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Deep learning based automated 
diagnosis of bone metastases 
with SPECT thoracic bone images
Qiang Lin1,2,3*, Tongtong Li1,2, Chuangui Cao1,2, Yongchun Cao1,2,3, Zhengxing Man1,2,3 & 
Haijun Wang4

SPECT nuclear medicine imaging is widely used for treating, diagnosing, evaluating and preventing 
various serious diseases. The automated classification of medical images is becoming increasingly 
important in developing computer-aided diagnosis systems. Deep learning, particularly for the 
convolutional neural networks, has been widely applied to the classification of medical images. In 
order to reliably classify SPECT bone images for the automated diagnosis of metastasis on which the 
SPECT imaging solely focuses, in this paper, we present several deep classifiers based on the deep 
networks. Specifically, original SPECT images are cropped to extract the thoracic region, followed by 
a geometric transformation that contributes to augment the original data. We then construct deep 
classifiers based on the widely used deep networks including VGG, ResNet and DenseNet by fine-
tuning their parameters and structures or self-defining new network structures. Experiments on a set 
of real-world SPECT bone images show that the proposed classifiers perform well in identifying bone 
metastasis with SPECT imaging. It achieves 0.9807, 0.9900, 0.9830, 0.9890, 0.9802 and 0.9933 for 
accuracy, precision, recall, specificity, F-1 score and AUC, respectively, on the test samples from the 
augmented dataset without normalization.

In the medical imaging �eld, nuclear medicine imaging is widely used for diagnosing, treating, evaluating, and 
preventing di�erent diseases and medical conditions. It is di�erent from the conventional structural imaging 
modalities such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasound. Struc-
tural imaging modalities provide only anatomic information about an organ or body part. In particular, nuclear 
medicine imaging is capable of revealing functional and structural variations in organs and tissues of a body. 
As part of modern medicine, nuclear medicine imaging is dominant in oncology, neurology, and cardiology.

As one of the widely used techniques, Single Photon Emission Computed Tomography (SPECT) can provide 
insights into physiological processes of the areas of concerns by detecting trace concentrations of radioactively-
labelled compounds, like Positron Emission Tomography (PET). For SPECT examination, imaging equipment 
captures the emitted gamma rays from radionuclides that were injected into a patient’s body in advance for 
visualizing the inside of the body in a non-invasive manner. �ere are three kinds of the common radiotracers 
for SPECT imaging: [99mTc] Sestamibi for myocardial perfusion, [99mTc] MDP (methylene diphosphonate) 
for bone scanning, and [99mTc] HMPAO (exametazime) for blood �ow in a brain. It is reported that more than 
18 million SPECT scans are conducted each year in the United  States1.

Bones are clinically identi�ed as the common sites of metastasis in various malignant tumors such as prostate 
and breast cancer. �ese occupying lesions are viewed as areas of the increased radioactivity called hot spots in 
SPECT bone imaging. Quantitative SPECT bone scanning has the potential for providing an accurate assess-
ment of the stage and severity of a disease. As such, the automatic classi�cation of images plays a crucial role in 
constructing computer-aided diagnosis (CAD) systems. In the domain of medical image analysis, classifying 
images refers to producing classi�cation outputs for given input images that identify whether a disease presents 
or  absents2. During the past decades, medical image classi�cation has been one of the application areas in the 
traditional machine  learning3,4 and deep  learning5–12.
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Classi�cation of SPECT images is also a hot topic in the �eld of deep learning-based medical image analysis. 
�e main objective of existing work is to automatically diagnose various diseases ranging from Alzheimer’s 
 disease13, Parkinson’s  disease14–16 and thyroid  disease17,18 to cardiac  disease19. �e openly available Parkinson’s 
Progression Markers Initiative (PPMI) dataset (http://www.ppmi-info.org/) was frequently used in existing 
 work14–16.

Classifying SPECT bone images for the automated diagnosis of bone metastasis, however, has not been 
examined yet. �e possible reasons for this are triple-fold:

• A nuclear medicine imaging is always limited by its poor spatial resolution and a low signal-to-noise ratio, 
particularly for a whole-body SPECT bone scan. As such, it is challenging to identify the precise location of 
a lesion and its adjacent structures, though an abnormal area of the increased uptake is noted.

• A whole-body SPECT bone image o�en has more than one lesion with the same or di�erent primary diseases, 
which result in quite di�culties for correctly diagnosing and properly estimating various diseases.

• �e big datasets of SPECT bone scans are rarely available as a result of the rarity of diseases and patient pri-
vacy. In addition, imbalanced samples commonly occur in the dataset of the SPECT bone imaging because 
the distribution of the images depends heavily on the available patients with the type of diseases.

In this work, we intend to automatically diagnose metastasis in thoracic SPECT bone images where bone 
metastasis of various primary cancers frequently develop, by constructing deep learning based classi�ers con-
ducted on real-world data of SPECT bone scans. In particular, each original whole-body SPECT bone image is 
cropped to extract the thoracic area, followed by data preprocessing and data augmentation operations. �en 
we introduce a group of famous convolutional neural networks (CNNs) to develop deep classi�ers that can 
automatically answer whether a bone metastasis presents in the given thoracic SPECT bone image or not. Last, 
we use the real-world SPECT bone images acquired from clinical examinations to validate the e�ectiveness 
and performance of the developed classi�ers. Experimental results demonstrate that our classi�ers work well 
on identifying metastasis in thoracic SPECT bone images, achieving a score of 0.9807, 0.9900, 0.9830, 0.9890, 
0.9802 and 0.9933 for accuracy, precision, recall, speci�city, F-1 Score, and AUC, respectively, on the test samples 
with augmentation.

�e main contributions of this work are: First, we identify the research problem of SPECT imaging-based 
automated diagnosis of bone metastasis. To the best of our knowledge, this is the �rst work on deep learning-
based medical image analysis. Second, we cast the problem of automated metastasis diagnosis as a classi�cation of 
thoracic SPECT bone images and develop CNNs-based classi�ers by using the capacity of automatically learning 
the feature representations from images. Last, we evaluate the developed deep classi�ers by using a set of real-
world SPECT bone images. Experimental results demonstrate that our classi�ers perform well in identifying 
the metastasized SPECT bone images.

�e rest of this paper is organized as follows. “Materials and methods” presents the data of SPECT bone scans 
and the proposed deep classi�ers, followed by reporting our experiments on real-world data in “Results”. �e 
last section concludes this work and points out future research directions.

Materials and methods
Dataset. With a Siemens SPECT ECAM imaging equipment, the SPECT bone images used in this work were 
collected as a result of diagnosing bone metastasis in the Department of Nuclear Medicine, Gansu Provincial 
Hospital in 2018. �e distribution of the intravenous administration of a radiotracer (i.e., 925/740 MBq Tc-99m) 
to a patient was generated by the equipment in SPECT examination.

Patients from di�erent departments may have di�erent SPECT bone images, including surgery, radiology, 
respiratory, thoracic rheumatology, orthopedics, breast, and oncology. Inpatients are the majority of the patients 
without excluding a few of the outpatients. 251 patients aged 43–92 years in total were �nally diagnosed with 
normal (n = 166, ≈ 66%) and metastasis (n = 85, ≈ 34%). �e follow-up patients are not included in our dataset 
because the SPECT imaging is mainly conducted on the diagnosis of severe diseases.

Generally, each SPECT examination records two images about anterior and posterior views if the examination 
is not damaged and or lost. Each SPECT bone image is stored in a DICOM �le (.dcm). �e image is a matrix of 
numbers to measure radiation dosage by using a 16-bit unsigned integer. Note that SPECT images that capture 
the various radiation within a wide dosage range are di�erent from natural images with their pixel values ranging 
from 0 to 255. An image of a whole-body SPECT bone scan is 256 (width) × 1024 (height), visualizing most of the 
body of a patient. Figure 1 illustrates two whole-body SPECT bone images, where x-, y-, and z-axis denotes the 
width, height, and radiation dosage, respectively. �e areas of increased uptake like injection point and bladder 
o�en confuse the true hot spots of bone metastasis with them if the traditional machine learning techniques are 
used for classifying the low-resolution SPECT bone images.

Formally, we use a matrix BSI to represent an image of whole-body SPECT bone image:

where rdij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the radiation dosage, with m = 256, and n = 1024 for the size of an image.
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�ere are in total 346 sample images, i.e., the anterior and posterior, of whole-body SPECT bone scans from 
251 patients in our dataset. In particular, our dataset consists of 220 normal samples and 126 samples diagnosed 
with metastasis. Table 1 provides the statistics of the original whole-body SPECT bone images, where the metas-
tasized images are divided into three sub-categories according to the lesion location.

Ethical approval. �e study was approved by the Ethics Committee of Gansu Provincial Hospital (Lot No.: 
2020-199). A requirement for the informed consent was waived for this study by the approval of Ethics Commit-
tee of Gansu Provincial Hospital. �e fully anonymised image data was received by the authors on 28 August, 
2020. �e used bone SPECT images were de-identi�ed before the authors received the data. We claim that all 
methods were carried out in accordance with relevant guidelines and regulations.

Methodology
Data preprocessing and augmentation. Since spine and ribs are the most common sites of metastases 
in a variety of cancers, the thoracic region will be cropped from each whole-body SPECT bone image to form 
the dataset of thoracic SPECT bone images in this work.

Cropping thoracic region. Cropping thoracic region is for separating the spine and ribs from others in a 
256 × 1024 image of whole-body SPECT bone scan, to obtain the thoracic imaging data. It is o�en challenging, 
however, to accurately separate parts of a body in a low-resolution SPECT bone image full of noise as a result of 
the wide ranges of radiation dosage. Traditional separation using the structure information of the skeleton per-
forms mediocrely on separating whole-body SPECT bone images. On the contrary, the distribution of radiation 
dosage should be considered for adaptively cropping the thoracic region from an image of whole-body SPECT 
bone. Figure 2 depicts the process of cropping the thoracic region from an original image of 256 × 1024 whole-
body SPECT bone, consisting of �ve stages as follows.

Stage 1: Removing noise. For a given image of whole-body SPECT bone with its size of 256 × 1024, we deter-
mine the maximum value of radiation dosage outside the body area by sweeping the image globally. For each 
image, such a maximum value is unique, which is thereby viewed as the threshold of noise of thrN. �e elements 
in BSI with radiation dosage that are less than thrN are set to 0, i.e., image background. �e adaptive thresholding 
for di�erent images can remove their noises while keeping the information of lesions.

Stage 2: Extracting the body area. A�er removing noise, the areas that are above the top of the head and below 
the toes in each image are further discarded. As a result, the remaining parts are the area of concerns.

Stage 3: Removing head and legs. For the extracted validated body area, we count the elements from the top 
down. �e generated curve indicates the presence and intensity of radiation dosage so as to reveal parts of the 
body. As an example, the �rst three peak points of the �tted curve shown in Fig. 3 shows the beginning positions 

Figure 1.  Distribution of radiation dosage in whole-body bone SPECT images. (a) Normal image with the 
concentrated injection point; and (b) image diagnosed with metastases marked by red polygons.

Table 1.  Statistics of the image dataset of whole-body SPECT bone scan (n = 346).

Normal

Metastasis

Multiple bone metastasis Spinal metastasis Metastasis outside spinal

Samples 220 111 14 1

Ratio 63.6% 32.1% 4.0% 0.3%
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of the head, the right elbow, and the right shoulder. �e third valley point shows the beginning position of the 
right leg.

Stage 4: Removing pelvis. �e �rst and second derivatives plotted in Fig. 3 indicate the areas of arms, thorax, 
and pelvis. �e thoracic region can then be extracted by relying on the facts that the width of the trunk is the 
almost same as the one of the area of legs, as well as the ratio of the height of a spine and that of a pelvis is about 
3: 2.

Stage 5: Filling with the background. In order to reduce �tting errors, a randomly-determined penalty factor 
σ ∈ (5, 15) was introduced in the cropping process. �e cropped thoracic region is enlarged to 256 × 256 by �ll-
ing the rest of areas with its background. We call the cropped area as thoracic SPECT image or thoracic image in 
the following sections.

�oracic image augmentation. In general, deep learning needs a big dataset. We thus apply a series of preproc-
essing operations on thoracic images to augment our dataset by considering the followings:

Figure 2.  �e process of cropping a 256 × 256 thoracic region from the original 256 × 1024 whole-body SPECT 
bone image.

Figure 3.  Cropping thoracic region based on curve �tting approach (le�: the valid body area of a posterior 
SPECT image; middle: the �tted curve; and right: the curves of the �rst and second derivatives of the �tted 
curve.
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• It is inevitable that during a long-time SPECT scanning, the position and orientation of a patient are changed. 
A patient is o�en startled when the bed shi�s to the next scanning position, for example. As a result, scanning 
may take up to 3 h. �erefore, classi�cation models should be robust in dealing with the displacement and 
tilt in SPECT bone images.

• It is common to unsuccessfully record images in our dataset. An examination may have only the anterior 
view image and vice versa. �is explains why there are only 346 images for 251 patients as reported in Table 1. 
Technical approaches are needed to handle the missing of SPECT bone images.

Data preprocessing techniques such as geometric transformations (i.e., image mirroring, translation, and 
rotation) and normalization are used for coping with the above problems. At the same time, the data in the 
dataset are extended.

Image mirror. �e horizontal mirror reverses a thoracic image right-to-le� along the vertical center line of the 
image. For a given thoracic image as depicted in Fig. 4a, a mirrored counterpart of this image is shown in Fig. 4b.

Image translation. A thoracic image is translated by + t or − t pixels in either the horizontal or the vertical direc-
tion. For each thoracic image, the value of t is randomly assigned with an integer from the range [0, tT]. �e value 
of tT is statistically chosen based on the distribution of radiation dosage in all images. A value of 10 (4) for tT is 
acceptable in the experiments for horizontal (vertical) translation. From Fig. 4c, we can see that the information 
about the hot spot in the translated image keeps perfectly.

Image rotation. A thoracic image is rotated by r degrees in either the le� or right direction around its geometric 
center. For each thoracic image, r is randomly assigned with an integer within the range [0, rT]. Similarly, rT is 
statistically determined by using the distribution of radiation dosage in all images and a value of 5° for rT is set 
in our experiments. As an instance, Fig. 4d shows the rotated counterpart by randomly rotating the given image 
in Fig. 4a to the right direction by 3°.

Normalization (optional). �e min–max normalization technique is used to limit the wide range of radiation 
dosage of thoracic images to an interval [0, 1].

�e generated images via preprocessing operations above are added to the original dataset in Table 1 to form 
our augmented dataset, which is outlined in Table 2. It is worth noticing only part of rather than the whole normal 
images were augmented in this work.

We organize the used data into three datasets D1–D3, with D1 denoting the original dataset, D2 and D3 denot-
ing the augmented dataset with and without normalization respectively.

�e subsequent section will describe the process of labelling thoracic SPECT bone images for obtaining 
ground truth in the experiments.

SPECT bone image annotation. �e labelling image plays a key role in training reliable supervised classi�ers. It 
is time-consuming, however, to label a SPECT image with the low spatial resolution. Relying on the online avail-
able tool called  LabelMe20 by MIT, we developed an annotation system for labelling thoracic images in this work.

As shown in Fig. 5, we �rst imported the DICOM �le of an image of whole-body SPECT bone and the diag-
nostic report into the LabelMe based annotation system. �e three nuclear medicine doctors from our research 
group then manually labelled the areas on the image of the DICOM �le (the RGB format is used currently) by 
using a shape tool such as rectangle and polygon in the available toolbar in the system. �e labelled area was 
annotated with a self-de�ned symbol and the name of disease or body part. Manual annotations for all SPECT 

Figure 4.  Examples of preprocessing a thoracic image with a hot pot of bone metastasis in the spine. (a) �e 
original thoracic image; (b) the mirrored image; (c) the vertically translated image; and (d) the rotated image.

Table 2.  Overview of the augmented data of thoracic images. (n = 2390).

Normal

Metastasis

Multiple bone metastasis Spinal metastasis Metastasis outside spinal

Samples 1200 1043 133 14

Ratio 50.2% 43.6% 5.6% 0.6%
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images are regarded as the ground truth in our experiments. An annotation �le was �nally formed together. �e 
annotation �le will be fed into the deep classi�cation models.

Speci�cally, according to the diagnostic report, the annotation process of a thoracic image was performed by 
nuclear medicine doctors independently. If at least two doctors regarded an image as abnormal, i.e., at least one 
hot spot presents, it is labelled as an abnormal, and a normal otherwise. Note that in our dataset, an image that 
may contain multiple hot spots belongs to the same other than the di�erent diseases.

Deep learning-based classifiers. As an emerging and mainstream machine learning technique, deep 
learning has achieved great success in many areas such as machine vision and natural language processing in 
recent years. A number of deep architectures are available, such as the convolutional neural networks (CNNs)21, 
recurrent neural networks (RNNs)22, and deep belief networks (DBNs)23 as well as generative adversarial net-
works (GANs)24. In particular, CNNs automatically extract image features with di�erent abstraction levels by 
using convolution operators. It is trained end-to-end in a supervised way.

CNNs are widely used in medical image analysis because of the use of sharing weights. Such sharing relies on 
the fact that similar structures reoccur in di�erent locations within an image. In the computer-aided diagnosis 
(CAD), a CNNs-based classi�cation system can automatically learn the features from images to form a function 
mapping inputs to outputs such as diseases present or absent. CNNs-based CAD systems are more popular than 
those systems relying on handcra�ed features as in traditional machine learning.

In this work, we develop several deep classi�ers based on the CNN models that are detailed below.

VGGNet based classi�ers. To examine the e�ect of the convolutional network (ConvNet) depth on its accuracy 
in the large-scale image recognition task (e.g.,  ImageNet25), Simonyan and  Zisserman26 developed deep several 
convolutional network architectures by pushing the depth to 11–19 weight layers, ranging from VGG-11, VGG-
13 and VGG-16 to VGG-19. In the ConvNet con�guration, the depth of the network was steadily increased 
through adding more convolutional layers that use 3 × 3 convolution �lters in all layers while other parameters 
were �xed.

In this work, we use the standard VGG-16 and VGG-19 networks without modi�cation to develop two clas-
si�ers, named SPECS V16 (SPECT ClaSsi�er with VGG-16) and SPECS V19, respectively. Meanwhile, in order 
to examine the e�ect of the ConvNet depth on accuracy in the thoracic image classi�cation task, in this work 

Figure 5.  Labelling whole-body SPECT bone image using LabelMe (version 3.0, http://label me2.csail .mit.edu/
Relea se3.0/brows erToo ls/php/sourc ecode .php) based annotation system.

http://labelme2.csail.mit.edu/Release3.0/browserTools/php/sourcecode.php
http://labelme2.csail.mit.edu/Release3.0/browserTools/php/sourcecode.php
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Table 3.  ConvNet con�guration of VGGNets. �e depth of the con�gurations increase from the le� to 
the right, as more layers are added. �e convolutional layer parameters are denoted as “conv <receptive �le 
size> – <number of channels>.

SPECS V7 SPECS V16 SPECS V19 SPECS V21 SPECS V24

7 weight layers 16 weight layers 19 weight layers 21 weight layers 24 weight layers

Input (256 × 256 �orax SPECT image)

Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64

Conv3-64 Conv3-64 Conv3-64
Conv3-64 Conv3-64

Conv3-64 Conv3-64

Maxpool

Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128

Conv3-128 Conv3-128 Conv3-128
Conv3-128 Conv3-128

Conv3-128 Conv3-128

Maxpool

Conv3-256 Conv3-256 Conv3-256 Conv3-256

Conv3-256 Conv3-256 Conv3-256 Conv3-256

Conv3-256 Conv3-256 Conv3-256 Conv3-256

Conv3-256 Conv3-256 Conv3-256

Conv3-256

Maxpool

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512

Conv3-512

Maxpool

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512 Conv3-512

Conv3-512 Conv3-512 Conv3-512

Conv3-512

MaxPool

FC-4096

FC-4096

FC-2

So�-max

Figure 6.  �e structure of residual module in ResNet-34 network.
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we propose three di�erent deep networks VGG-7, VGG-21 and VGG-24, corresponding to three classi�ers, 
i.e., SPECS V7, SPECS V21 and SPECS V24, by following the generic design of VGG-16 and VGG-19 networks. 
Table 3 outlines the con�gurations of the used VGGNets in this work.

In the VGG network architectures, the input to the ConvNets is a �xed-size 256 × 256 thoracic image that 
passes through a stack of convolutional (conv.) layers with 3 × 3 �lters used. �e convolution stride is �xed to 1 
pixel while the padding is 1 pixel for 3 × 3 conv. layers. Spatial pooling uses �ve max-pooling layers over a 2 × 2 
pixel window with a stride of 2. Some conv. Layers are then followed. All hidden layers use the ReLU recti�cation 
non-linearity (except for the SPECS V7). �e ReLU function is de�ned in Eq. (2).

A stack of conv. layers is followed by the three Fully-Connected (FC) layers: the �rst two have 4096 chan-
nels each, the third performs 2-way metastasis classi�cation and thus contains 2 channels (one for each class). 
�e �nal layer is the so�-max layer. �e con�guration of the fully connected layers is the same in all networks.

�e L2 regularization is introduced in VGG-7 to reduce over�tting, which is de�ned as follows.

(2)ReLU (x) =

{

x, if x ≥ 0

0, if x < 0

Table 4.  ConvNet con�guration of DenseNet.

SPECS D121

121 weight layers

input (256 × 256 thoracic image)

7 × 7 conv.

3 × 3 Max pooling

Dense Block (1)

[

1 × 1 conv.

3 × 3 conv.

]

× 6

1 × 1 conv.

2 × 2 Average pooling

Dense Block (2)

[

1 × 1 conv.

3 × 3 conv.

]

× 12

1 × 1 conv.

2 × 2 Average pooling

Dense Block (3)

[

1 × 1 conv.

3 × 3 conv.

]

× 24

1 × 1 conv.

2 × 2 Average pooling

Dense Block (4)

[

1 × 1 conv.

3 × 3 conv.

]

× 16

7 × 7 Global average pooling

FC-2

So�-max

Figure 7.  �e structure of dense block in DenseNet-121 network.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4223  | https://doi.org/10.1038/s41598-021-83083-6

www.nature.com/scientificreports/

where e is the training error if regularization is not used in the training process, and λ is the regularization 
parameter.

ResNet based classi�er. �e  ResNet27 was proposed to deal with the poor generalization problem in a deeper 
network by introducing residual modules into the network. Speci�cally, ResNet-34 is chosen as the basis to 
develop our classi�er, in which each residual module consists of two conv. layers and one residual connection 
(see Fig. 6). A total of sixteen residua modules (3, 4, 6, 3) are contained in our ResNet-34 based classi�er.

In the network, a stack of conv. layers with 3 × 3 �lters are used, followed by an FC layer. Spatial pooling is 
carried out by one max-pooling layer over a 3 × 3 pixel window with stride 2 and an average pooling over a 2 × 2 
pixel window with stride 1. �e classi�er built based on RestNet-34 is named as SPECS R34 in this paper.

DenseNet based classi�er. �e Dense Convolutional Network (DenseNet) proposed by Huang et al.28 di�ers 
from the ResNet by concatenating rather than adding features to reduce the computational burden. DenseNet 
has the potential to alleviate the vanishing gradient problem, strengthen feature propagation and encourage 
feature reuse.

Table 4 provides the ConvNet con�guration of DenseNet, in which the input to the ConvNet is a thoracic 
image with the �xed-size of 256 × 256 that will be passed through a stack of conv. layers and four dense blocks. 
Spatial pooling is carried out by a max-pooling layer, three average pooling layers and a global average pooling 
(GAP) layer. All hidden layers are equipped with the ReLU recti�cation non-linearity. �e FC layer has 2 chan-
nels each (one for each class, i.e., normal and metastasis). �e �nal layer is the so�max function.

Each layer within each dense block denoted by  Xi (see Fig. 7) is connected to each of other layers in a feed-
forward way. �e feature maps of all preceding layers in each layer, together with its own feature-maps, are 
used as inputs into all subsequent layers.  Hi is a combination of non-linear transformation including a batch 
normalization (BN), a ReLU and a pooling. A transition layer consisting of a 1 × 1 conv. layer and a 2 × 2 average 
pooling layer is used to connect two adjacent dense blocks. �e classi�er built based on DenseNet-121 is named 
as SPECS D121 in this paper.

In summary, we develop seven di�erent deep classi�ers, i.e., SPECS V7, SPECS V16, SPECS V19, SPECS 
V21, SPECS V24, SPECS R34 and SPECS D121. For each of the de�ned classi�ers, the parameters in the whole 
network are randomly initialized using a normal Gaussian distribution to increase the network robustness. All 
these classi�ers will be experimentally evaluated by using real-world thoracic images in the following section.

Results
In this section, we report the empirical evaluation of the proposed deep classi�ers against real-world thoracic 
images from three di�erent datasets, i.e., D1–D3.

Experimental setup. �e evaluation metrics are accuracy, precision, recall, F-1 score, speci�city and AUC 
(Area Under ROC Curve). A given image is classi�ed into one of the following four categories:

• True Positive (TP), correctly predicts an abnormal image as positive;
• False Positive (FP), incorrectly predicts a normal image as positive;
• False Negative (FN), incorrectly predicts an abnormal image as normal; and
• True Negative (TN), correctly predicts a normal image as normal.

Accordingly, we de�ne accuracy (Acc), precision (Prec), recall (Rec), speci�city (Spe), and F-1 score in Eqs. 
(4)–(8).

(3)
L = e + �

∑

j

w2

j

(4)Acc =
TP + TN

TP + TN + FP + FN

(5)Prec =
TP

TP + FP

Table 5.  Parameters setting of the developed deep classi�ers.

Parameter Value

Learning rate 0.001

Optimizer Batch gradient descent (BGD)

Batch size 32

Epoch 500
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(6)Rec =
TP

TP + FN

(7)Spe =
TN

TN + FP

(8)F − 1 = 2 ×
Prec × Rec

Prec + Rec

Figure 8.  �e accuracy curves obtained by training classi�ers on training subsets in di�erent datasets. (a) 
Dataset D1; (b) Dataset D2; and (c) Dataset D3.
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Desirably, a classi�er should have both a high true positive rate (TPR = Rec) and a low false-positive rate (FPR) 
at the same time. �e ROC curve plots the true positive rate (y-axis) against the false positive rate (x-axis). �e 
AUC value is de�ned as the area under the ROC curve. As a statistical explanation, an AUC score is equal to 
the probability that a randomly chosen positive image is ranked higher than a randomly chosen negative image. 
�us, the closer to 1 the AUC value is, the higher performance the classi�er performs. �e false-positive rate 
(FPR) is de�ned in Eq. (9).

Each dataset (i.e., D1, D2, and D3) is randomly divided into two parts, i.e., training subset and test subset. 
�e ratio of the training subset and the test subset is 7:3. �e samples in the training subsets are used to train 
the classi�ers while the samples in the test subsets are used to test the classi�ers. A trained classi�er was run 10 
times on the test subset in order to reduce the e�ects of randomness. For each of the de�ned metrics above, the 
�nal output of a classi�er is the average of these 10 results. �e experimental results reported in the forthcoming 
section are the averaged ones unless otherwise speci�ed.

�e parameters settings are reported in Table 5.
�e experiments are run in Tensor�ow 2.0 on an Intel Core i7-9700 PC with 32 GB RAM running Windows 

10.

Experimental results. In the experiments, we examine the performance of deep classi�ers on three dif-
ferent datasets, i.e., the original dataset D1, the augmented dataset with normalization D2, and the augmented 
dataset without normalization D3.

(9)FPR =
FP

FP + TN
=

TN

TN + FP

Table 6.  Experimental results on evaluation metrics for test samples in dataset D1.

Classi�er Acc Prec Rec Spe F-1 score

SPECS V7 0.7928 0.6875 0.9361 0.6875 0.7928

SPECS V16 0.8288 0.9667 0.6170 0.9843 0.7532

SPECS V19 0.8829 0.8542 0.8723 0.8906 0.8632

SPECS V21 0.9190 0.9750 0.8298 0.9844 0.8966

SPECS V24 0.7387 0.6731 0.7447 0.7343 0.7070

SPECS R34 0.8198 0.8462 0.7021 0.9063 0.7674

SPECS D121 0.8018 0.8209 0.6809 0.8906 0.7442

Table 7.  Experimental results on evaluation metrics for test samples in dataset D2.

Classi�er Acc Prec Rec Spe F-1 score

SPECS V7 0.8508 0.9020 0.7817 0.9176 0.8376

SPECS V16 0.8605 0.8799 0.8300 0.8901 0.8542

SPECS V19 0.8410 0.8329 0.8470 0.8352 0.8399

SPECS V21 0.8800 0.9495 0.7989 0.9588 0.8677

SPECS V24 0.8397 0.9075 0.7507 0.9258 0.8217

SPECS R34 0.8787 0.9030 0.8442 0.9121 0.8726

SPECS D121 0.9317 0.9634 0.8952 0.9670 0.9280

Table 8.  Experimental results on evaluation metrics for test samples in dataset D3.

Classi�er Acc Prec Rec Spe F-1 score

SPECS V7 0.8059 0.9240 0.7932 0.9366 0.8536

SPECS V16 0.9679 0.9824 0.9518 0.9835 0.9669

SPECS V19 0.9791 0.9829 0.9745 0.9835 0.9787

SPECS V21 0.9807 0.9775 0.9830 0.9780 0.9802

SPECS V24 0.9553 0.9848 0.2350 0.9862 0.5320

SPECS R34 0.8842 0.9856 0.7762 0.9890 0.8685

SPECS D121 0.7824 0.9900 0.5637 0.9945 0.7184
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On the accuracy metric, Fig. 8 depicts the training processes of our seven di�erent classi�ers over the training 
subsets in D1, D2, and D3, respectively.

Figure 9.  �e ROC curves of the classi�ers on test samples in di�erent datasets. (a) Dataset D1; (b) Dataset D2; 
and (c) Dataset D3.

Table 9.  AUC values obtained by classi�ers on test samples in di�erent datasets.

Dataset SPECS V7 SPECS V16 SPECS V19 SPECS V21 SPECS V24 SPECS R34 SPECS D121

D1 0.9069 0.8562 0.8820 0.8688 0.7931 0.9034 0.8443

D2 0.8860 0.9255 0.9176 0.9181 0.8768 0.9324 0.9745

D3 0.9267 0.9909 0.9920 0.9933 0.9713 0.9186 0.8677
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From the accuracy curves as depicted in Fig. 8 we can see that: (1) all classi�ers obtain better performance 
on the augmented datasets than on the original one; (2) the proper depth of the network architecture is recom-
mended for high performance; and (3) data normalization has no contribution on the classi�cation performance 
for deep classi�ers on our augmented dataset. �is can be further proved by the quantitative results of evaluation 
metrics on test samples in Tables 6, 7, 8.

�e self-de�ned 21-layer classi�er SPECS V21 based on VGG is suitable for identifying bone metastasis with 
SPECT imaging, obtaining a value over 0.98 for all metrics (see Table 8). �e ROC curves depicted in Fig. 9 
illustrate the true positive rate and the false positive rate simultaneously. �e corresponding AUC values are 
provided in Table 9. �e self-de�ned classi�er SPECS V21 achieves the highest AUC value of 0.993.

We further examine the performance of classi�ers on di�erentiating various subcategories (i.e., the normal 
and metastasized) of thoracic images by providing the confusion matrixes of SPECS V21 on datasets D2 and D3, 
which are depicted in Fig. 10. From which we can see that a signi�cant proportion of samples of metastasized 
images were misclassi�ed as normal by SPECS V21 on the augmented dataset with normalization. On contrast, 
only 6 metastasized images and 8 normal images were misclassi�ed by the classi�er SPECS V21 on the augmented 
dataset without normalization. We can thus conclude that the size of the dataset is critical for the performance 
of deep learning-based SPECT image classi�cation.

Now, we provide a brief discussion on the misclassi�ed images by SPECS V21 provided in Fig. 11 as follows.

• Random rotation signi�cantly contributes to augmentation of the dataset while introducing errors in the 
receptive �eld (a small area of an image) between images for deep networks. �erefore, the rotation operation 
is mainly in charge of both the misclassi�ed normal and metastasized images.

• Di�erence in radiation dosage from person to person requests more personalized features to be extracted 
from a big dataset of SPECT bone images. For SPECT imaging, the absorption of radionuclide is inversely 
proportional to patient age, making metastasis images to be misclassi�ed as normal. �erefore, some post-

Figure 10.  �e confusion matrixes obtained by SPECS V21 on: (a) Dataset D2; and (b) Dataset D3.

Figure 11.  A demonstration of misclassi�ed thoracic SPECT bone images. (a) Misclassi�ed normal images as 
the metastasized; and (b) misclassi�ed metastasized images as the normal.
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processing operations should be conducted a�er automatic classi�cation, by taking the structural symmetry 
of human bones into consideration.

In conclusion, the developed deep classi�ers have successfully identi�ed the metastasized images, obtaining 
high sensitivity and speci�city simultaneously. However, the size of the dataset is crucial for training a reliable 
and accurate deep classi�er. Data augmentation contributes to extending the size of datasets but further improve-
ments would be gained through introducing, for example, the generative adversarial networks to generate those 
new but di�erent samples.

Conclusions
Targeting at the automated diagnosis of bone metastasis in SPECT nuclear medicine domain, in this work, we 
have developed several deep classi�ers based on the famous CNN models to separate the thoracic SPECT bone 
images into the categories with the automatically extracted features by deep learning models. Speci�cally, the 
original SPECT images was preprocessed by using standard image mirroring, translation, and rotation opera-
tions, enabling to generate an augmented dataset. Famous CNN models were introduced to develop deep clas-
si�ers, which could classify an image by analyzing from the low level to high level features from this image. A 
set of real-world SPECT bone images were employed to evaluate the trained classi�ers. �e experimental results 
have demonstrated that our deep classi�ers perform well on classifying thoracic SPECT bone images, with huge 
potentials to automatically diagnose bone metastasis in SPECT imaging.

Our future work is in the following directions. First, a larger number of images of real-world SPECT bone 
scans will be collected to further evaluate the proposed deep classi�ers. Second, we attempt to develop multi-
class, multi-disease classi�ers to identify lesions of various diseases with SPECT bone images. Finally, we will 
construct self-de�ned deep networks, speci�cally targeting at the automated classi�cation of SPECT bone images 
for contributing to the current research of medical image analysis.

Data availability
Due to the ethical and legal restrictions on the potential health information of patients, the data are not available 
openly. Dataset can only be accessed upon request by emailing the co-author Haijun Wang (Email: 1718315929@
qq.com) who is on behalf of the Ethics Committee of Gansu Provincial Hospital.
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