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Abstract

Objective. Computer vision-based assistive technology solutions can revolutionise the quality 

of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial 

amputees to use a simple, yet ef�cient, computer vision system to grasp and move common 

household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a 

deep learning-based arti�cial vision system to augment the grasp functionality of a commercial 

prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp 

pattern without explicitly identifying them or measuring their dimensions. A convolutional 

neural network (CNN) structure was trained with images of over 500 graspable objects. For each 

object, 72 images, at �5  intervals, were available. Objects were categorised into four grasp classes, 

namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was �rst 

tuned and tested of�ine and then in realtime with objects or object views that were not included in 

the training set. Main results. The classi�cation accuracy in the of�ine tests reached 85% for the 

seen and 75% for the novel objects; re�ecting the generalisability of grasp classi�cation. We then 

implemented the proposed framework in realtime on a standard laptop computer and achieved 

an overall score of 84% in classifying a set of novel as well as seen but randomly-rotated objects. 

Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb 

UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After 

training, subjects successfully picked up and moved the target objects with an overall success 

of up to 88%. In addition, we show that with training, subjects’ performance improved in terms 

of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. 

Signi�cance. The proposed design constitutes a substantial conceptual improvement for the 

control of multi-functional prosthetic hands. We show for the �rst time that deep-learning based 

computer vision systems can enhance the grip functionality of myoelectric hands considerably.

Keywords: myoelectric hand prosthesis, convolutional neural network, grasp classi�cation

S  Supplementary material for this article is available online

(Some �gures may appear in colour only in the online journal)

Original content from this work may be used under the terms 

of the Creative Commons Attribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title 

of the work, journal citation and DOI.

1741-2552/17/036025+18$33.00

https://doi.org/10.1088/1741-2552/aa6802J. Neural Eng. 14 (2017) 036025 (18pp)

mailto:G.Ghazaei1@newcastle.ac.uk
mailto:Kianoush.Nazarpour@newcastle.ac.uk
https://doi.org/10.1088/1741-2552/aa6802
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aa6802&domain=pdf&date_stamp=2017-05-03
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1741-2552/aa6802


G Ghazaei et al

2

1. Introduction

Prosthetic hands can provide a route to functional rehabilita-

tion of upper-limb amputees and people with congenital motor 

de�cit. According to recent statistics, in UK alone, there are 

473 new upper-limb (133 trans-radial) referral every year; of 

which, 245 are in the age range of 15 and 54 years old [1]. Life-

time care for this group can be remarkably expensive. Trauma 

is the most prevalent cause of limb loss at  ∼30% [1]. In the US, 

there are around 500 k upper-limb amputees [2]. Advanced 

prosthetic hands can dramatically improve users’ quality of life 

by enabling them to carry out daily living activities.

Current commercial prosthetic hands are typically con-

trolled via the myoelectric signals, that is the electrical activity 

of muscles recorded from the skin surface of the stump [3, 4]. 

Despite considerable technical advances and improvements in 

the mechanical features, e.g. size and weight, of the prosthetic 

hands, the control of these systems is still limited to one or two 

degrees of freedom [4, 5]. In addition, the process of switching a 

prosthetic hand into an appropriate grip mode, e.g. pinch, can be 

cumbersome or would require an ad-hoc solution, such as using 

a mobile application4 or via an Electrocutaneous menu [6].

For several decades, research on prosthetic control has 

focused on myoelectric pattern recognition [3, 4]. Classi�cation 

and proportional control of myoelectric signals has been exten-

sively studied for discrete decoding of wrist and elbow move-

ments [7–14], grasp type [15–17], as well as individuated 

�nger movements [18], with accuracies as high as 90% [19] in 

amputee subjects. Although reasonable classi�cation accuracies 

are gained, there is still a considerable gap between the labora-

tory-based research and the widespread clinical use of pattern 

recognition-based systems. Lack of robustness, number and 

movement of the electrodes as well as modulation of the electro-

myogram (EMG) signal activation patterns with varying force 

and orientation of the arm may be the main reasons [4, 14, 20]. 

To become fully integrated into an amputee’s sensorimotor rep-

ertoire, the performance of hand prostheses must still improve 

greatly [21–24]. The COAPT system is the �rst commercial 

myoelectric controller unit to employ pattern recognition5.

As intermediate solutions, alternative modalities have been 

adopted to replace or augment the EMG signals. Skin move-

ment analysis via accelerometry signals [25, 26], force myo-

graphy [27], use of radio-frequency identi�cation (RFID) tags 

[28], arm movement trajectory and inertial measurement (e.g. 

i-moTM) and computer vision [29–34] are some examples.

Speci�cally, in the case of using computer vision, it was 

shown that object shapes can be quantised such that appro-

priate grasp types and sizes can be determined. Došen et al [29, 

30] demonstrated a dexterous hand with an integrated vision 

based control system. The user controlled the prosthesis hand 

and the activation of the camera with myoelectric signals. A 

simple object detection method was used, in conjunction with 

distance information, estimated via ultrasound. This structure 

allowed them to approximate the size of the object of interest. 

The calculated size was then introduced to a rule-based rea-

soning algorithm to select the appropriate grasp accordingly. 

They achieved 84% accuracy in estimating the grasp type and 

size for a limited set of 13 objects (93%, grasp only). Acquiring 

such level of accuracy, each trial took on average  ∼4 s, on a 

dual-core 2 GHz PC, since classi�cation of 10 consecutive 

snapshots was required for each decision. Marković et al [31] 

demonstrated a semi-autonomous control mechanism in which 

stereo-vision provided depth information. In addition, their 

solution offered arti�cial proprioceptive feedback, via visual 

feedback to the user, about the grip aperture size by using aug-

mented reality (AR). They incorporated sophisticated algo-

rithms for image segmentation, 3-dimensional point cloud 

generation and geometrical model �tting. These algorithms 

however used a similar rule-based model that was proposed 

earlier by Došen et al [29, 30]. With such improvements, the 

process of identifying the object size and the appropriate grasp 

became signi�cantly faster, about 1 s, on an Intel i5 core (2.73 

GHz) laptop with 8 GB of RAM. They achieved an overall 

accuracy of 81% for the successful accomplishment of the 

task (∼94% in grasp identi�cation). However, without the AR 

feedback, this accuracy dropped to 73%. In [29–31], authors 

included four grasp types, namely, palmar, lateral, tri-digit 

(here: tripod) and bi-digit (here: pinch).

Marković et al [33] further exploited a data fusion tech-

nique to control a prosthetic hand. A plethora of modalities, 

namely, myoelectric recording, computer vision, inertial 

measurements and embedded prosthesis sensors (position and 

force) were utilised to provide realtime simultaneous, pro-

portional and semi-autonomous control. The shape, the size 

and the orientation of objects were estimated with RGB-D 

imaging and integrated with prosthesis orientation and user 

behaviour via inertial sensing. Such a sophisticated architec-

ture led to less than 1% cumulative trial failure rate. This set-

ting was integrated into a prosthetic wrist, but only palmar and 

lateral grasps were considered.

Computer vision has been widely used in robotic grasp and 

object manipulation [35–38]. Saxena et al [35] pioneered the 

�eld by providing the capability of grasping novel (unseen) 

objects for robotic hands by utilising a stereo camera. Without 

building a 3-dimensional model, they estimated the 3-dimen-

sional location of the best grasp by triangulation. The grasp 

location estimator algorithm was trained on synthetic images 

in a supervised learning regime. Kootstra et al [36] developed 

an early cognitive vision architecture for grasping unknown 

objects. Without any segmentation or preprocessing, they were 

able to generate two- and three-�nger grasps based on con-

tours and surface structure provided by stereo cameras. With 

the advancement of the deep learning structures [39], robotic 

grasp research has been radically upgraded. For instance, Lenz 

et  al [37] introduced RGB-D images to a two-step cascade 

deep learning system. Given the image of an object to grasp, 

�rstly a small deep network determined the suitable grasping 

points for the object; based on its position, size and orientation. 

Then, a second network was trained to pick the best candi-

date among the grasping spots that were identi�ed by the �rst 

network. Group regularisation was utilised to balance learning 

with respect to information extracted from different modali-

ties, such as the colour of the object, depth and surface nor-

mals. Similarly, Kopicki et al [38] provided a one-shot learning 

4 www.touchbionics.com/products/i-limb-mobile-apps
5 www.coaptengineering.com/
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mechanism for recognising the most appropriate grasp for 

novel objects. They generated thousands of grasp candidates 

for images taken by a depth camera and optimised the combi-

nation of two learned model types: a contact model and a hand-

con�guration model. Table 1 shows a summary of structures 

that utilised vision in prosthetic and robotic applications.

We set out to translate the advances in deep learning in the 

robotics and computer vision research for control of hand pros-

theses. Bene�ting from the �exibility that a deep learning struc-

ture offers, we developed an inexpensive vision-based system 

suitable for use in arti�cial hands. This solution can identify the 

appropriate grasp type for objects according to a learned abstract 

representation of the object rather than the explicitly-measured 

object dimensions. This key concept is illustrated in �gure 1. 

In this way, objects are not classi�ed based on the object cat-

egory or identity, but based on the suitable grasp pattern. A key 

question would therefore be whether this deep learning-based 

approach generalises to unseen objects. We predict that a deep 

network trained for grasp recognition can extract high-level and 

grasp-related features from objects and discard other unneces-

sary details. These features could include object size and orien-

tation. This approach is therefore conceptually different from 

object recognition in which object details matter.

To learn this abstract representation, we use a convolutional 

neural network (CNN) architecture [39]. There is mounting 

evidence that CNN-based structures can learn and classify 

visual patterns ef�ciently if provided with a large amount of 

training (labelled) samples [40–45]. The components of the 

CNN structure, namely, local connectivity, parameter sharing 

and pooling, make it reasonably invariant against object shift, 

scale and distortion. These features make the CNN structure 

a suitable candidate for upper-limb prosthetics applications. 

We therefore trained a CNN structure to identify the appro-

priate grasp for a database of household objects. The CNN 

structure, or in fact any other supervised learning architecture 

in which there exists a set of prede�ned labels, lack the ability 

of generalisation to novel objects that do not belong to any 

de�ned output object categories. Therefore during testing, 

unseen objects will be misclassi�ed to one of the existing 

classes. However, identi�cation of novel objects is crucial in 

prosthetic applications; since in everyday life people effort-

lessly pick up a variety of objects that they have never seen 

before. Moreover, the number of the categories of household 

objects can be excessively large, making object identi�cation 

for grasp selection impractical.

2. Methods

In this section, we give a detailed description of the equipment 

and methods that we used of�ine and in the realtime experi-

ments, both in computer-based tests and when amputee users 

controlled the prosthesis. To enhance clarity and in the interest 

of brevity, we merge the description of the methods that were 

common in all experiments.

2.1. Image databases

To train the CNN structure, we used the Amsterdam library 

of object images (ALOI) [46]. The ALOI database offers a 

rich set of the images of household objects. To enable real-

time testing, we augmented the ALOI dataset by our dataset 

which we call Newcastle Grasp Library (made freely available 

online, see Acknowledgements). In the following, we describe 

both image libraries.

2.1.1. Amsterdam library of object images (ALOI). The ALOI 

database [46] includes the images of 1000 common objects. 

Within this library, 250 objects have been photographed at a 

second zoom rate. We discarded these 250 objects. For each of 

the remaining 750 objects, the database includes 72 pictures, 

taken at �5  intervals against a black background. The camera 

was at 124.5 cm distance and 30 cm altitude from the objects. 

The camera resolution was ×768 576 pixels. We subjectively 

selected 473 of the objects in four different classes of pinch, 

tripod, palmar wrist neutral and palmar wrist pronated. Other 

objects were either not graspable or could be picked with 

more than one grasp type. All images were �rst converted to 

grey-scale. They were then downsampled to a resolution of 

×48 36 pixels; using the imresize function in MATLAB®.

2.1.2. Newcastle grasp library. Access to the same objects 

that were used to create the ALOI database was not possi-

ble. Therefore, to enable realtime analysis, 71 objects in four 

grasp classes were selected for photography. We synchronised 

a Cray�sh 55 turntable (Seabass, UK) with a Canon Kiss X4 

DSLR camera (resolution 18 Megapixel, ×5184 3456 pixels) 

to take 72 pictures from each object (at �5  intervals) against a 

black background. Table 2 indicates the number of objects in 

each grasp group that we used for further analysis.

To ensure object size is taken into account we positioned 

the camera at a �xed distance from objects when collecting 

the images. The distance between the camera and the object 

was 60 cm and the webcam was 15 cm higher than object. 

With this setting we could achieve images of objects that were 

comparable in size with those available in the ALOI database. 

All images were converted to grey-scale and downsampled to 

a resolution of ×48 36 pixels to train the CNN setting.

Figure 2(A) represents some of the objects we selected 

from the ALOI database. Figure  2(B) shows all the addi-

tional objects included in the Newcastle Grasp Library. A list 

of all the objects that we chose and the corresponding grip 

Table 1. A list of current prosthetic and robotic hands that 
use vision. The letters ‘P’ and ‘R’ in the Field column denote 
prosthetics and robotics, respectively. In the top three rows, the 
shown success rates re�ect the identi�cation of the correct grasp 
types only.

Related 
work Field

Success 
(%) Time(s) Hand

[29, 30] P 93 ∼4 CyberHand

[31] P 94 ∼1 SmartHand

[33] P ∼99 0.75 Michelangelo hand

[35] R 87 1.2 2-�nger gripper

[36] R 20–60 N/A 2/3-�nger gripper

[37] R 93.7 13.5 2-�nger gripper

[38] R 77.8 13–24 Boris hand

J. Neural Eng. 14 (2017) 036025



G Ghazaei et al

4

types are reported as supplementary material (stacks.iop.org/

JNE/14/036025/mmedia).

2.2. Feature extraction—convolutional neural  

network (CNN)

As mentioned earlier, each image I was �rst converted to grey-

scale and was downsampled to an N  =  36 by M  =  48 image. 

It was then passed through Gaussian and median �ltering for 

noise removal and smoothing. Empirically, we found that 

image normalisation, prior to the CNN setting, improved 

the �nal accuracy. Therefore, each image was normalised 

according to

µ

σ
=

−

I
I

I

I

normalised

( )
 (1)

where

∑ ∑µ =
+ = =N M

I
1

I

n

N

m

M

n m

1 1

, (2)

and

∑ ∑σ µ=
+

−
= =N M

I
1

.I

n

N

m

M

n m I

1 1

,
2( ) (3)

In the above equations, In,m denotes the intensity of pixel 

(n, m).

For classi�cation of images into grasp groups, we exam-

ined two CNN architectures: a one-layer and a two-layer, and 

explored the trade-off between accuracy, generalisability and 

computational complexity. We �rst explain brie�y the setting 

of the developed CNN structure. In the following, all equa-

tions are presented in the vectorised format.

Table 2. The number of objects included in the ALOI and 
Newcastle databases in each grasp group.

Grasp type \ Database ALOI Newcastle

Pinch 90 19

Tripod 163 11

Palmar wrist neutral 83 30

Palmar wrist pronated 137 11

Overall 473 71

Figure 1. Object versus grasp recognition. (A) Object recognition. (B) Grasp recognition.

J. Neural Eng. 14 (2017) 036025
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Assume that there are ml input maps of size ×R U
l l in each 

of the CNN layers l, with m0 denoting the number of images 

in the 0-th layer. kl features are extracted at each layer by con-

volution with ×C D
l l ( < <C R D U,l l l l) kernels according to

= ∗ +
−

Z X W bij
l

ij
l

j
l

j
l1

( ) (4)

= aX Zij
l

ij
l

( ) (5)

where Zij
l  is a − + × − +R C U D1 1

l l l l( ) ( ) matrix resulted 

from convolving the i-th input map from the (l  −  1)-th layer 

( −

Xij
l 1) and the j-th kernel in the l-th layer (W j

l ) and adding the 

bias b j
l . The output of layer l is then calculated by element-

wise application of the activation function ⋅a( ). In the above 

equation, the asterisk sign ∗ refers to a valid convolution, that 

is, a convolution performed inside the image borders. Finally, 

= …i m1, 2, , l, = …j k1, 2, , l and = …l L0, 1, 2, , .

We tested a range of activation functions, namely, the 

logistic, hyperbolic tangent and recti�ed linear unit (ReLU) 

functions. We empirically found that the ReLU function 

results in the highest performance and hence we used it in 

this study. The ReLU activation function ⋅a( ) can be written as

=a z zmax 0,r u r u, ,( ) ( ) (6)

where zr,u denotes an element of Z [47].

Our one-layer CNN comprised one convolution (C1) and 

one sub-sampling (S1) sub-layers. In the two-layer CNN 

architecture, however, we had two convolution C1 and C2 and 

one sub-sampling S2 stages, of which the latter two were in 

the second layer.

In both CNN settings, we used �ve kernels (W j
1, ⋯=j 1, , 5) 

of size ×5 5 and the resultant feature maps were sub-sampled 

by max-pooling [48] by a factor of two. We applied the max-

pooling operation to ensure salient elements in each feature map 

are retained. With the max-pooling operation, each sub-region is 

replaced with the maximum value of that sub-region. Figure 3 

illustrates the two-layer CNN setting with all details in terms 

of kernels and dimensions that we used in this study. This set-

ting was adopted after a large number of empirical testing with 

different number of layers and �lters, �lter and pooling sizes 

and activation functions. Between all, we selected the setting in 

�gure 3 that maximised the overall classi�cation performance, 

specially in identifying the appropriate grasp for novel objects.

2.3. Classi�er—softmax regression

Following the proposed CNN-based feature extraction, for 

classi�cation, we used Softmax (or multi-nomial logistic) 

regression [49, 50].

Having m examples x i( ) and their corresponding class labels 

y(i) in a training set as ⋯y yx x, , , ,m m1 1{( ) ( )}( ) ( ) ( ) ( ) , we estimate 

the probability =P y g X( ∣ ) for ⋯=g G1, ,{ } and G  >  2. 

The matrix X has sample x i( ) in its i-th column. The matrix 

of model parameters θ can be estimated by optimising the  

following cost function where ⋅1{ } is the ‘indicator function’, that 

is, { } =1 a true statement 1 and { } =1 a true statement 0 [51].

∑∑Θ =
−

=

∑
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θ
= =

=
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⎤

⎦

⎥
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ei

m
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( ) { }( )

( ) ( )

( ) ( )

 
(7)

where ⋅ T( )  denotes the vector transpose operation.

Training was carried out through back propagation using 

the mini-batch momentum gradient descent algorithm [52] 

for optimising the learned �lters within each iteration. We 

avoided over-�tting by using Tikhonov regularisation in the 

�nal cost function during training the CNN structure where 

the matrix W j
l  in the last layer is optimised.

2.4. Cross-validation

To verify the generalisability and robustness of grasp classi-

�cation, we examined two forms of cross-validation: within- 

and between-object cross-validations. In the following we 

introduce and provide the rationale for using them. Both of 

the CNN settings (one- or two-layers) were tested in both of 

the below cross-validations schemes.

Figure 2. The databases of objects used in this paper and their 
corresponding grasp type. (A) A small subset of objects in the 
ALOI database; (B) All objects in the Newcastle Grasp Library. 
All images were converted to grey-scale and downsampled before 
further analysis.

J. Neural Eng. 14 (2017) 036025
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2.4.1. Within-object cross-validation (WOC). Firstly, we 

evaluated the ability of the proposed structure in classify-

ing previously seen objects. The training set included 90% 

(65 of 72) of the views for each object in each grasp class. 

The remaining 10% of the views for each object were allo-

cated to the testing set. We randomly selected 10 differ-

ent training and testing sets to quantify the sensitivity of 

the classi�er to the choice of views. Figure 4 illustrates an 

example of splitting images of one object into the training 

and testing sets.

2.4.2. Between-object cross-validation (BOC). To be able to 

identify the appropriate grasps for unseen objects, we carried 

out the BOC test. In the BOC scheme, an object and its views 

were either wholly seen or unseen.

For the ALOI database, the training set included  ∼90% 

of all the object categories in all grasp groups with all of 

their different poses; for instance all 124 objects of the 

‘palmar wrist pronated’ class with all their 72 poses were 

selected for training. The remaining  ∼10% of the object cat-

egories were allocated to the testing set, that is, 13 objects 

in this class.

An example for random selection of 4 objects from the 

Newcastle Grasp Library in the ‘palmar wrist pronated’ class 

for the test set is illustrated in �gure 5. The above procedure 

was repeated 10 times independently. Table 3 reports the exact 

number of objects selected for training and testing from each 

database in the BOC test.

2.5. Statistical analysis

A two-way repeated-measures ANOVA was conducted that 

examined the main effects of cross-validation type (BOC 

versus WOC) and number of layers (1 versus 2) in the CNN 

structure on the of�ine classi�cation results. In this anal-

ysis, each of the 10 folds of cross-validation was treated as 

an independent sample. In the realtime experiments with 

amputee subjects, we compared the average block accom-

plishment times in blocks 1 and 6 with a paired t-test, for 

each participant independently. All tests were performed in 

SPSS® 22.

2.6. Computer-based realtime performance analysis

We implemented the introduced deep-learning based system 

in realtime. We carried out the realtime experiments with 

the learned CNN parameters of the BOC setting. This was 

because in the real-life cases, it is likely that novel objects are 

encountered.

We deliberately included this stage before real-time experi-

ment with amputee subjects to marginalise the effect of the 

users’ behaviour on the image acquisition step. One poten-

tial in�uence is the distance between the camera and the 

object that can be changed by the user during the realtime 

Figure 3. The implemented two-layer CNN architecture.

Figure 4. Within-object cross-validation. The object is a plastic 
light bulb and belongs to the Newcastle Grasp Library. The testing 
set (B) is a randomly selected subset (10%) of all views available 
in (A) (shown in red boxes). This �gure shows one example of 
10 cross-validation folds. All original images were downsampled 
before further analysis. (A) Training set. (B) Testing set.

J. Neural Eng. 14 (2017) 036025
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experiment. Other in�uences may be participant’s motivation, 

the quality of the EMG signals and physical fatigue.

To perform this test, we used an inexpensive web camera 

(Logitech Quickcam® Chat), instead of the high-resolution  

DSLR Canon camera that we used previously to make 

Newcastle dataset. The webcam was attached to a photog-

raphy tripod stand. The distance between the webcam and the 

object was �xed at 60 cm and the webcam was 15 cm higher 

than the target object such that we could take pictures in the 

same way as we took in the Newcastle grasp library. The 

camera was connected to the recording laptop through a USB 

link. The imaging resolution was set to ×640 480 pixels.

With clicking on a command button on a MATLAB®-

based graphical user interface (GUI), an image was acquired 

and a series of image processing operations were executed 

to detect the object in the scene and remove the background. 

Figure 6 illustrates all of the preprocessing steps. The output 

of �nal step, that is G, was resized to ×48 36 pixels and then 

normalised according to section 2.2; before feature extraction 

and classi�cation. Preprocessing was required to remove the 

background.

We used a two-layer CNN trained for the realtime tests. 

The test process was repeated for 7 different random views of 

24 objects (6 in each grasp group). In this analysis, 16 out of 

the 24 (66%) objects were not seen by the trained CNN and 

hence were novel.

All of�ine and computer-based realtime tests were imple-

mented in MATLAB® in a personal computer with an Intel 

Core i5-47670 CPU (3.4 GHz), running a 64-bit Windows 7 

operating system, with 32 GB RAM.

2.7. Realtime test platform with amputee users in the loop

2.7.1. Subjects. The experiment was conducted with two 

amputee volunteers who use split hook prostheses in daily life. 

At the time of this study, their experience of using myoelectric 

hands was limited to only our laboratory-based experiments. 

Further information is available in table 4.

Figure 5. Between-object cross-validation. All objects are in the 
palmar wrist pronated class and all belong to the Newcastle Grasp 
Library. In each of the 10 repetitions, out of the 11 available objects, 
4 were randomly selected for cross validation. All original images 
were downsampled before further analysis. (A) Training set.  
(B) Testing set.

Table 3. The number of objects in each class used as training and 
testing sets in the BOC analysis.

ALOI Newcastle

Grasp type \ Database Train Test Train Test

Pinch 81 9 15 4

Tripod 147 16 7 4

Palmar wrist neutral 75 8 26 4

Palmar wrist pronated 124 13 7 4

Figure 6. Image preprocessing: (A) original image, taken by the 
webcam, (B) grey-scale transformation, (C) sobel edge detection, 
(D) dilation, (E) �lling the closed spaces, (F) erosion and �ltering 
the extra noises, (G) multiplication of the mask calculated in F to 
the original image in A and translation to the lower centre of the 
image, (H) downsampling to ×48 36 pixels.
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The study was approved by the Newcastle University 

ethics committee and carried out at the School of Electrical 

and Electronic Engineering. Participants signed the experi-

ment consent form.

As in the computer-based realtime experiments, participants sat 

such that the prosthesis webcam was roughly 60 cm away from and 

15 cm higher than the object. Before the start of the experiment, 

we con�rmed that at this distance, they could maintain a comfort-

able posture to take a picture with the camera and reach the objects 

readily. In each trial subjects reached one object. As such, in none 

of the trials the object of interest was occluded by any other objects.

2.7.2. Overall control structure and system components. A 

general �ow digram for our realtime experiment is shown 

in �gure  7(A). Figure  7(B) illustrates the implemented 

programme. In the following, we describe the main comp-

onents of the programme �ow. As we will fully describe in 

section 2.8, the realtime experiment consisted of 6 blocks. The 

main difference between blocks 1-5 and block 6 was that in 

the last block an error correction routine was enabled. This 

additional feature was achieved with the linkages and opera-

tions within the grey box in �gure 7(B). These connections 

were inactive in blocks 1–5. Otherwise, all blocks used the 

same programme for controlling the prosthesis.

A short (300 ms) �exion of wrist muscles was required to 

trigger the webcam to take a snapshot. After a grasp is identi-

�ed, the prosthesis was controlled proportionally according 

to the input EMG signals recorded from the wrist �exor and 

extensor muscle groups. Long (3 s) extensions reset the grasp 

and opened the prosthesis.

Table 4. Amputee volunteers’ information.

Identi�er Gender Age Cause of amputation Years since amp. Missing limb Prosthesis use

M Male 28 Car accident 7 Right Split hook

D Male 54 Cancer (epithelioid sarcoma) 19 Right Split hook

Figure 7. Overall control structure. (A) A block diagram representation of the method; (B) detailed programme �ow that was operated via 
a standard two-channel myoelectric interface.
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In block 6, if the user did not approve the classi�er output, 

they could re-aim the prosthesis at the object and issue a long 

(2 s) �exion of the wrist muscle to re-open prosthesis, reset 

the grasp and take a new snapshot. From that point onwards, 

the control mechanism was exactly as it was in blocks 1–5. 

The user could repeat this error correction approach until an 

appropriate grasp is identi�ed.

2.7.3. Myoelectric control. The EMG signals were recorded 

with two Delsys® TrignoTM lab wireless EMG electrodes. 

The electrodes were placed on the wrist �exor and extensor 

muscle groups on the forearm after skin preparation. Surface 

EMG signals were band-pass �ltered between 20 Hz and 450 

Hz before sampling at 2 kHz via a Trigno Digital SDK, exe-

cuted under MATLAB®.

The EMG signals were then transformed into analogue 

control signals such that 0 and 1 represented the EMG at rest 

and at a comfortable level of contraction (typically 10–15% of 

the maximum voluntary contraction) respectively. Generating 

muscle activity at this low amplitude may be sensitive. 

However, as we have demonstrated earlier [10, 24, 53–55], 

with practice participants can learn to contract their muscles 

reliably at this low level of the MVC to perform a computer 

task or to control a prosthesis. One reason may be that the 

magnitude of the signal-dependent motor noise at such low 

percentages of the MVC is very small [56].

For each EMG channel, a control signal c was computed 

every 100 ms by smoothing (with a rectangular window) the 

preceding 500 ms of recti�ed EMG after correction for offset 

according to

∑α δ= +

δ

−

=

c tEMGk k k

500 ms

0

∣ ( )∣
 

 (8)

where |EMGk(t)| denotes the recti�ed activity of muscle k at 

time t. The coef�cient αk normalises the control signal by 

muscle activity at the comfortable contraction level. During a 

short (15 min) ‘familiarisation and calibration’ block, subjects 

were provided with visual feedback of the raw EMG data in 

two channels and asked to imagine �exion and extension of the 

wrist alternatively. We ensured that both participants were able 

to contract the two muscles groups independently before further 

calibration. To that end, we empirically determined a separate 

threshold activity for the two control signals. With provision of 

realtime feedback on a computer screen, we asked the partici-

pants to activate one muscle group and cross the corresponding 

control signal above the threshold whilst keeping the control 

signal of the other muscle group below its threshold. More 

details with regards to the calibration can be found in our earlier 

work [53, 54]. For subject D, the control signal was recalibrated 

due to a posture change half-way in the experiment.

2.7.4. The i-limb ultra prosthesis. An open source i-limb Ultra 

prosthesis (Touch Bionics, an Össur HF company) was used 

in this work. A MATLAB-based driver was developed that 

enabled proportional control of individual digits wirelessly 

via Bluetooth. The hand was powered with a pair of 7.4 V 

rechargeable batteries.

2.7.5. Wrist rotator. A prosthetic wrist rotator (Motion Con-

trol, Inc, USA) was used to enable clockwise and counter-

clockwise rotation of the i-limb. The wrist was actuated via 

an in-house built bidirectional (H-bridge) drive mechanism. 

The wrist was powered with a doubly insulated power supply 

set to 7.4 V and rotor direction was controlled via rectangular 

TTL (5 V) pulses generated with a USB-6002 data acquisition 

system (National Instruments, USA).

2.7.6. Webcam. The same webcam (Logitech Quickcam® 

Chat) was used in the computer-based experiment and experi-

ments with amputees. In the latter case, it was attached to the 

dorsum of the i-limb by means of double-sided velcro. A USB 

link connected the webcam to the recording laptop. The imaging 

resolution was set to ×640 480 pixels. For analysis, images were 

downsampled to ×48 36 pixels after grey-scale conversion.

2.8. Experimental protocol

The realtime experiment comprised 6 blocks of a pick and 

place task. In each block, subjects grasped, moved and 

placed 24 objects. The order of objects in blocks was pseudo- 

randomised. This order however remained unchanged 

between blocks and subjects. In each trial the experimenter 

placed the object at the standard distance on the table in front 

of the participant.

In blocks 1 and 2, subjects had realtime visual feedback 

of the measured raw EMGs as well as the calculated control 

signals on a computer screen. In addition, they could see the 

webcam video stream, the snapshot that they took and the 

classi�cation outcome. In blocks 3 and 4, only the raw EMG 

signals and the control signals were presented as feedback. 

In block 5, subjects had no computer-based visual feedback 

at all. Finally, in block 6, similar to block 5, subjects had no 

visual feedback. They however could reject the grasp identi-

�ed by the classi�er by re-aiming the webcam at the object to 

take a new picture. This allowed the CNN structure to classify 

the new image and identify the correct grasp. Due to technical 

reasons, subject D could not use the error correction function.

With this arrangement of blocks, we combined the famil-

iarisation and testing steps such that the experiment was as 

short as possible. We therefore analysed the data from famil-

iarisation blocks 1 to 4 as well as data in blocks 5 and 6.

For the experiment with subject M, we allocated a �xed 3 s 

interval in the beginning of each trial to provide enough time for 

the participant to settle into the trial before activating the muscles. 

After the �rst few trials, we realized that this indeed was a sub-

optimal approach because the subject enthusiastically �exed the 

Table 5. Summary of datasets used in different experimental 
conditions for training and testing the CNN structure. NCL stands 
for the Newcastle grasp library. All images in the ALOI  +  NCL 
database have been taken with the DSLR camera.

Condition \ Database Train database Test database

Of�ine ALOI  +  NCL ALOI  +  NCL

Realtime, computer ALOI  +  NCL Webcam

Realtime, amputee ALOI  +  NCL Webcam
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wrist �exor muscles very early to take a picture, before the end 

of this period. In the experiment with subject D, the protocol was 

changed slightly such that an audio beep cued the start of the trial, 

instructing the subject to �ex the wrist �exor muscles to activate 

the webcam. In addition, we made the prosthesis preshaping 

period shorter to improve responsiveness. As it will be seen in the 

result, the choice of the trial start protocol and preshaping time 

affected the total trial duration. However they did not in�uence 

the answer to the main question of this work, that is, whether the 

deep learning structures can be used to offer grasp classi�cation 

without explicitly measuring object dimensions.

The realtime test was implemented in MATLAB® on a 

Lenovo laptop with an Intel Core i7-4559U CPU (2.10 GHz), 

running a 64-bit Windows 7 operating system, with 8GB RAM.

Table 5 summarises the datasets used in different exper-

imental conditions for training and testing the CNN structure.

3. Results

In this section, three categories of results are presented. The �rst 

set of results are of�ine grasp classi�cation scores. For this anal-

ysis we used the images of the ALOI database together with the 

high-resolution images collected for the Newcastle Grasp Library. 

The aim of this analysis was to test the idea of grasp identi�ca-

tion with CNN, �ne-tune the CNN structure and identify the most 

effective classi�cation architecture for the realtime experiments. 

The second set includes the classi�cation results of the computer-

based realtime experiments in which all images were taken with 

the webcam. The third set of results reports the performance 

achieved by the amputees in using the proposed deep learning-

based vision system for prosthetic grasp in the realtime scenario.

3.1. Offline grasp classi�cation

Figure 8 shows the results of the WOC and BOC cross- 

validation schemes. Both were performed on the combined 

ALOI and Newcastle libraries. We compared the results of the 

one-layer and two-layer CNN structures.

A repeated measure two-way ANOVA test revealed no 

statistical difference between the classi�cation scores for the 

results achieved by using a one- (80.0%) or a two-layer (79.9%) 

CNN feature extraction structures (n  =  10,  F1,9  =  0.001,  

p  =  0.98). Figure  8(C) however shows that the difference 

between the average classi�cation scores for the main effect of 

the cross-validation type (WOC: 85.29% versus BOC: 74.74%) 

was statistically signi�cant ( = = <
−n F p10, 32.08, 101,9
3). 

This was predictable since generalisation across views of an 

object would be less challenging than generalisation to novel 

objects in the BOC case.

Speci�cally, in the BOC setting, the two-layer CNN struc-

ture led to 0.7% (1-layer: 74.38%, 2-layer: 75.10%) higher 

classi�cation score when compared to the one-layer CNN set-

ting. This difference was not statistically signi�cant (post-hoc 

analysis with a paired t-test, t9  =  0.28, p  =  0.78). For the fol-

lowing realtime experiments, we chose to proceed with the 

two-layer CNN setting, due to better average performance in 

three of four grasp classes, �gure 8(B).

3.2. Computer-based realtime performance analysis

Figure 9 demonstrates the classi�cation performance 

achieved in a realtime, but computer-based, setting. For this 

realtime experiments, one of the ten aforementioned trained 

CNN structures, that presented a reasonable grasp classi�ca-

tion of novel objects during of�ine BOC tests, was selected. 

As such, we adopted the CNN parameters that resulted in 

an average performance of  ∼70%; from within a range of 

settings that gave performances between 64% and 75%. 

Having six distinct objects in each grasp group and exam-

ining seven random views of each enabled us to simulate a 

real scenario closely before bringing the variability caused 

by the user into account. In �gure 9, the proposed grasp for 

each object and view is shown. In an ideal case, that is 100% 

correct grasp classi�cation, each bar would be in a single 

colour. Emergence of different colours indicates incorrect 

classi�cation.

Figure 8. Of�ine experiment decoding performance comparison. A and B: balanced classi�cation accuracies for within- (left) and between- 
(middle) object cross-validations (10 folds). CNN(1) and CNN(2) represent one-and two-layer CNN structures, respectively. Boxplot 
description: horizontal red lines, medians; solid boxes, interquartile ranges; whiskers, overall ranges of non-outlier data; red crosses (+), 
outliers. C: summary of the within- and between-object cross-validations performance in terms of average classi�cation accuracy together 
with standard deviations. ∗ denotes statistical signi�cance. (A) Within Object Cross-validation (WOC). (B) Between Object Cross-
validation (BOC). (C) WOC versus BOC (summary).
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With this computer-based test, we quanti�ed the time taken 

for the system to identify a grasp (correct or incorrect) from a 

low-resolution input image. The time periods needed for fea-

ture extraction with the CNN structure and classi�cation were 

±78 6 ms and ±3 0.03 ms, respectively.

3.3. Realtime test platform with an amputee user in the loop

We tested the whole system with two trans-radial amputee 

volunteers. Figure  10 shows few representative trials 

including the recorded myoelectric signals, the acquired 

images and classi�cation results. This data is from the 

experiment with subject M. Figure  10(A) illustrates a trial 

in which the participant oriented the hand such that a rea-

sonable image of the object was acquired; image pre- 

processing and grasp classi�cation were performed accu-

rately and the correct grasp was identi�ed. In this trial, the 

subject exhibited an average performance in the pick and 

place operation (∼7 s). Figure 10(B) shows a trial in which 

an incorrect classi�cation took place, that is a palmar wrist 

pronated instead of a tripod. The participant however accepted 

the incorrect grasp and accomplished the trial. Figure 10(C) 

shows an example of the trial that the classi�cation was incor-

rect initially, because the hand was not oriented in a way that 

the object was fully in the scene. Repeated efforts by the par-

ticipants were unsuccessful until the fourth time the partici-

pant took a snapshot. Once the correct grasp, that is palmar 

wrist neutral, was selected, the participant completed the trial.

In the realtime experiments with amputee subjects, we 

included 8 seen, but randomly-rotated, objects as well as 16 

novel objects. With this setting, we tested in realtime both 

within- and between-object generalisation. Figure  11 illus-

trates a summary of all results in the realtime experiment for 

the two volunteers M (left column) and D (right column). 

Figure  11(A) shows the classi�cation accuracy achieved in 

each block with respect to individual classes. Importantly, in 

blocks 1 to 5, we report the percentages of correct classi�ca-

tion, that is we only consider trials for which the identi�ed 

grasps matched exactly with the labels that we assigned to that 

particular object. For block 6, the same terms apply except 

that the classi�cation results are reported for the �nal attempt 

that the user made in each trial; as error correction was ena-

bled. Figure  11(B) shows the overall accuracy in blocks 1 

to 6 and in block 6 only, across all grasps. In addition, we 

have reported the percentage of trials in which the classi�ca-

tion was incorrect, however, the subjects accepted the offered 

grasp and �nished the trial successfully or did not accept the 

offered grasp. In the latter case, if the subject could not com-

plete the trial, the experimenter stopped the trial. Participants 

were on average more successful in block 6 when compared 

to the average performance in all blocks: 79% versus 73% for 

subject M and 86% versus 73% for subject D. When accept-

able errors (error subtype 1; as explained in �gure  11(B)) 

included, subject M and D could accomplish 88% and 87% of 

all trials over the 6 blocks.

Figure 11(C) shows the average trial accomplishment time 

for each block for participants M and D. For both subjects, 

block 1 was the longest trial. For subject M, the reduction in 

the accomplishment time (across the 24 trials) in block 6 versus 

block 1 was only marginally signi�cant (block 1: ±21.4 8.1 s, 

block 6: ±16.7 9.3 s, paired t-test, n  =  24, t23  =  1.81, p  =  0.08). 

This reduction for subject D, however, was statistically signi�-

cant (block 1: ±30.7 17.2 s, block 6: ±19.3 25.7 s, paired t-test, 

n  =  24, t23  =  2.26, p  =  0.03). This reduction in the accomplish-

ment time was despite the increasing dif�culty of the task. As 

mentioned before, in blocks 3 and 4, the webcam output was 

not shown on the screen and in the blocks 5 and 6, visual feed-

back on the screen was withheld totally.

We quanti�ed the time taken for the system to identify 

a grasp (correct or incorrect) from a low-resolution input 

image in realtime within our graphical user interface. With 

the laptop that was used in the realtime experiments the 

average time needed for pre-processing and classi�cation 

were 110ms and 40ms, respectively. As mentioned in the 

Methods section, to take a picture with the camera, subjects 

had to make a short �exion above the felxion threshold for 

300ms, whilst the activity of the extensor muscle group 

remained below its threshold. As such a correct classi�ca-

tion could be achieved within 450ms. All time stamps are 

shown in �gure 11(D).

Finally, we assessed the ability of the proposed structure in 

generalising to novel objects during the realtime experiments. 

To that end, for each volunteer we split the results of the real-

time experiment for seen and unseen objects in table 6. Out 

of the 24 objects in each block, eight were seen and 16 were 

unseen by the trained two-layer CNN. Results showed that it 

Figure 9. Two-layer CNN architecture average classi�cation 
performance for four grasp types in on-line computer-based test. 
All images were converted to grey-scale and downsampled before 
further analysis. Objects shown with dashed black box around 
them were novel to the classi�er. All other objects were seen by the 
classi�er however they were rotated randomly for this test. In the 
case of 100% correct classi�cation, each bar would be in a single 
colour.
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was not possible to predict whether classi�cation would be 

more successful for seen or unseen objects.

4. Concluding remarks

We augmented a commercial prosthetic hand with a webcam 

and a deep learning-based structure to improve the grasp 

ability of the amputees. This setting was examined with two 

trans-radial amputee participants after a comprehensive series 

of of�ine and realtime, but computer-based, experiments. We 

showed that after about an hour of practice, the participant 

could accomplish 88% of trials successfully.

In current commercial prosthetic hands to switch between 

the grasp types, the user has to either learn various co- 

contractions, move the prosthetic hand in certain trajectories 

or have objects in their environment labelled with RFID tags. 

Figure 10. Three sample trials recorded in the realtime experiments with subject M; A) an example of a successful trial in which the grasp 
is detected correctly; B) an example trial in which despite the inaccurate classi�cation (palmar wrist pronated instead of tripod grasp) the 
subject successfully �nishes the trial; C) an example of a trial in which the classi�cation is erroneous initially, however, the subject repeats 
the image acquisition procedure until the correct grasp is identi�ed. (A) A successful trial (Block 6). (B) A trial with an acceptable error in 
classi�cation (Block 6). (C) A trial with the need to correct the error in image acquisition (Block 6).
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These workaround techniques have emerged mainly because 

the promised EMG pattern recognition-based methods have 

not proved robust, or even feasible, for grasp classi�cation 

clinically. The non-intuitiveness and shortcomings of the 

aforementioned approaches have encouraged the emergence of 

techniques that advocate utilisation of sensing modalities other 

than the conventional EMG signals, such as accelerometry or 

in general inertial measurements [14, 25, 26, 57], RFID tags 

[28], arti�cial vision including standard cameras as well as 

Kinect [29–34]. In almost all multi-modal approaches to con-

trol limb prosthesis, it is argued that the incorporation of two 

or more sources of information can reduce the users’ cognitive 

burden and enhance functionality in terms of accuracy.

In this work, the user could effectively pick objects with 4 

different grasp types by capturing a single picture of the object 

of interest. We adapted and trained a standard CNN architec-

ture to extract abstract grasp-related features of a single low-

resolution input object image in realtime.

Figure 11. Realtime performance of the proposed system for volunteer M, on the left, and volunteer D, on the right: (A) grasp recognition 
accuracy performance of each grasp type per block and the overall performance of each block. B) Overall accuracy of the grasp task 
considering the error being acceptable or not: error subtypes 1 and 2, respectively, and the overall accuracy of in block 6. C) Task 
accomplishment time comparison between blocks 1 to 6 shown in standard boxplots; D) total trial times with details of the snapshot, the 
preshape and the end of trial times. ∗ denotes statistical signi�cance. (A) Performance across blocks. (B) Accuracy and error subtypes.  
(C) Task accomplishment time. (D) Trial times.
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4.1. Database

In order to train the CNN structure for grasp recognition, a 

database including a large number of object images was 

required. Identifying a database with an ample number of 

household objects can be considered a challenge since most 

of the accessible databases, e.g. Imagenet [40], include a large 

variety of objects of which many are not graspable.

In our previous pilot experiment [34], we used the COIL100 

database [58] which includes 100 categories of graspable 

objects. The overall classi�cation performance in the WOC test 

was 97%. For the BOC test the classi�cation accuracy was 55% 

with the lowest results in the ‘palmar wrist pronated’ group. 

We attributed this poor BOC performance to lacking suf�cient 

number of training objects since other grasp classes that had 

enough number of training objects gained signi�cantly higher 

accuracies. Therefore, we used the ALOI database [46] instead, 

which provided us with more training data in the range of 1000 

objects of which we selected 500 objects for analysis. Due to 

the variety in the number of objects in each grasp group and of 

course to enable realtime testing where original objects are not 

available, a database of 71 objects was collected at Newcastle 

University. These 71 objects were distributed between grasp 

groups such that they are each provided with suf�cient sam-

ples for training. This augmented image database was used for 

CNN training in this work.

4.2. Object classi�cation versus grasp identi�cation

We adapted the CNN architecture for grasp recognition rather 

than object identi�cation. Supervised learning systems (e.g. 

[59, 60]) including the CNN setting (e.g. [61, 62]), lack the 

capability of generalisation to novel objects, which is a crucial 

requirement in prosthetic hand applications. To address this 

issue, we either need a very large amount of training data or 

we can capitalise on the �exibility of deep learning system 

to generalise based on learning abstract representation of dif-

ferent classes of training data. Forming large image libraries 

can be challenging since it requires advanced hardware for 

photography and computing facilities for data handling and 

storage. Instead, we approached the problem by noting that 

rather than having a large number of classes of objects, we 

can group the objects according to their most appropriate 

grasp type. In this way, the output space includes only a small 

number of grasps. Consequently, the detection task can be 

generalised to unknown objects and any type of objects can be 

detected and classi�ed correctly.

4.3. The CNN design considerations

The difference between the two CNN structures, that is 1- 

and 2-layer, was very small. Despite no statistical difference 

in of�ine analysis between the two cases we chose to use a 

2-layer structure as it showed a slightly better performance in 

three of four grasp classes (�gure 8(B)). Realtime implemen-

tation on a laptop was similar with differences in the nano-

seconds range. In principle, with using a smaller network one 

could avoid over-�tting. We avoided over-�tting in the 2-layer 

network by using Tikhonov regularisation in training the CNN 

structure where the matrix W j
l  in the last layer is optimised.

Tuning and training of a CNN structure may be very 

time-consuming. However once trained, it offers a very fast 

response time. Typical times for training the proposed 2-layer 

CNN structure were about 2 hours without a GPU. In fact, 

the slowest component of the proposed approach is the image 

pre-processing block that takes  ∼110ms to carry out all steps 

that were introduced in �gure 6. For the realtime experiments, 

we used standard MATLAB instructions without additional 

GPU hardware. With the advent of fast GPU chips, that to the 

mobile phones industry, we believe that realtime implementa-

tion of our standard image preprocessing tasks will be much 

faster.

Although not included in the results section, we tested the 

hypothesis that using a pre-trained CNN, for example with all 

images in the ImageNet database [40] could enhance the clas-

si�cation accuracy. We therefore re-tuned a ResNet18 [61], an 

18-layer network pre-trained with ImageNet, with the com-

bined ALOI and Newcastle images and then repeated the BOC 

test. We observed a large reduction in the classi�cation scores 

to  ∼50%. Such a poor performance may be because many of 

the objects in the ImageNet database are not graspable, e.g. an 

airplane or a tree. In addition, most images include signi�cant 

clutter and have various backgrounds, e.g. an ambulance on 

a street. Whilst these results are not in favour of using a pre-

trained network, we do not rule out the possibility that pre-

trained architectures can be used to enhance the generalisation 

performance. Perhaps the use of pre-trained networks, that are 

trained with a large number of graspable objects can lead to 

higher performance.

We sought to understand whether object speci�c patterns 

were extracted by the CNN structure for grasp classi�cation 

or the size and orientation of the objects enable the CNN 

setting to generalise. Figure 12 illustrates two examples per 

grasp class. The 25 maps per object are the outcome of the 

second convolution layer of the CNN architecture after the 

ReLU stage, as introduced in �gure 3. This preliminary visu-

alisation suggests that the determining factors for classi�ca-

tion and generalisation are the size and the orientation of the 

object. Further work may need be to verify the consistency of 

this �nding in a larger number of objects and object views.

Table 6. The success rate of each volunteer in the realtime 
experiments with respect to the objects being seen or unseen. For 
subject M in Block 6, in which the error-correction was on, we 
report the performance with respect to the �rst identi�ed grasp*, 
that is before error correction.

Block \ 
Volunteer

M D

Seen (%) Unseen (%) Seen (%) Unseen (%)

1 75 75 50 81.2

2 75 75 75 93.7

3 62.5 75 50 56.2

4 37.5 87.5 87.5 81.2

5 75 62.5 62.5 62.5

6 63 75 87.5 75
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4.4. Classi�cation and an alternative approach for error  

correction

The CNN architecture can have several layers of convolution 

and pooling. The last layer should be fully connected, e.g. a 

neural network. We used the Softmax regression classi�er. 

The integrated use of the CNN and Softmax systems is in 

line with the conventional approaches in the deep learning 

community [40, 42, 63]. Instead of the Softmax classi�er, 

other classi�ers could have been used. Comparing the per-

formance of different classi�ers falls outside the remit of this 

work.

The output of the Softmax classi�er provides the probability 

for each class. Therefore, when the most probable grasp is not 

suitable, other grasp types of decreasing probability may be pro-

vided. This can feature as an automatic error correction mech-

anism. However, there were two main reasons behind our decision 

for not using this approach though we �nd it very interesting and 

feasible from an engineering point of view. These reasons include:

 • The addition of an arti�cial vision system for arti�cial 

hands makes the prosthesis more autonomous [31] and 

less under the control of the subject. Our initial and unbi-

ased brie�ng of the subjects with regards to the experiment 

suggested that they both would like to have a degree of 

control over the function of the prosthesis. As such, we 

decided to test the manual error-correction method only. 

In this approach, in block 6, subjects could restart the pro-

cess by resetting the prosthesis and taking a new snapshot.

 • Our volunteers were both naíve to the concept of the 

experiment and neither used myoelectric prosthesis in 

daily life. In addition, our experiment was already rather 

long (+2 hours). Therefore, the addition of another condi-

tion to the experiment, in which errors are automatically 

corrected, would tire the participants.

4.5. Feasibility of more grasp types

We limited the number of grasp types to four. The number 

of grasps however can be increased readily upon availability 

of training data. For instance, lateral grasp is not included 

cur rently within the grasp types. Objects that are grasped with 

a lateral grip, e.g. a credit card, present typically a distinc-

tive �at shape which is different from our training images. 

Therefore, with augmenting the existing database with images 

of objects requiring a lateral grasp, we can include the lateral 

grasp as an additional grasp class. Whether prosthesis users 

would use more than four or �ve grasps will remain to be 

investigated.

4.6. Performance in the presence of clutter

Identi�cation and segmentation of an object in a cluttered 

scene or when the object lies on an arbitrary background can 

be an extremely challenging computer vision task. In this 

proof-of-principle work, we tested the use of deep learning 

algorithm in a clutter-free environment. Previous work such 

as in [30, 31] incorporated 3D point clouds to segment the 

scene (in addition to colours and edges) to facilitate segmen-

tation. One interesting study would be to combine the two 

approaches and use the 3D features as inputs into the CNN 

system.

4.7. Realtime performance: computer-based versus human 

experiments

With the computer-based realtime experiments, we simulated 

a grasp classi�cation scenario without having the user in the 

loop. We believe that it was an appropriate practice since it 

gave us an indication of realtime performance without biases 

induced by the user, e.g. camera view and distance to the 

object. The computer-based results with the average perfor-

mance of 84% were higher than the accuracy achieved in the 

realtime experiments with amputee subjects in the loop spe-

cially in early blocks. With training, both subjects improved 

performance yet they fall short of the score that was achieved 

in the computer-based experiment. We believe that the higher 

performance in the computer-based experiment was because 

the camera view and distance to the objects were �xed 

during testing. Other intrinsic factors, such as physical and 

mental fatigue, can deteriorate realtime performance. Further 

Figure 12. Two examples for each grasp class. After convolving to the second �lter each resultant image, is transformed into 25 feature 
maps whilst passing through ReLU and before being sub-sampled. These maps suggest that generalisation may be achieved because the 
abstract object features are size and orientation of the objects.
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invest igations are needed to identify underlying sources of 

error and inaccuracies during realtime experiments; be it in 

the laboratory, clinical or real-life settings.

In the realtime experiments with amputee subjects, out of 

the 24 objects in each block, eight were seen and 16 were 

unseen by the trained two-layer CNN. Results did not show 

that generalisation to unseen objects was necessarily less suc-

cessful than classi�cation of seen objects. This is in contrast 

to what we observed in the of�ine experiments in which the 

BOC performance was lower than that of the WOC perfor-

mance. However, this �nding corroborates earlier work in 

[29–31] supporting the hypothesis that users’ behaviour could 

play an important role in the accuracy of vision-based pros-

theses control architectures.

4.8. User training with full or partial visual feedback

The webcam was mounted on the dorsum of the i-limb hand. 

This was in line with earlier work on vision-based prosthesis 

control [29]. However, in more recent work, Marković et al 

[31] placed the sensors on the user to facilitate targeting the 

object. We showed that with training in a step-by-step approach 

(blocks 1-6) subjects can learn to target the object accurately 

such that all of the object boundaries are in the scene. This 

is particularly important for tall objects in the palmar wrist 

neutral group (�gure 10(C)). Following the familiarisation 

block, and the �rst two measurement blocks, the visual feed-

back from the webcam output was withheld, however the per-

formance did not drop. The available proprioceptive feedback 

from the arm and the truck muscles may have facilitated accu-

rate targeting.

4.9. User feedback

Both subjects provided positive feedback on the use of the 

proposed vision-enabled prosthetic control approach. For 

instance, subject D said: ‘Just getting the routine was dif�cult 

at the beginning but once this was established it became much 

easier. If it would be further re�ned (in terms of positioning of 

camera) I would certainly use this and always give feedback’. 
Subject M tested the proposed approach and a novel pattern 

recognition system on the same day. When asked which of the 

two approaches he would prefer, he replied: ‘I’d like the pat-

tern recognition better, when it works perfectly! For the time 

being, the vision-based system seems to be a good solution. I 

liked its responsiveness very much’.

4.10. Directions for further development

In the proposed setting, misclassi�cation could stem from 

inaccurate object detection or from insuf�cient feature extrac-

tion by the CNN structure. Advanced image processing tech-

niques may be used to address the former. The latter problem 

may be dealt with �ne-tuning the CNN parameters according 

to an objective criterion. Beyond these challenges, one crit-

ical issue that can affect the performance of any vision-based 

prosthetic control system is the distance between the object of 

interest and the camera. Previous work incorporated additional 

sensors, e.g. sonar [29] or stereovision [31], to alleviate the 

uncertainty with regards to the true object sizes. Our current 

work includes using movement inertial measurements during 

reach to approximate the distance from the target object and 

rescale the images before giving them to the CNN structure.
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