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Abstract

Purpose Upper gastrointestinal (GI) endoscopic image documentation has provided an efficient, low-cost solution to address

quality control for endoscopic reporting. The problem is, however, challenging for computer-assisted techniques, because

different sites have similar appearances. Additionally, across different patients, site appearance variation may be large and

inconsistent. Therefore, according to the British and modified Japanese guidelines, we propose a set of oesophagogastroduo-

denoscopy (EGD) images to be routinely captured and evaluate its efficiency for deep learning-based classification methods.

Methods A novel EGD image dataset standardising upper GI endoscopy to several steps is established following landmarks

proposed in guidelines and annotated by an expert clinician. To demonstrate the discrimination of proposed landmarks that

enable the generation of an automated endoscopic report, we train several deep learning-based classification models utilising

the well-annotated images.

Results We report results for a clinical dataset composed of 211 patients (comprising a total of 3704 EGD images) acquired

during routine upper GI endoscopic examinations. We find close agreement between predicted labels using our method and

the ground truth labelled by human experts. We observe the limitation of current static image classification scheme for EGD

image classification.

Conclusion Our study presents a framework for developing automated EGD reports using deep learning. We demonstrate

that our method is feasible to address EGD image classification and can lead towards improved performance and additionally

qualitatively demonstrate its performance on our dataset.

Keywords Artificial intelligence · Endoscopy · Gastroenterology · Deep learning

Introduction

Oesophagogastroduodenoscopy (EGD) is the gold-standard

investigative procedure in the diagnosis of upper gastroin-

testinal (GI) diseases, such as reflux oesophagitis, gastro-
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duodenal ulcer and particularly for the detection of early

gastric cancer [13]. EGD is widely performed especially

in geographical regions with high disease incidence. Early

gastric cancer and other significant pathology can be easily

missed during EGD due to potential blind spots. A prelimi-

nary study suggested that longer examination times and more

captured pictures may improve the detection of lesion [22].

Therefore, mapping of the upper GI tract through the use

of standardised photo-documentation is considered a quality

indicator. Using artificial intelligence (AI) to understand the

endoscopic examination process can potentially help EGD

clinicians to quickly quantify their photo-documentation that

summarised a case and additionally could even support the

detection and identification of diseased lesions [4,17]. The

use of AI for computer-assisted endoscopy can potentially

support and efficiently improve the quality of endoscopy by

ensuring a complete examination, by enhancing navigation
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with 3D mapping [2,23] or through automated procedural

analysis [24]. Deep learning-based methods are the current

state-of-the-art methodology for almost all image under-

standing and analysis problems like semantic segmentation,

image recognition and classification [6,11]. In gastroenterol-

ogy, AI methods have been explored from both the classical

model-driven and deep learning paradigms [20]. While the

majority of work has focused on the detection or delineation

of diseased regions [5,14,27], on the measurement of struc-

tural size [10] or the 3D navigation within the endoluminal

organs [12,15,25], relatively little research effort has been

invested into the classification of different endoscopic view-

points that need to be viewed to complete an examination.

Geographical regions with higher gastric disease inci-

dence need a more complex and more complete endoscopic

procedure. And as reported by the new global cancer data,

GLOBOCAN 2018 estimates of cancer incidence, Eastern

Asia has higher rates of stomach cancer than Western Europe

[3]. As a simple instance for this, a commonly accepted

Japanese (or Eastern Asian) guideline proposed in 2013,

namely the systematic screening protocol for the stom-

ach (SSS), comprises 22 endoscopic images [26], while its

counterpart in Europe proposed by the British Society of Gas-

troenterology (BSG) and Association of Upper GI Surgeons

of Great Britain and Ireland (AUGIS) in 2017 introduced only

eight standard images. The Japanese SSS guideline focuses

exclusively on detailed imaging of the stomach including

comprehensive multiple quadrant views of each landmark.

The British guideline is more pragmatic, with fewer images

of the stomach but includes additional important landmarks

outside of the stomach. In practice, the SSS guideline is not

routinely clinically implemented outside of Japan. Therefore,

we proposed a modified guideline which represents a balance

between the British and Japanese standards, by merging the

multiple quadrant views of the stomach. Furthermore, in this

study, the dataset contained endoscopic report images from

routine clinical care in China, where multiple quadrant views

would not have been obtained according to the Japanese SSS

protocol. These guidelines are described in more detail under

“Related work” section.

The presented dataset (comprising of 3704 EGD images)

is annotated by a clinical expert and a medical imaging doc-

toral student following the proposed guideline. This new

dataset has three advantages: (a) from the clinical perspec-

tive, it can assess the quality of photo-documentation report

based on British guidelines, (b) from feasibility consid-

erations, each category within it varying from the other

categories helps classifier to train and (c) from compati-

bility, uncertain location images or transitional images are

annotated separately from other landmarks for our further

video-based study. Our images are gathered from the clini-

cal endoscopes in use at Tianjin Medical University General

Hospital, Tianjin, China. Additionally, due to the variety of

clinical systems in use, our images have various resolutions

and regions of interest (ROI). To unify the data, we design an

automatic multi-resolution ROI extraction method to extract

the ROI. While simple, this method is important in our work-

flow. Then, all images and labels are feed to a convolutional

neural network (CNN), the performance of which would

show the feasibility of proposed guideline and the efficiency

of proposed workflow for EGD image classification.

In this work, we take anatomical site localisation as a clas-

sification task consisting of four consecutive steps (Fig. 1),

namely (a) data collection, (b) ROI extraction, (c) anatomical

annotation and (d) deep learning-based anatomical site clas-

sification (details presented in “Methods” section). Here, we

are more focussed on solving the clinical problem using pre-

vious deep learning methods because our pipeline could be

easily adapted to existing classification methods. Our high-

lights are as follows:

(a) we proposed a modified guideline for upper GI endo-

scopic photo-documentation. This guideline is described

in further “Related work” section.

(b) we presented a new upper GI endoscopic dataset because

the annotated dataset is crucial to develop and validate

the artificial intelligence system. Our dataset is intended

to mitigate this gap.

(c) we introduced a complete workflow for EGD image

classification. To the best of our knowledge, none of

the existing work has described the complete workflow,

including data collection and automatic ROI extraction

for upper GI endoscopic image classification.

Related work

Commonly used guidelines for endoscopic photo-

documentation Recently, upper GI endoscopic photo-docu-

mentation has gained an important role in quality assurance

for endoscopic procedures (Table 1). In 2001, the European

Society of Gastrointestinal Endoscopy (ESGE) published a

guideline for standardised image documentation in upper

GI endoscopy, recommending the acquisition of specific

anatomical landmarks [16]. In 2013, Yao et al. developed

its Japanese counterpart, known as SSS which involved very

detailed and rigorous mapping of the entire stomach to avoid

blind spots [26]. In addition to the British guideline, for each

landmark in the stomach, an additional picture is required for

each quadrant, for example anterior, posterior, less curvature

and greater curvature. Also, mid-upper body in retroflexion

is not in the British guideline. Later in 2017, the BSG and

AUGIS released “Quality standards in upper GI endoscopy”

[1]. For the baseline clinical examination, a minimum of

eight sites needs to be identified during EGD examinations.
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Fig. 1 Proposed workflow

Table 1 Recommended images of landmarks in upper GI endoscopy

Recommendations Oesophagus Stomach Duodenum

British guideline

(BSG and AUGIS

[1], ESGE [16])

Proximal oesophagus,

Z-line

Cardia and fundus on retroflexed view, body

(taken from the upper part of the less

curvature), angulus on partial retroflexion,

antrum

Duodenal bulb,

second part of

the duodenum

Japanese guideline

(Yao [26])

Not defined Four quadrants (L, G, A and P) of the fundus on

retroflexed view, three quadrants (L, A and P)

of middle-upper body and angulus on

retroflexed view, four quadrants (L, G, A and P)

of antrum, lower body and middle-upper body

on forward view

Not defined

Proposed guideline (2019) Pharynx oesophagus,

gastroesophageal junction

Cardia and fundus on retroflexed view,

middle-upper body on either forward and

retroflexed view, lower body on forward view,

angulus on retroflexed view, antrum on forward

view

Duodenal bulb,

duodenal

descending

L, lesser curvature; G, greater curvature; A, anterior wall; P, posterior wall

Standardised photo-documentation guidelines are designed

to reduce variation during endoscopy and serve as a surro-

gate marker for the quality of inspection; however, in practice

endoscopists vary considerably in their ability to adhere

to these guidelines. Automated computer-aided capture and

classification of images according to guidelines could help

overcome this.

Automatic EGD image classification The most recent anatom-

ical classification methods in endoscopy are primarily based

on CNNs because of the methodology’s capability to iden-

tify complex nonlinear feature spaces and features for data

classification [11]. In 2018, a CNN-based method to recog-

nise the anatomical location from 27,335 images of only six

main categories (larynx; oesophagus; upper stomach; middle

stomach; lower stomach; duodenum) has been reported [21].

In 2019, a deep learning- and reinforcement learning-based

system named WISENSE has been proposed to monitor

the blind points and time of procedure, and to classify

each anatomical sites for automatically generating photo-

documentation during EGD [24]. WISENSE applied the

27-class protocol (adapted from the Japanese guideline)

which include 26 classes corresponding to each anatomical

site and one NA class for images that cannot be classified

into any site.

Methods

Data collection

We acquired 5661 EGD images from a total of 229 clini-

cal cases that include 18 endoscopic submucosal dissections

(ESD) and 211 normal EGD examinations. These were

acquired from Tianjin Medical University General Hospital,

and the instruments used during these examinations included

various gastroscopes from two vendors (Olympus Optical

Co., Tokyo, Japan; Fujifilm, Co., Kanagawa, Japan). The 18
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(a) Original images (b) ROIs by threshold (c) Our case average ROIs

Fig. 2 Samples of ROI extraction

cases of ESD are excluded because of their different aims

and workflows comparing to normal EGD examinations. The

images from the 211 EGD cases can be divided into three

categories based on their imaging type, namely (a) white

light imaging (WLI) and linked colour imaging (LCI), (b)

narrow band imaging (NBI), blue laser imaging (BLI) and

BLI-bright (BLI-brt) and (c) chromoendoscopy. Images from

WLI and the LCI are very similar in terms of tissue appear-

ance, colour space and texture under an unmagnified imaging

modality. Therefore, we use WLI and LCI images in our

experiments.

The NBI and the BLI are two similar imaging modalities

captured from Olympus and Fujifilm, respectively. Although

these modalities allow superior visualisation of the superfi-

cial vascular and mucosal pattern under magnified modality,

they are not suitable for our task as they do not provide suffi-

cient anatomical site location information compared to other

unmagnified imaging modalities. The chromoendoscopy is

also excluded as their blue colour space.

The WLI and LCI images that we selected need further

filtering, as it contained frames which included another small

display picture, or a transparent hood which was attached to

the endoscope, which resulted in unnecessary artificiality to

the image. Moreover, some images contained food residue

which was irrelevant for the current study as they retained

less useful information. We removed all images that blocked

the main display or contained food residue. The final dataset

that we use in our study contained 3704 pictures of WLI and

LCI images.

ROI extraction

Cropping the colour foreground from the image by a rectan-

gular box is a necessary pre-processing step before training

model. These images need to be cropped and resized in

such a way that they only contain the endoscopic camera

view. A fixed global ROI setting would fail to solve the

various resolutions and different endoscopic display settings

because our images are captured using different instruments

and imaging devices. The threshold method (Fig. 2) would

also fail to extract the ROI because of the artificial texts

and uneven illumination. To solve this issue, we proposed

a data-driven method for cropping the colour (endoscopy

view) foreground from our data. We assumed that captured

pictures from the same case share the same display setting.

So, instead of calculating the mask image by image, we cal-

culate our mask case by case. Comparing to searching on the

original image, searching on the case average image leads

towards an improved ROI.

Anatomical annotation and guideline

Our modified guideline represents a balance between the

British and Japanese guidelines (both of which are introduced

in “Related work” section). Our EGD images are co-labelled

by a Chinese medical imaging doctoral student and a British

clinical endoscopy research fellow based on the proposed

guideline. 3704 ROI images are manually annotated into 11

landmarks or unqualified (NA) (Fig. 3). The 11 landmarks are

divided into antegrade view and retroflex view. Eight land-

marks with an antegrade view are pharynx (PX), oesophagus

(ES), squamocolumnar junction (SJ), middle-upper body

of antegrade view (MA), lower body (LB), antrum (AM),

duodenal bulb (DB) and duodenal descending (DD). Three

landmarks of retroflex view are fundus (FS), middle-upper

body of retroflex view (MR) and angulus (AS).

Deep learning-based anatomical site classification

CNN methods are widely used for image classification

because of their strong feature representation capability.

Through transfer learning, the existing pre-trained CNN

models can be easily fine-tuned to incorporate the target

domain. We experimented with the most widely used CNN

architectures that were pre-trained on the ImageNet dataset,

such as ResNet-50 [7], Inception-v3 [19], VGG-11-bn [9,18],

VGG-16-bn [9,18] and DenseNet-121 [8] by fine-tuning

these networks using our training dataset. Through trans-

fer learning, these five CNN models for image recognition

can learn anatomical site classification from our dataset. For

fine-tuning, we replace the last fully connected (FC) layer

of the CNN model by a fully connected layer having the

same number of layers as that of the number of classes in the

training set. We then apply mini-batch training and use the

multi-class cross-entropy loss

L(ŷ, y) = −

K∑

k=1

y(k) log ŷ(k) (1)
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descending

Fig. 3 Proposed anatomical classification guideline

to minimise the training loss in our multi-class classification

problem, where y is 0 or 1 if class label k is the correct

classification, ŷ is the predicted probability of class k and K

is the number of classes. The losses within the same batch

are accumulated during the training period of the batch and

backpropagated to the previous layers at the end of each batch

training to update the model weights.

Experiments

Materials

We divide the ROI data into 12 classes based on the proposed

guideline. Proportions for each of the classes are shown in

Fig. 4. The ROI data are arranged based on the proposed

guideline and the British guideline [1,16] and two condi-

tions (with NA and without NA). We exclude those classes

from the ROI data which are not included in the guidelines

under analysis. Finally, four different forms of the dataset are

generated as shown in Table 2.

To build the training and test sets from a limited number

of data, we divide the dataset into five parts based on five-

fold cross-validation such that each part is in the same data

distribution. The CNN models are trained on threefold and

validated on the other onefold and tested on the remaining

onefold.

Evaluationmetrics andmodel implementation

The overall accuracy

rateoa(Y , f (X)) =
sum(diag(CM(Y , f (X))))

sum(CM(Y , f (X)))
, (2)

is used to assess the performance of the model, where X

is the input, Y is the ground truth, f (.) is the CNN model,

CM(Y , f (X)) is the confusion matrix, diag(.) is the diago-

nal of the matrix, and sum(.) accumulates all elements in a

matrix or a vector according to the constrain. F1-score is also

reported for individual landmarks and is computed as:

F1 = 2 ×
PPV × TPR

PPV + TPR
(3)

where PPV = TP/(TP + FP), TPR = TP/(TP + FN), TP =

diag(CM(.)), FP = sum(CM(.), 0) − diag(CM(.)), FN =

sum(CM(.), 1) − diag(CM(.)).
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Fig. 4 Proportion of NA and 11

anatomical landmarks

Table 2 Manually annotated

(ground truth) labels of four

training/test sets

No. (cite) NA PX ES SJ FS MA MR AS LB AM DB DD

0 (proposed) – 0 1 2 3 4 5 6 7 8 9 10

1 (proposed) 0 1 2 3 4 5 6 7 8 9 10 11

2 ([1,16]) – – 0 1 2 3 – 4 – 5 6 7

3 ([1,16]) 0 – 1 2 3 4 – 5 – 6 7 8

–, does not exist; NA, unqualified; PX, pharynx; ES, oesophagus; SJ, squamocolumnar junction; FS, fundus;

MA, middle-upper body antegrade view; MR, middle-upper body retroflex view; AS, angulus; LB, lower

body; AM, antrum; DB, duodenal bulb; DD, duodenal descending

For the CNN model training, we set the batch size to 16 and

the number of epochs to 100. We used the stochastic gradient

descent (SGD) as the optimiser with a learning rate of 0.001

and momentum of 0.9. During fivefold cross-validation,

model weights with the best accuracy on validation set are

retained for the evaluation on the test fold. Our models are

implemented in PyTorch and are trained using an Nvidia

Titan Xp GPU and an Intel Xeon Silver 4114 CPU.

Quantitative evaluation of the CNNmodels

For the purpose of choosing the CNN model with the best per-

formance, ResNet-50 [7], Inception-v3 [19], VGG-11 [18]

with batch normalisation (BN) [9], VGG-16 [18] with BN

and DenseNet-121 [8] were tested on the four datasets (Table

2) that we organised based on our proposed guideline and

British guideline [1,16]. The measured overall accuracies are

given in Table 3. We observe from this table that the CNN

models trained without the NA class always perform sig-

nificantly better than the models trained with the NA class.

Datasets with the NA class add ambiguity during training as it

contains images which may partially resemble other classes.

The Inception-v3 and DenseNet-121 cost around 5 hours for

training. The ResNet-50, VGG-11-bn and VGG-16-bn cost

less time, which is around 3 hours, for the same training

processes.

The average overall accuracy of these four models shows

that DenseNet-121 gave slightly better accuracy followed

by Inception-v3, VGG-16-bn, ResNet-50 and VGG-11-bn

as shown in Table 3. Note that all CNN models performed

equally good that demonstrate their strong learning capability

and the practicality of our anatomical classification guideline.

We choose DenseNet-121 as our backbone network structure

for evaluating individual landmark classification in different

guidelines because of its superior performance over other

networks.

Quantitative evaluation of the guideline

Evaluation results for the proposed guideline and British

guideline with/without the NA class are reported in Table

4 displaying the F1-score accuracy of individual classes, and

their corresponding confusion matrices are shown in Figs. 5

and 6. The proposed guideline helps the CNN model to recog-

nise three additional landmarks (PX, MR and LB) than the

British guideline. The CNN model evaluated on our trimmed

dataset corresponding to the British guideline (since NA, PX,

MR and LB are excluded) achieved superior performance as

shown in Fig. 6. The recall rates on the diagonal of the confu-

sion matrix (Fig. 6) are 95.3%, 86.4%, 99.1%, 95.0%, 93.0%,

94.2%, 86.3% and 95.4% for ES (class 0), SJ (class 1), FS

(class 2), MA (class 3), AS (class 4), AM (class 5), DB (class

6) and DD (class 7), respectively. With the addition of more
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Table 3 Overall accuracy (%)

of five CNN models for four

datasets

No. (cite) ResNet-50 Inception-v3 VGG-11-bn VGG-16-bn DenseNet-121

0 (proposed) 90.75 91.04 89.29 90.41 91.11

1 (proposed) 82.53 82.56 82.40 82.10 82.24

2 ([1,16]) 93.11 93.00 94.00 93.50 93.90

3 ([1,16]) 84.51 85.26 84.62 85.23 85.23

Means 87.72 87.97 87.43 87.81 88.11

STDs 4.34 4.22 4.25 4.43 4.62

The bolded values are the best overall accuracy rates under each of the data arrangements

Table 4 The F1-score (%) of

DensetNet-121 on four datasets
GL NA PX ES SJ FS MA MR AS LB AM DB DD

0 – 94.34 94.58 90.83 93.54 91.90 76.39 89.40 55.86 92.76 88.85 94.92

1 68.28 79.25 88.35 82.92 90.03 84.12 74.50 80.82 52.71 87.98 80.31 93.76

2 – – 94.02 88.42 98.07 95.41 – 93.02 – 94.39 88.63 94.22

3 71.33 – 89.78 83.30 92.16 87.32 – 85.84 – 88.84 80.76 93.24

GL, guideline. The bolded values are the best F1-score rates for each of the landmarks

PX ES SJ FS MA MR AS LB AM DB DD

PX 89.3 3.6 3.6 3.6

ES 94.9 3.5 0.4 0.2 0.8 0.2

SJ 8.6 89.7 0.4 0.4 0.8

FS 0.2 95.9 0.2 2.6 0.9 0.2

MA 0.3 2.1 92.0 1.2 0.3 2.7 1.5

MR 15.3 2.0 73.3 9.3

AS 1.9 1.4 4.2 90.2 2.3

LB 1.5 3.0 25.8 1.5 47.0 16.7 4.5

AM 0.4 0.4 0.4 0.4 0.8 0.6 94.4 2.1 0.4

DB 0.4 0.4 0.4 0.4 0.4 0.8 4.6 86.6 6.1

DD 1.1 2.8 96.1

NA PX ES SJ FS MA MR AS LB AM DB DD

NA 67.6 0.6 4.8 1.9 4.5 5.5 1.3 3.3 1.0 4.4 4.1 1.0

PX 21.475.0 3.6

ES 4.3 90.3 4.5 0.2 0.4 0.2

SJ 4.9 11.981.9 0.4 0.4 0.4

FS 5.2 91.1 3.0 0.4 0.2

MA 8.6 0.6 0.9 84.4 0.6 0.6 3.8 0.3 0.3

MR 4.7 11.3 2.0 74.0 8.0

AS 10.7 0.5 0.5 4.7 82.3 0.5 0.9

LB 18.2 3.0 1.5 12.1 51.512.1 1.5

AM 7.5 0.4 0.2 0.4 1.2 1.5 87.3 1.2 0.2

DB 14.1 0.4 0.4 0.4 2.7 79.4 2.7

DD 1.1 0.7 0.4 0.7 3.9 93.3

A
c

tu
a

l 

PredictedPredicted

A
c

tu
a

l 

(a) (b)

Fig. 5 Confusion matrix for the model based on a the proposed guide-

line without NA and b the proposed guideline with NA. The actual

labels are on the left side of the confusion matrix, and the predicted

labels are on the bottom of the confusion matrix. a has 11 classes, and b

has 12 classes. The values on the diagonal grids showed the recall rates

(%) of each class, respectively, for the matrix. Referring to the colour

of the colour bar and the corresponding number, the sample density in

the confusion matrices is shown by colours

landmarks (PX, MR and LB) as shown in Fig. 5a in the case of

our proposed guideline, the performance of the CNN model

on several individual landmarks remained almost the same

as before, such as ES (class 1), SJ (class 2), AM (class 8), DB

(class 9) and DD (class 10). The performance is low for LB

(class 7) since it is hard to find a reference to well recognise

LB from a single image.

From the confusion matrices in Figs. 5 and 6, we observe

that the classification errors are mainly caused by three rea-

sons:

(a) A small amount of landmarks are misclassified to NA by

the CNN model. The CNN model without NA (number 0

and 2) outperformed their counterparts with NA (number

1 and 3) by 8.87% and 8.67% overall accuracies (Table 3)

because several images are misclassified to NA. 21.4%

PX (class 1), 5.2% FS (class 4), 8.6% MA (class 5), 10.7%

AS (class 7), 18.2% LB (class 8), 7.5% AM (class 9) and

14.1% DB (class 10) are misclassified to NA (class 0) as

shown in Fig. 5b. 8.0% MA (class 4), 5.8% AM (class 6)

and 9.5% DB (class 7) were misclassified to NA (class

0) as shown in Fig. 6b.

(b) Several unqualified images (NA) were misclassified to

landmarks by the CNN model. 32.4% and 34.1% NA

were misclassified to landmarks by the method based

on proposed guideline and by the method based on the
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ES SJ FS MA AS AM DB DD

ES 95.3 4.1 0.2 0.2 0.2

SJ 11.1 86.4 0.4 0.4 0.8 0.8

FS 99.1 0.4 0.2 0.2

MA 0.6 1.8 95.0 0.9 0.9 0.3 0.6

AS 0.5 1.9 1.9 93.0 2.8

AM 0.8 0.2 0.6 0.2 2.1 94.2 1.5 0.4

DB 0.4 0.4 1.5 0.4 5.0 86.3 6.1

DD 0.4 0.4 0.4 3.5 95.4

NA ES SJ FS MA AS AM DB DD

NA 65.9 3.5 3.2 6.5 5.1 4.2 5.7 4.5 1.5

ES 4.1 90.1 5.1 0.2 0.4

SJ 3.7 9.5 85.2 0.8 0.8

FS 2.4 97.0 0.2 0.4

MA 8.0 0.3 2.7 87.3 0.6 1.2

AS 3.7 3.7 0.9 88.8 2.8

AM 5.8 0.4 0.2 1.2 90.0 2.3

DB 9.5 0.4 0.4 2.7 80.9 6.1

DD 0.7 0.4 0.4 3.2 95.4

A
c

tu
a

l 

PredictedPredicted

A
c

tu
a

l 

(a) (b)

Fig. 6 Confusion matrix for the model based on a the British guide-

line [1,16] without NA and b the British guideline [1,16] with NA.

The actual labels are on the left side of the confusion matrix, and the

predicted labels are on the bottom of the confusion matrix. a has eight

classes and b has nine classes. The values on the diagonal grids showed

the recall rates (%) of each class, respectively, for the matrix. Refer-

ring to the colour of the colour bar and the corresponding number, the

sample density in the confusion matrices is shown by colours

British guideline, respectively. The images in NA are very

different in appearance from each other. Artificial noise

images, blurry images, pathological images and transi-

tional images from all locations are all covered by this

class. Hence, it is possible to have the feature representa-

tion of images in NA very similar to some of our labelled

landmarks.

(c) Several landmarks with similar tissue appearances are

easily misclassified to each other. Regardless of NA,

anatomically adjacent landmarks are also easily confused

by the CNN model. As illustrated in Fig. 5a, 8.6% SJ

(class 2) was classified to ES (class 1); 15.3% and 9.3%

MR (class 5) were classified to FS (class 3) and AS (class

6), respectively; 25.8% and 16.7% LB (class 7) were clas-

sified to MA (class 4) and AM (class 8), respectively;

6.1% DB (class 9) was classified to DD (class 10). As

illustrated in Fig. 6a, 11.1% SJ (class 1) was classified to

ES (class 0); 5.0% and 6.1% DB (class 6) were classified

to AM (class 5) and DD (class 7), respectively.

We observe from our experimental results that CNN

models fine-tuned for specific data distribution are useful

for automatically identifying different anatomical sites. Our

work shows the potential of using this method for quantifying

photo-documentation. Furthermore, our proposed guideline

showed the capability of recognising additional anatomical

sites of interest compared to the British guideline. Capturing

and recognising more anatomical sites are always the pre-

ferred choice of EGD clinicians as it helps in providing an

elaborate analysis.

Discussion and conclusion

In this paper, we proposed a deep learning-based anatom-

ical site classification method for EGD images. Our work

contained five consecutive steps, namely (a) data collection

and preparation, (b) ROI extraction, (c) proposed guideline-

based anatomical annotation, (d) training CNN models and

(e) model evaluation. Our experimental results demonstrated

the feasibility and effectiveness of our proposed guideline

for training CNN models using only a small number of EGD

images. The quantitative evaluation demonstrated that dif-

ferent CNN architectures performed equally good on our

dataset. Moreover, the evaluation on individual images gave

an insight into the robustness of different landmarks detection

and the source of errors. We find that the proposed method

has promising performance in discriminating unrepresenta-

tive landmarks (such as LB and MR) apart. More landmarks

could provide a more elaborate analysis for precise diagnosis

of EGD in the clinic.

Anatomical site classification for individual EGD images

from the reports is a challenging problem since no temporal

information is present. To further improve the results, we plan

to analyse EGD videos in future using 3D CNN and recurrent

neural networks, which will incorporate both spatial feature

representation and temporal information simultaneously.
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