Attentive Sequence-To-Sequence RNNs, p. 8, 2016.

Mathematical Problems in Engineering 27

http://arxiv.org/abs/1706.07992
http://arxiv.org/abs/1706.07992
http://arxiv.org/abs/1804.04589
http://arxiv.org/abs/1812.02303
https://arxiv.org/abs/1512.01712
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1809.06662

[39] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence
summarization with attentive recurrent neural networks,” in
Proceedings of the NAACL-HLT16, pp. 93–98, San Diego, CA,
USA, 2016.

[40] C. Sun, L. Lv, G. Tian, Q. Wang, X. Zhang, and L. Guo,
“Leverage label and word embedding for semantic sparse web
service discovery,” Mathematical Problems in Engineering,
vol. 2020, Article ID 5670215, 8 pages, 2020.

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 2013,
http://arxiv.org/abs/1301.3781.

[42] D. Suleiman, A. Awajan, and N. Al-Madi, “Deep learning
based technique for Plagiarism detection in Arabic texts,” in
Proceedings of the 2017 International Conference on New
Trends in Computing Sciences (ICTCS), pp. 216–222, Amman,
Jordan, 2017.

[43] D. Suleiman and A. Awajan, “Comparative study of word
embeddings models and their usage in Arabic language ap-
plications,” in Proceedings of the 2018 International Arab
Conference on Information Technology (ACIT), pp. 1–7,
Werdanye, Lebanon, 2018.

[44] J. Pennington, R. Socher, and C. Manning, “Glove: global
vectors for word representation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 1532–1543, Doha, Qatar, 2014.

[45] D. Suleiman and A. A. Awajan, “Using part of speech tagging
for improving Word2vec model,” in Proceedings of the 2019
2nd International Conference on new Trends in Computing
Sciences (ICTCS), pp. 1–7, Amman, Jordan, 2019.

[46] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, “FastText.zip: compressing text classification
models,” 2016, http://arxiv.org/abs/161203651.

[47] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
pp. 5998–6008, 2017.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Pre-
training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 4171–4186,
Minneapolis, MN, USA, 2019.

[49] Z. Li, Z. Peng, S. Tang, C. Zhang, and H. Ma, “Text sum-
marization method based on double attention pointer net-
work,” IEEE Access, vol. 8, pp. 11279–11288, 2020.

[50] J. Bradbury, S. Merity, C. Xiong, and R. Socher, Quasi-re-
current neural networks, https://arxiv.org/abs/1611.01576,
2015.

[51] U. Khandelwal, P. Qi, and D. Jurafsky, Neural Text Sum-
marization, Stanford University, Stanford, CA, USA, 2016.

[52] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Selective encoding
for abstractive sentence summarization,” in Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics, pp. 1095–1104, Vancouver, Canada, July 2017.

[53] Z. Cao, F. Wei, W. Li, and S. Li, “Faithful to the original: fact
aware neural abstractive summarization,” in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), New
Orleans, LA, USA, February 2018.

[54] T. Cai, M. Shen, H. Peng, L. Jiang, and Q. Dai, “Improving
transformer with sequential context representations for ab-
stractive text summarization,” in Natural Language Processing
and Chinese Computing, J. Tang, M.-Y. Kan, D. Zhao, S. Li,
and H. Zan, Eds., pp. 512–524, Springer International Pub-
lishing, Cham, Switzerland, 2019.

[55] R. Nallapati, B. Zhou, C. N. dos Santos, C. Gulcehre, and
B. Xiang, “Abstractive text summarization using sequence-to-
sequence RNNs and beyond,” in Proceedings of the CoNLL-16,
Berlin, Germany, August 2016.

[56] A. See, P. J. Liu, and C. D. Manning, “Get to the point:
summarization with pointer-generator networks,” in Pro-
ceedings of the 55th ACL, pp. 1073–1083, Vancouver, Canada,
2017.

[57] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model
for abstractive summarization,” 2017, http://arxiv.org/abs/
1705.04304.

[58] K. S. Bose, R. H. Sarma, M. Yang, Q. Qu, J. Zhu, and H. Li,
“Delineation of the intimate details of the backbone con-
formation of pyridine nucleotide coenzymes in aqueous so-
lution,” Biochemical and Biophysical Research
Communications, vol. 66, no. 4, 1975.

[59] C. Li, W. Xu, S. Li, and S. Gao, “Guiding generation for
abstractive text summarization based on key information
guide network,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 55–60, New
Orleans, LA, USA, 2018.

[60] W. Kryściński, R. Paulus, C. Xiong, and R. Socher, “Im-
proving abstraction in text summarization,” in Proceedings of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Brussels, Belgium, November 2018.

[61] K. Yao, L. Zhang, D. Du, T. Luo, L. Tao, and Y. Wu, “Dual
encoding for abstractive text summarization,” IEEE Trans-
actions on Cybernetics, pp. 1–12, 2018.

[62] X. Wan, C. Li, R. Wang, D. Xiao, and C. Shi, “Abstractive
document summarization via bidirectional decoder,” in Ad-
vanced Data Mining and Applications, G. Gan, B. Li, X. Li, and
S. Wang, Eds., pp. 364–377, Springer International Publish-
ing, Cham, Switzerland, 2018.

[63] Q. Wang, P. Liu, Z. Zhu, H. Yin, Q. Zhang, and L. Zhang, “A
text abstraction summary model based on BERT word em-
bedding and reinforcement learning,” Applied Sciences, vol. 9,
no. 21, p. 4701, 2019.

[64] E. Egonmwan and Y. Chali, “Transformer-based model for
single documents neural summarization,” in Proceedings of
the 3rd Workshop on Neural Generation and Translation,
pp. 70–79, Hong Kong, 2019.

[65] Y. Liu and M. Lapata, “Text summarization with pretrained
encoders,” 2019, http://arxiv.org/abs/1908.08345.

[66] P. Doetsch, A. Zeyer, and H. Ney, “Bidirectional decoder
networks for attention-based end-to-end offline handwriting
recognition,” in Proceedings of the 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR),
pp. 361–366, Shenzhen, China, 2016.

[67] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence
Learning with Neural Networks,” in Proceedings of the Ad-
vances in Neural Information Processing Systems (NIPS),
Montreal, Quebec, Canada, December 2014.

[68] D. He, H. Lu, Y. Xia, T. Qin, L. Wang, and T.-Y. Liu,
“Decoding with value networks for neural machine transla-
tion,” in Proceedings of the Advances in Neural Information
Processing Systems, Long Beach, CA, USA, December 2017.

[69] D. Harman and P. Over, “*e effects of human variation in
DUC summarization evaluation, text summarization
branches out,” Proceedings of the ACL-04 Workshop, vol. 8,
2004.

[70] C. Napoles, M. Gormley, and B. V. Durme, “Annotated
Gigaword,” in Proceedings of the AKBC-WEKEX, Montréal,
Canada, 2012.

28 Mathematical Problems in Engineering

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/161203651
https://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1908.08345

[71] K. M. Hermann, T. Kocisky, E. Grefenstette et al., “Machines
to read and comprehend,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS), Montreal,
Quebec, Canada, December 2015.

[72] M. Grusky,M. Naaman, and Y. Artzi, “Newsroom: a dataset of
1.3 million summaries with diverse extractive strategies,” in
Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Association for Computa-
tional Linguistics, New Orleans, LA, USA, pp. 708–719, June
2018.

[73] C.-Y. Lin, “ROUGE: a package for automatic evaluation of
summaries,” in Proceedings of the 2004 ACL Workshop,
Barcelona, Spain, July 2004.

[74] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving
multi-step prediction of learned time series models,” in
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, pp. 3024–3030, Austin, TX, USA, 2015.

[75] I. Goodfellow, A. Courville, and Y. Bengio, Deep Learning,
MIT Press, Cambridge, MA, USA, 2015.

[76] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled
sampling for sequence prediction with recurrent neural
networks,” in Proceedings of the Annual Conference on Neural
Information Processing Systems, pp. 1171–1179, Montreal,
Quebec, Canada, December 2015.

[77] A. Lavie and M. J. Denkowski, “*e Meteor metric for au-
tomatic evaluation of machine translation,” Machine Trans-
lation, vol. 23, no. 2-3, pp. 105–115, 2009.

Mathematical Problems in Engineering 29

