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ABSTRACT Automatic modulation classification (AMC) is an essential factor in dynamic spectrum

access to fulfill the spectrum demand of 5G wireless communications for achieving high data rate and low

latency. Many deep learning (DL)-based AMC methods have achieved improved accuracy performance

for classifying analog modulation schemes, single-carrier-based modulation schemes, and multi-carrier

signals using several DL architectures such as the convolutional neural network (CNN) and long-short term

memory (LSTM). However, most conventional DL-based AMC methods have confused the orthogonal

frequency multiplexing division (OFDM)-based signals with different OFDM useful symbol lengths. To

resolve the issue, we propose a CNN model operating on the fast Fourier transformation window banks

(FWB) to extract the useful symbol length in OFDM, which represent the identification of each OFDM-

based wireless communication technology. After extracting the OFDM useful symbol length, we propose a

DL-based AMC system combined with FWB and in-phase and quadrature phase (IQ) signals to classify the

OFDM symbol length and single-carrier modulation schemes simultaneously. Furthermore, we explore the

constraints of the FWB parameters according to the length and the FFT size of the OFDM signal to achieve

good classification accuracy through the experiment. We constructed a dataset by generating OFDM signals

of different lengths while changing the FFT size in a fixed bandwidth and by selecting only quadrature

amplitude modulation (QAM) schemes from RadioML2016.10a. Experimental results show the improved

performance of the classification accuracy by about 30% over conventional classifiers in additive white

Gaussian noise, synchronization impairments, and fading environments.

INDEX TERMS Automatic modulation classification, Cognitive radio, deep learning, modulation, neural

networks, Orthogonal frequency-division multiplexing (OFDM)

I. INTRODUCTION

T
HE fifth generation (5G) wireless communication sys-

tem is an attractive technology to achieve high per-

formance in terms of high data rate and low latency. The

efficient spectrum use needs to overcome the increased spec-

trum requirements for achieving large capacity. The dynamic

spectrum access (DSA) technology improves the spectrum

efficiency by sensing a used spectrum. Understanding the

sensing signal in the spectrum is essential to determine the

validation of the signal for the spectrum accessibility. To ad-

dress the issue, automatic modulation classification (AMC) is

a crucial factor to identify the spectrum utility by classifying

the modulation type of the signal.

The conventional statistical-based approaches for AMC

extract hand-crafted expert features such as cyclostationarity,

spectral correlation function (SCF), and higher-order statis-

tics (HOS) to classify modulation types [1]–[3]. The expert

features identify the signal type by finding repeated funda-

mental frequencies [4], [5]. Therefore, the machine learning

techniques, such as support vector machine (SVM) and k-

nearest neighbor (KNN), classify the modulation schemes us-

ing a combination of the extracted features [6]. However, the

aforementioned methods degrade the classification accuracy

due to the dynamic channel environment [7].

Recently, many deep learning (DL)-based AMC schemes

have been proposed to improve the classification accuracy

in the dynamic channel using the raw time-series in-phase

& quadrature phase (IQ) signals without hand-crafted expert

features. O’Shea et al. [8] proposed a convolutional neural

network (CNN) structure to extract features from the IQ
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signals for classifying the modulation schemes. Rajendran

et al. [9] proposed long-short term memory (LSTM)-based

AMC systems [10] to reduce the complexity. Peng et al. [11]

proposed a constellation diagram (CD) to transform a time-

series IQ signal into an image for adopting AlexNet [12] and

GoogLeNet [13] which have a powerful performance of clas-

sifying images. Zhou et al. [14] proposed slotted-CD imaging

with characterizing the time-varying channel. Furthermore,

they proposed the classifier consists of multiple CNNs in

the first part, and a bidirectional LSTM (BiLSTM) and a

deep neural network (DNN) in the other two parts, referred

to as multiple CNN based BiLSTM and DNN (MCBLDN).

Peihan et al. [15] proposed a waveform-spectrum multimodal

fusion (WSMF) method that extracts features from multiple

information using ResNet. The aforementioned DL-based

AMC systems have improved performance for classifying

between single-carrier-based modulation classification and

multi-carrier signals.

The modern advanced wireless communication technolo-

gies adopt the orthogonal frequency division multiplex-

ing (OFDM) signal transmitting information with multi-

carrier. The OFDM-based wireless communication technolo-

gies have adopted quadrature amplitude modulation (QAM)

schemes for the modulation scheme of subcarriers, and the

overlapped modulation schemes between each technology

make it difficult to distinguish each wireless communica-

tion technology. Therefore, to identify each technology, it

is necessary to use a characteristic that each technology has

a different own OFDM useful symbol length (same as the

inverse of subcarrier spacing), not the modulation scheme.

Rajendran et al. [9] have shown the limitation of DL-based

AMC confusing on the OFDM-based signals between long-

term evolution (LTE) and digital video broadcasting (DVB)

in the Electrosense dataset [16].

To resolve the issue, we propose a CNN-based AMC using

a fast Fourier transform window banks (FWB) to identify

the OFDM-based wireless communication technology with

different OFDM useful symbol lengths. Furthermore, we an-

alyze the classification performance of the proposed system

according to the OFDM useful symbol length and fast Fourier

transform (FFT) size and achieve high classification accuracy

by determining the optimal FWB parameters. Finally, we

propose a CNN model that operates on the time-domain

IQ data and FWB for classifying single carrier modula-

tion schemes and the OFDM useful symbol length at the

same time. Furthermore, we explore the proposed model

performance for various signal-to-noise ratios (SNRs) under

synchronization impairments and fading environments.

The rest of the paper is organized as follows. Section II

briefly introduces the conventional statistical and DL ap-

proaches for classifying signal modulation and identifying

OFDM parameters. Section III describes the system model.

Section IV introduces the basic DL structure with IQ or

amplitude and phase features and then proposes the FWB

schemes to extract the OFDM useful symbol length feature

on CNN. Section V overviews the single-carrier-based mod-

ulation dataset and the OFDM dataset for training and testing

the networks. Section VI explains the classification results

and discusses the limitation of the proposed model. Section

VII presents conclusions and future work.

II. RELATED WORK

Conventional statistical AMC techniques are largely divided

into likelihood-based (LB) and feature-based (FB) tech-

niques. The LB scheme classifies a transmitted modulation

scheme by calculating a coincidence probability according

to each modulation scheme. Jefferson et al. [17] proposed

a system that determines the modulation scheme with the

highest cost by calculating the likelihood function of all

modulation schemes in the candidate group and the received

signal. The FB technique extracts higher-order cumulants

(HOC) and analyzed the features for each modulation scheme

[5]. As a decision method, the modulation method is pre-

dicted by applying machine learning techniques such as SVM

[6]. Wenwu et al. [18] improves classification performance

by constructing a deep belief neural network (DBN) based

on a new feature parameter as the sixth-order cumulants

of the extracted signal. Kim et al. [19] proposed a DBN-

based AMC system with various HOCs features to improve

classification performance and Lee et al. [20] analyzed the

classification performance using the DBN-AMC system in a

dynamic channel environment by selecting features robust to

a fading environment. However, the aforementioned methods

deteriorate the performance in complex channel environ-

ments [21].

The conventional technique for OFDM subcarrier spacing

estimation uses autocorrelation with the cyclic prefix (CP) to

extract the useful symbol and CP lengths. Peng et al. [22]

estimate the OFDM useful symbol length by calculating the

likelihood between the CP and the valid symbol. Punchihewa

et al. [23] estimate the OFDM useful symbol period, symbol

period, guard interval, and carrier frequency offset using

the second order cyclostationary test. Bouzegzi et al. [24]

extract the subcarrier spacing by using the cyclostationary

characteristic. The CP length was estimated by using the cor-

relation between the CP and the useful OFDM data symbol,

but the performance deteriorates due to the distortion of the

received signal by the fading channel and synchronization

between the local oscillator (LO) of the transceiver [25].

To resolve the issue, many researches have conducted using

cyclostationarity to estimate the channel response [26] and

synchronization offset [27]–[29].

To solve the performance degradation due to channel

characteristics and synchronization, O’Shea [30] proposed

a method of classifying modulation schemes by extracting

features through CNN using time-domain IQ signals. Fur-

thermore, West and O’Shea [8] proposed VGG [31]-based

one-dimensional CNN and ResNet to achieve remarkably im-

proved performance. Rajendran et al. [9] proposed an AMC

system using LSTM from CNN-LSTM [10] with the inputs

of amplitude and phase (AP) instead of IQ signal, which

overcomes the shortcoming of the CNN-LSTM with a large
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amount of computation for applying low-end sensors. The

LSTM-based AMC improves the accuracy performance even

in the unmatched sampling rate environment. Hu et al. [21]

proposed a robust modulation classifier in an uncertain noise

channel environment by adopting the attention mechanism to

the output of an LSTM layer. To compensate for the fading

channel characteristics, Teng et al. [32] proposed a CNN

technique to estimate the channel response for improving

modulation classification using the accumulated amplitude

and phase data.

Meng et al. [33] proposed an end-to-end trainable AMC

system based on CNN by approximate the maximum likeli-

hood (ML)-AMC with minimal performance loss and a two-

step training method using 9-HOC features for fine-tuning.

Peihan et al. [15] proposed a DL-based AMC system that

extracts features by utilizing various input information such

as IQ, AP, and FFT magnitude into ResNet, and classified

modulation methods through DenseNet. Yashashwi et al.

[34] proposed a correction module (CM)-CNN system that

applies a correction module with CNN for estimating and

compensating the synchronization offset and improved per-

formance in an inconsistent synchronization environment.

Shiyao et al. [35] proposed a generative adversarial network

(GAN)-based AMC structure on improving the classification

accuracy with data augmentation. Kulin et al. [36] proposed

an end-to-end DL-based AMC system from data collection

for classification. They analyzed the classification accuracy

of the CNN-based AMC according to input information such

as IQ, AP, and FFT magnitude. Zhou et al. [37] investigated

and organized DL-based AMC techniques according to the

characteristics of each system. To verify the classification

performance of CNN in real environments, they demon-

strated it using USRP and Pluto [38].

Peng et al. [11] proposed a method of transforming signals

into a CD image to apply VGG, AlexNet, and GoogLeNet,

which are excellent for image classification. Zhou et al.

[14] improved the classification accuracy of AlexNet and

GoogLeNet by adopting the proposed slotted-CD imaging

technique to adapt to the time-varying channel characteris-

tics. Wang et al. [39] proposed a sequential double CNN

structure with an additional CD-input CNN structure to im-

prove the classification performance of the highly confusing

QAM types using IQ signals.

To classify multi-carrier signals and single-carrier signals,

Mendis et al. [40] proposed a DBN system with the spectral

correlation function (SCF) characteristics. Cheng et al. [41]

improved the spectrum sensing performance of OFDM sig-

nals by inputting the time and frequency domain signals to

the stacked autoencoder (SAE)-based DNN structure. Hong

et al. [42] proposed a system for classifying modulation

schemes transmitted by subcarriers of OFDM signals by

applying parametric Relu (pReLU) to LeNet [30]. However,

the DL-AMC schemes did not consider the OFDM-based

signal with different lengths such as DVB and LTE, which

are confused as shown in the Electrosense dataset [9].

III. SYSTEM MODEL

A wireless communication system transmits a signal to a

receiver through a wireless channel environment as shown

in Fig. 1. This section describes the transmitter, the radio

channel model, and the receiver. And we overview the dif-

ferences in the process of the single carrier modulator and

OFDM signals in the transceiver.

A. TRANSMITTER

A transmitter transforms bit information streams into data

symbols representing the modulation constellation point

composed of IQ samples in the modulator processor. The

data symbols transmit with single-carrier in time-domain

after filtering with pulse shaping. The OFDM signal converts

the symbols from time-domain to frequency-domain using

the serial-to-parallel (S/P) converter. An inverse fast Fourier

transform (IFFT) digital signal processing performs on the

frequency-domain subcarriers to generate the OFDM symbol

in the time domain. Then, the guard interval is inserted

in front of each OFDM symbol to avoid inter-symbol in-

terference (ISI) caused by multipath in the wireless radio

channel. The cyclic prefix (CP), which extends the OFDM

symbol cyclically to eliminate inter-carrier interference (ICI),

is essentially an identical copy of the last portion of the

OFDM symbol appended in the guard interval. In this system

model, the transmitted signal s(t) is as follows:

s(t) =
√

Es

∑

n

K−1
∑

k=0

xn,ke
j2πk(t−DTc−nTs)

KTc p(t− nTs)

(1)

where the factor
√
Es is the aim of normalizing the signal

power to make an average power spectral density (PSD) con-

stantly. The factor
√
Es is determined by the modulation or-

der L of QAM and the FFT size K as Es = 1/(KEQAM ) =
1/(K2E{Re|xL−QAM |2}) = 3/(2K(L− 1)). xn,k is the

complex symbol sequence at the kth subcarrier in nth OFDM

symbol. K is the number of subcarriers and 1/Tc is the

transmission sampling rate fs. The OFDM useful symbol

length Tu is equal to KTc and the subcarrier spacing is equal

to 1/KTc. The length of the guard interval or cyclic prefix is

set to DTc. The symbol duration Ts is Ts = (K + D)Tc in

case of OFDM and is Ts = Tc in case of single carrier. The

pulse-shaping filter p(t) is the root raised cosine (RRC) pulse

with the roll-off factor α assuming unitary energy in case of

the single carrier and is rectangular pulse shape in case of the

OFDM.

The OFDM-based wireless communication technology

has its own OFDM useful symbol length for each technology:

e.g., 66.7 µs for LTE, 448 µs for DVB, 3.2 µs for WLAN,

12.8 µs for WiFi6, 66.67 µs, 33.33 µs, 16.67 µs, or 8.33

µs for 5G. To obtain a similar situation, assuming the same

bandwidth for transmitting all signals, we generate OFDM

signals with different lengths using different FFT sizes.
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FIGURE 1. The system for dataset signal generation of automatic modulation classification system.

FIGURE 2. The symbol timing offset in receiver system for demodulating the

transmitted OFDM signal.

B. WIRELESS CHANNEL

A radio wave signal reaches a receiver by two or more

paths in a wireless communication system due to multipath

which is the propagation phenomenon caused by reflection

due to buildings or terrestrial objects. The multipath inter-

ference causes fading phenomenon occurred by destructive

interference and phase distortion of the received signal. This

multipath is modeled by a finite impulse response (FIR) filter

as follows:

h(t) =
l

∑

i=0

βiδ(t− τi) (2)

where h(t) is the channel impulse response. βi and τi are the

gain and the delay time of the ith path respectively. l is the

total number of multipath.

C. RECEIVER

The receiver transforms the received signal from the received

antenna to a base-band signal by multiplying the signal’s

center frequency. At this time, the transformed signal is

distorted by a frequency offset caused by a difference be-

tween the local oscillator (LO) of the transmitter and the

receiver. In the sampling process, timing drift occurs by the

mismatched sampling frequency of the LO in the analog-to-

digital converter (ADC). The received signal r(t) is modeled

as

r(t) = {s(t) ∗ h(t)}ej2π∆fct+ϕ(t) + n(t) (3)

where n(t) is the additive Gaussian white noise (AWGN)

which is caused by the electronic components in the receiver.

∆fc is the center frequency offset between transmitter and

receiver LO, and ϕ(t) is the phase offset which is caused by

the timing drift ∆fs of sampling LO and mismatched symbol

timing synchronization.

In order to demodulate the received signal, the receiver

needs to know the modulation method of the transmission

symbol to map the received symbol information to bit infor-

mation. For this reason, the receiver needs a module that clas-

sifies the transmitted modulation scheme. The FFT processor

is required since the OFDM signal transmits symbols in

the frequency domain, unlike the single-carrier-based signal

transmitting symbols in the time domain. At this time, the

guard interval of the OFDM signal should be excluded to

acquire the accurate constellation of the subcarrier. However,

the FFT processor of the receiver occurs distortion of the

received signal since the receiver does not know the guard

interval and the useful data symbol lengths representing the

start point of the useful data symbols as shown in Fig. 2. In

addition, the magnitude of FFT output is increased by the

situation in which several OFDM symbols enter one FFT

input due to the mismatched length of the FFT window. Even

though it is difficult to distinguish the OFDM useful symbol

length in those effects, we try to classify the transmitted

OFDM useful symbol length using deep learning without the

conventional statistical process.

IV. SIGNAL CLASSIFICATION MODELS

The receiver classifies the modulation method of the trans-

mission signal based on the received signal. In this section,

we overview the characteristics of the signals used in the con-

ventional classifier. Furthermore, we propose a CNN model

operating on FWB to extract features of different subcarrier

spacing.

A. BASELINE MODEL

The conventional DL-base AMC methods classify the mod-

ulation schemes as the single-carrier signal and multi-carrier

signals as shown in Fig. 5. However, blind OFDM parameter

estimation is required to identify the OFDM-based wireless

communication technologies. Our statistical baseline model

is based on the cyclostationarity test to estimate the OFDM

useful symbol length [23]. The OFDM signal has second-

order cyclostationarity at zero cyclic frequency (CF) and at

a delay of the OFDM useful symbol length. The magnitude

of cyclic autocorrelation (CAF) is calculated according to the

candidate delay at zero CF (α = 0) as follows:

4 VOLUME 4, 2016
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FIGURE 3. The proposed FFT Window bank (FWB) system for classifying different OFDM-based wireless communication systems.

FIGURE 4. The proposed multiple input IQ and FFT Window bank (FWB) system for classifying single carrier modulation and OFDM-based wireless

communication systems.

R̂(α; τ) =
1

Nobs

Nobs−1
∑

n=0

r(n)r∗(n+ τ)e−j2παn, (4)

where R̂(α; τ) is CAF at CF α and at delay τ . Nobs is the

observation time for calculating CAF. The estimated delay

τm is attained by finding the local maximum of the CAF

magnitude. Then, cyclostionarity test [43] is processed to

check that the set of CF contains the zero (α = 0) at delay

τm. Therefore, the OFDM useful symbol length is estimated

as N̂use = τm. Rajendran [9] exploited the confusing results

between LTE and DVB. We analogize the limitation of the

conventional DL-base model to identify the OFDM-based

technologies because of the OFDM parameter. To resolve

the issue, we extend the process of the DL-base model for

estimating the OFDM parameter.

B. DL-BASED BASELINE MODEL

Our baseline method leverages the CNN with IQ samples

and the LSTM with the time-domain AP. The 1-dimensional

transformed VGG-based CNN 8 tap model presented in [8],

[38] is used as the baseline model for comparisons, and the

other baseline model is the 3-layer LSTM with 128 cells [9].

FIGURE 5. The baseline model for classifying the OFDM useful symbol

length.

The input vector is L2 normalized at the amplitude vector

and normalized in radians between -1 and 1 at the phase

vector. The final layer of the baseline model is a softmax layer

with fully connected layers (FC) in classifiers which maps the

extracted features to one of the 8 output classes representing

the single-carrier-based QAM and the OFDM useful symbol

length.

C. PROPOSED FWB-CNN MODEL

The proposed FFT window bank (FWB)-based CNN model

is used for classifying the single-carrier-based modulation

and OFDM useful symbol length as shown in Fig. 3. Each
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TABLE 1. CNN Network Layout with FWB Outputs (K is the FFT size of

FWB, and M is the number of FFT processors in FWB)

ine Layer Output dimensions Parameter Numbers
ine Input 2 × K × M -
Conv 16 × K × M M × (1× 3× 2 + 1)× 16
Max Pool 16 × K/2 × M -
Conv 24 × K/2 × M M × (1× 3× 16 + 1)× 24
Max Pool 24 × K/4 × M -
Conv 32 × K/4 × M M × (1× 3× 24 + 1)× 32
Max Pool 32 × K/8 × M -
Conv 48 × K/8 × M M × (1× 3× 32 + 1)× 48
Max Pool 48 × K/16 × M -
Conv 64 × K/16 × M M × (1× 3× 48 + 1)× 64
Max Pool 64 × K/32 × M -
Conv 96 × K/32 × M M × (1× 3× 64 + 1)× 96
Avg. Pool 96 × 1×M -
FC/Relu 1024 (M × 96 + 1)× 1024
FC/Relu 1024 1, 049, 600
FC/Softmax 8 8200
ine

FFT processor in the FWB processes the raw IQ samples

with the input length Ni (i = 1, · · · ,M) and a fixed FFT

size K. The FFT processor requires same input and output

sizes, so the input is padded with zero-valued samples when

the input length is less than the FFT size. In the opposite side,

the input should be truncated by the difference between the

input length and FFT size. The output of ith FWB, FWBK
Ni

,

is as follows:

FWBK
Ni

= {FK
Ni

(0), · · · , FK
Ni

(K − 1)}, (1 ≤ i ≤ M)
(5)

where M is the number of FWB with the FFT size K, and

the output is L2 normalized to input to each CNN block. The

complex sample FK
Ni

(k) of the kth subcarrier with FFT size

K using FFT window length Ni is defined as follows:

FK
Ni

(k) =

Ni−1
∑

n=0

r(n)e−j2πnk/K (6)

where Ni represents the OFDM useful symbol length based

on the transmitted sample rate before up-sampling. For in-

stance, if the expected OFDM useful symbol length Ni is

64 and samples per symbol, Ov , is 8, the number of the

input samples of the ith FFT processor is Ni extracted by

the sample interval Ov from the received sample length with

Ni ×Ov .

Each CNN block operation on each FFT output in FWB is

constructed as shown in Table 1. The FWB output utilizes

a single 1-D CNN to extract features, then a concatenate

function is used to generate combined features before con-

necting it to the FC layer. The output layer adopts the ReLU

function of two FC layers and the SoftMax function to map

the output of the FC layers into the probabilities of the each

class. Finally, the classifier predicts the OFDM useful symbol

length of the received signal by selecting the class with the

highest probability among the outputs of the FC/SoftMax

layer.

D. PROPOSED CNN MODEL USING BOTH IQ AND FWB

The proposed FWB-CNN model can learn features for dis-

criminating the OFDM useful symbol lengths of the received

signal, and thus achieve remarkable classification accuracy

performance. Furthermore, we adopt IQ signal and FWB

simultaneously as input by adapting the principles of the

WSMF [15] model using multimodality to improve the clas-

sification accuracy as shown in Fig. 4. The IQ sample length

is the same as the FFT size of the FWB to balance the

amounts of features for discriminating the single-carrier-

modulation types and OFDM useful symbol lengths. By this

strategy, the proposed IQ-FWB model achieves a remarkable

accuracy performance to classify single-carrier-based modu-

lation and OFDM useful symbol length at the same time.

V. DATASET GENERATION

In this section, we construct the dataset composed of an

single-carrier-based modulation dataset selected from Ra-

dioML2016.10a [44] and generate an OFDM-based dataset

and describe the considered wireless channel environment.

We describe the organization of the trained and tested

datasets.

A. MODIFIED RADIOML2016.10A

Based on RadioML2016.10a, which generated the single-

carrier-based modulation dataset considered in the real envi-

ronments, we selected only the modulation method used for

the subcarrier in the OFDM-based wireless communication

system and thus configured single-carrier modulation dataset

as QPSK, 16QAM, 32QAM, and 64QAM. The modified

dataset consists of 8 samples/symbol (sps), and the input

sample length is configured by setting the FFT size of the

FWB in the proposed system.

B. OFDM SIGNAL DATASET GENERATION WITH

DIFFERENT FFT SIZE

Each wireless communication technology has a fixed OFDM

useful symbol length by utilizing different FFT sizes accord-

ing to the bandwidth. Assuming the same the bandwidth of

all transmitted signals in this experiment, we determine the

OFDM useful symbol length according to the different FFT

size as 64, 128, 256, and 512. The CP ratio is fixed with 1/4.

In addition, the modulation scheme used for each subcarrier

of one OFDM symbol is the same, and all OFDM symbols

in one frame use the same modulation scheme. Without loss

of generality, the number of frames configured in the dataset

consists of the same ratio of each modulation method differs

with QPSK, 16QAM, 32QAM, and 64QAM as the frame

index is changed.

C. DATASET CONSTRUCTION

The dataset size used to train and test the DL structure is con-

figured as Table 2. The classification modulation scheme is

composed of single-carrier-based QPSK, 16QAM, 32QAM,

and 64QAM, and the modulation classification according to

the OFDM useful symbol length is composed of 64-OFDM,
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TABLE 2. Dataset Construction using Modified RadioML2016.10A & OFDM

Dataset Parameters

ine Modulation
QPSK, 16QAM, 32QAM, 64QAM,
64-OFDM, 128-OFDM, 256-
OFDM, 512-OFDM

ine Samples per Symbol 8
ine IQ Sample Length K (FFT size of the FWB)

ine SNR Range
-10dB to +10dB (2dB step), |20|dB
to |30|dB (10dB step)

ine Number of training samples 51200 frames
ine Number of test samples 51200 frames
ine

128-OFDM, 256-OFDM, and 512-OFDM according to the

FFT size. The IQ input sample length is equal to the FFT

size of the FFT window bank, representing the output size

of each FFT processor in FWB used as input of CNN. The

sample rate is fixed at fs, and the bandwidth is also fixed.

VI. RESULTS AND DISCUSSION

In this section, we analyze the performance of our proposed

model with the parameters of FWB in AWGN, the Rayleigh

fading channel, and the deviation of the LO. We discuss the

limitation of the proposed model and visualize the activated

neurons in the CNN according to the predicted class. In

this experiment, we adopt stochastic gradient descent with

momentum (SGDM) to optimize the neural network, the

initial learning rate is set to 0.01, and the learning rate is

reduced to 1/10 of the previous learning rate after training

ten epochs. The mini-batch size is 256 in each iteration, and

the proposed IQ-FWB-based CNN network is trained for 100

epochs which take around two hours of training time on an

x64 i9-9900K with an Nvidia Geforce Titan Xp graphics

card.

A. CLASSIFICATION RESULTS UNDER AWGN

ENVIRONMENTS

We investigate the performance of conventional and pro-

posed AMC systems under AWGN environments where only

symbol timing offset exists without considering fading and

frequency offset. Based on the results under the AWGN

without wireless channel effects, we determine the available

features to classify the single-carrier-based modulation and

OFDM useful symbol length. In Fig. 6, we compare the

performance of the baseline model [23], the IQ-CNN [8]

with 1024 input samples, the AP-LSTM with 3 layers and

128 cells [9], proposed FWB-CNN, and IQ-FWB-CNN. The

total performance of the proposed IQ-FWB-CNN is the best

among the compared systems, achieving 95.8% accuracy

at high SNR ranges except the baseline model with 97.6%

accuracy. The baseline model requires longer observation

period than DL-model to achieve satisfactory performance.

The conventional AMC systems achieve 62.8% using IQ-

CNN and 61.8% using AP-LSTM. The proposed FWB-CNN

achieves 58.5%, which is the lowest accuracy among the

compared systems.

In order to examine the classification performance in de-

FIGURE 6. The accuracy performance results for classifying

single-carrier-based modulation and OFDM useful symbol length under AWGN

channel with baseline model, conventional DL model, proposed FWB-CNN,

and IQ-FWB-CNN model.

FIGURE 7. The confusion matrix for classifying single-carrier-based

modulation and OFDM useful symbol length in conventional DL structure

under AWGN channel at an SNR of 20 dB.

tail, we calculated the confusion matrix of each AMC system

under the AWGN channel at an SNR of 20 dB as shown in

Figs. 7 and 8. In Fig. 7, the conventional AMC systems do

not cause confusion between single-carrier and multi-carrier,

and the performance of classifying single-carrier modula-

tion is very high with 99.8%. However, the performance

of classifying signals with different OFDM useful symbol

lengths is very low with 24.1%, representing that the system

is confusing to discriminate. On the other hand, in Fig. 8, the

proposed FWB-CNN system achieves an accuracy of 98.2%

for classifying different OFDM useful symbol lengths, but

the accuracy of single carrier-based modulation classification

is very low with 18.2%. Therefore, the proposed IQ-FWB-

CNN achieves the highest accuracy performance compared

with IQ, AP, and FWB feature-based DL structure for classi-

fying single-carrier-based modulation and the OFDM useful
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FIGURE 8. The confusion matrix for classifying single-carrier-based

modulation and OFDM useful symbol length in proposed FWB-CNN structure

composed of 64, 128, 256, 512 length with 1024 FFT size under AWGN

channel at an SNR of 20 dB.

FIGURE 9. The confusion matrix for classifying SC modulation and OFDM

useful symbol length in proposed IQ-FWB-CNN structure composed of 64,

128, 256, 512 length with 1024 FFT size under AWGN channel at an SNR of

20 dB.

symbol length at the same time as shown in Fig. 9. However,

at low SNR ranges, the classification accuracy of IQ-CNN

is higher than that of IQ-FWB-CNN. The IQ-FWB-CNN

utilizes both IQ and the FWB features at the same time. Since

the accuracy of FWB-CNN is very low below SNR -6 dB, the

accuracy of IQ-FWB-CNN is lower than the IQ-CNN.

The proposed IQ-FWB-CNN method jointly and simulta-

neously classifies the modulation schemes and the OFDM

useful symbol length by adding the FWB feature to the

conventional IQ-CNN. The conventional IQ-CNN confused

to classify 64QAM and OFDM signal as shown in Fig. 7,

but the additional FWB features of the OFDM useful symbol

length reduce the false classification case as shown in Fig.

9. Therefore, the classification of the OFDM useful symbol

FIGURE 10. The accuracy performance for classifying single-carrier-based

modulation and OFDM useful symbol length of the proposed IQ-FWB-CNN

structure as the FWB maximum FFT window length and the number of FWB

increase.

length helps with the classification of modulation schemes.

The conventional AMC methods using FFT magnitude

achieved satisfactory performance on modulation classifica-

tion [15]. However, the proposed FWB-based model aims to

extract features of OFDM useful symbol length. Thus, the

extraction of input on FFT processors is different from the

conventional methods. The conventional input follows the

sampling rate of the receiver, but the FWB pre-processor

extracts the input samples of FFT processors by re-sampling

the received sample with the expected inverse FFT (IFFT)

size over the expected OFDM useful symbol length. Thus,

the output of the FWB results in the loss of information in the

case of single-carrier signals, resulting in poor classification

performance compared to the conventional AMC methods

using the FFT magnitude.

To acquire the classification accuracy as shown in Fig.

6, the FWB of the proposed model consists of four FFT

processors with an FFT size of 1024 and FFT window lengths

of 64, 128, 256, and 512, respectively. The FFT window bank

is constructed based on the OFDM useful symbol length of

the dataset, and thus we expect to acquire the highest perfor-

mance compared to other methods. However, we cannot de-

termine the OFDM useful symbol length in real environments

since the receiver does not know the transmitted OFDM

useful symbol length. To address the issue, we try to find

the constraints of the FWB parameter to obtain reasonable

classification accuracy in the following subsection.

B. PERFORMANCE CONSTRAINTS OF FWB

PARAMETERS

We analyze the classification accuracy performance accord-

ing to the number and window length of FFT processors

in FWB using a fixed FFT size of 1024 as shown in Fig.

10. CNN NM shown in Fig. 10 represents the classification

accuracy of a CNN model using FWB consisting of M FFT

8 VOLUME 4, 2016
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(a) The FWB parameter N = 64 and M = 1

(b) The FWB parameter N = 64 and M = 2 (c) The FWB parameter N = 64 and M = 3 (d) The FWB parameter N = 64 and M = 4

(e) The FWB parameter N = 128 and M = 1 (f) The FWB parameter N = 256 and M = 1 (g) The FWB parameter N = 512 and M = 1

FIGURE 11. The confusion matrix of the proposed IQ-FWB-CNN to find the effects of the FWB maximum FFT length for classifying different OFDM useful symbol

lengths under AWGN channel with an SNR of 20 dB.

processors with an FFT window length of Ni = N × 2i−1

(1 ≤ i ≤ M). Based on the result, the proposed FWB-

CNN confused the OFDM signals with the different lengths

when the maximum FFT window length (NM ) in FWB is

shorter than the maximum OFDM useful symbol length of

the dataset. In the opposite case, the performance of the

proposed system achieves the highest accuracy performance

for classifying the OFDM useful symbol length.

In Fig. 11, the confusion matrix shows the classification

performance of the proposed IQ-FWB-CNN for different

OFDM useful symbol lengths according to the maximum

FFT window length in FWB under the AWGN channel with

an SNR of 20 dB. The shortest FFT window length 64 of

the FWB classifies only the OFDM signal with the FFT size

64 (64-OFDM) among the transmitted OFDM signal with

different lengths as shown in Fig. 11(a). From Figs. 11(b)

to 11(d), the classification results shows that the classified

OFDM useful symbol length increases as larger the number

of FFT processors in FWB using the starting FFT window

length (N1) of 64. To find the effect of the only maximum

FFT window length, we obtain the confusion matrix as the

starting FFT window length increases as shown in from Figs.

11(e) to 11(g). Based on the results, we should select the

maximum FFT window length in FWB longer than the clas-

sifying OFDM useful symbol length to achieve reasonable

classification accuracy. In Fig. 10, the classification accuracy

performance improves as the larger the number of FWB even

though the maximum FFT window length is the same.

We also analyzed the classification accuracy performance

to explore the effect of FFT size, the other parameter of FWB

as shown in Fig. 12. The classification performance achieves

over 90% accuracy when the FFT size of the FWB is larger
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FIGURE 12. The classification accuracy performance of the proposed

IQ-FWB-CNN structure as the FFT size increases under AWGN channel.

FIGURE 13. The confusion matrix of the proposed IQ-FWB-CNN structure

with the FFT size 4096 under AWGN channel with an SNR of 20 dB.

than that of the transmitted OFDM signal, which is similar to

the trend obtained from the maximum FFT window length.

Based on the results, the proposed IQ-FWB-CNN model

achieves the higher performance of 98.5% than the baseline

model of 97.6% at high SNR ranges when the FFT size of

the FWB is 4096 as shown in Fig. 13, and thus we fixed

the FFT size of the proposed model at 4096 in the following

experiments.

C. CLASSIFICATION UNDER FADING CHANNEL WITH

SYNCHRONIZATION OFFSET

In real environments, the LO of transmitter and receiver is

compensated by estimating the synchronization offset, which

distorts the received signal. To analyze the classification

performance of the proposed system according to synchro-

nization offset effects as shown in Fig. 14, we adopt the

frequency offset variance σs of carrier and sampling in two

FIGURE 14. The classification accuracy performance of the proposed

FWB-CNN and IQ-FWB-CNN under AWGN channel with synchronization

offset σs = 0.0001 and σs = 0.01.

FIGURE 15. The classification accuracy performance of the proposed

FWB-CNN and IQ-FWB-CNN under 3-tap modeled Rayleigh Fading channel

with synchronization offset σs = 0.0001 and σs = 0.01.

cases as minor LO offset with σs = 0.0001 and moderate LO

offset with σs = 0.01. Under the mismatched LO frequency

offset, the IQ-FWB-CNN performance degrades 87.3% in a

minor offset case and 83.4% in the moderate offset case from

98.5% without offset at high SNR ranges. Furthermore, the

IQ-CNN performance degrades from 62.8% in the no offset

case to 54.9% in the minor/moderate offset case. Since the

FWB-CNN performance is the same as 59.6% in no-offset

cases even the LO offset increases, the degradation of IQ-

FWB-CNN performance comes from the IQ sample input.

We modeled the Rayleigh fading channel with 3-tap FIR

filter consists of τ = 1.8 with -2 dB gain and τ = 3.4 with

-10 dB gain to obtain the accuracy performance of the clas-

sifiers. In Fig. 15, the proposed IQ-FWB-CNN performance

achieves the classification accuracy of 78.9% constantly even
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(a) The FWB-CNN with the FWB parameters 644 and 4096 FFT size (b) The IQ-FWB-CNN with the FWB parameters 644 and 4096 FFT size

FIGURE 16. The each modulation classification accuracy performance of the proposed FWB-CNN and IQ-FWB-CNN under 3-tap modeled Rayleigh Fading

channel with synchronization offset σs = 0.01

the deviation of the synchronization offset increases. The IQ-

CNN classification accuracy is 48.2% without synchroniza-

tion offset, 46.5% at a minor offset, and 42.1% at moder-

ate offset under the Rayleigh fading channel. However, the

FWB-CNN performance is constant with 59.6% as the same

as the performance of the AWGN channel, which the distor-

tion of the signals does not affect the accuracy performance

for classifying different OFDM useful symbol lengths.

Based on those results and the performance shown in Fig.

16(a), the CNN using FWB extracts the classification features

robust to the distortion of the transmitted signal by the fading

and synchronization offset. In Fig. 16(b), the IQ-FWB-CNN

performance for different OFDM useful symbol lengths and

QPSK achieves high accuracy of 99.8% at high SNR ranges

under Rayleigh fading channels with the moderate LO offset.

On the other hand, the classification accuracy of QAM-based

modulation degrades 51.5% at 16-QAM, 49.0% at 32-QAM,

and 39.1% at 64-QAM by the effect of the fading channel.

D. DISCUSSION ABOUT THE LIMITATION OF THE

PROPOSED IQ-FWB-CNN

We investigated the constraints of FWB prameters to acquire

the improved performance in the previous subsections. When

the FFT window length is shorter than the OFDM useful

symbol length to be classified by performing according to

the OFDM useful symbol length and the number of banks, the

signal classification performance is deficient. However, when

the FFT input length is longer than the OFDM useful symbol

length, the classification performance is high. Therefore,

classification is possible only by setting the FFT window

length longer than the OFDM useful symbol length. For this

reason, the fact that the modulation method can be classified

with a short sample input length, which is an advantage of the

conventional DL-based AMC system, becomes impossible

by using the FFT window bank.

We find the cause of this phenomenon by using a classifi-

cation activation map (CAM) [45] to visualize the image po-

sitions activated by the CNN. Since the referenced approach

is based on image, we change it to a signal-based method.

Even with the same OFDM useful symbol length, the CAM

regions are different from each other since each frame has

randomized information. Therefore, we analyzed the average

CAM regions for each OFDM useful symbol length type for

every frame tested as shown in Fig. 17. Using 4 FFT banks,

we can see that the responding FFT bank varies according

to the transmitted OFDM useful symbol length as shown in

Fig. 17(a). By using one FFT bank, when the received signal

is 64 FFT sized OFDM signals, Fig. 17(b) shows the equal

response to all subcarriers, and the received signals with the

OFDM useful symbol length of 256 and 512 show a smaller

response as it moves away from the center. At 128, the

reaction occurs more strongly in the time-domain IQ samples

than in the FWB. Those results show that CNN classifies

OFDM useful symbol length types better as the number of

banks increases. However, based on these results, we cannot

clarify why the FFT parameters are limited to values with a

longer input length and a larger FFT size than the transmitted

OFDM signal.

The OFDM signal has the same modulation scheme used

for each subcarrier. The method of classifying these modula-

tion schemes was possible through the CNN [42] structure

using the input of the time-domain IQ signal. When the

FFT window bank proposed in this paper is applied, several

OFDM symbols are overlapped as one FFT output, so there

is a limitation in classifying the modulation scheme used

for each subcarrier. Fig. 18 shows the limitation that the

proposed system confuses on modulation schemes used in

the OFDM subcarrier even though the system classifies the
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(a) The IQ-FWB-CNN with the FWB parameters 644 and 4096 FFT size (b) The IQ-FWB-CNN with the FWB parameters 5121 and 4096 FFT size

FIGURE 17. The CNN activation visualization using classification activation map (CAM) under AWGN channel at an SNR of 20 dB.

FIGURE 18. The confusion matrix of the proposed IQ-FWB CNN under

AWGN channel at an SNR of 20 dB.

single-carrier modulation scheme and OFDM useful symbol

length.

We analyzed the complexity of the multiple FFT proces-

sors [46] in FWB and the floating-point operations (FLOPs)

of the DL-based model [47] as shown in Table. 3. The input

sample length of IQ-CNN, FWB-CNN, and IQ-FWB-CNN

is the FFT size 4096 of the FWB, and the number of FFT

processors on FWB is four. The number of LSTM cells is

128, and the depth of the LSTM layer is three. The conven-

tional IQ-CNN model has about 1.19 × 106 parameters, and

the uncompressed size is at least 1, 193, 216 × 32 bits/float

≈ 381MB. AP-LSTM has about 0.33× 106 parameters, and

the uncompressed size is at least 331, 272 × 32 bits/float

≈ 10MB. FWB-CNN model has about 1.59 × 106 param-

eters, and the uncompressed size is at least 1, 596, 392 ×
32 bits/float ≈ 51MB. IQ-FWB-CNN model has about

1.63× 106 parameters, and the uncompressed size is at least

TABLE 3. The numbers of parameters and FLOPs of the several algorithms

(K = 4096,M = 4)

ine model params FLOPs

ine IQ-CNN 1.19 ×106 27.09 ×106

ine AP-LSTM 0.33 ×106 9.51 ×106

ine FWB-CNN 1.59 ×106 102.02 ×106

ine IQ-FWB-CNN 1.63 ×106 127.00 ×106

ine FFT Processors in FWB - 0.983 ×106

ine

1, 632, 480× 32 bits/float ≈ 52MB. The proposed IQ-FWB-

CNN model gives ×1.33 and ×4.68 (IQ-CNN) increases

in total parameters and FLOPs respectively. The FLOPs of

FFT processors add to the total FLOPs of IQ-FWB-CNN

with 983, 040. Thus, the complexity of the proposed IQ-

FWB-CNN model is too high to implement on the low-cost

spectrum sensors.

VII. CONCLUSION

In this paper, we proposed an FFT window bank consisted

of several different FFT window lengths and fixed FFT size

and the CNN model operating on IQ and FWB simultane-

ously to improve the classification accuracy for identifying

the OFDM-based signal such as LTE, DVB, WLAN, and

5G, which the prior works have confused. We also have

conducted performance evaluations in AWGN, fading, and

synchronization offset environments. We have found the con-

straints of the FWB parameters to achieve reasonable classi-

fication accuracy by analyzing the performance, and we tried

to find the cause of the constraints by visualizing the clas-

sification activation map. Furthermore, we have discussed

the disadvantages of the proposed model compared to the

conventional methods, which the proposed model required

longer input sample length trade-offs of different OFDM

useful symbol lengths classification than the advantage of
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short input sample in conventional methods with confusing

OFDM-based signals.

We still have much to overcome the limitation of the pro-

posed system by acquiring features of OFDM-based signal

with shorter input length adapting other DL structure. In this

work, the guard interval and the bandwidth of the transmitted

OFDM signals is fixed and the same unlike the real wireless

communication signals, and the guard interval estimation is

required to implement in the real world. Furthermore, the per-

formance evaluation is required under the unseen channel en-

vironments such as multi-input multi-output system, vehicle-

to-everything (V2X) and other complex environments.

REFERENCES

[1] W. Gardner, “Signal interception: A unifying theoretical framework for

feature detection,” IEEE Trans. Commun., vol. 36, no. 8, pp. 897–906,

1988.

[2] W. Gardner, “Spectral correlation of modulated signals: Part I - Analog

modulation,” IEEE Trans. Commun., vol. 35, no. 6, pp. 584–594, Jun.

1987.

[3] W. Gardner, W. Brown, and C.-K. Chen, “Spectral correlation of modu-

lated signals: Part II - Digital modulation,” IEEE Trans. Commun., vol. 35,

no. 6, pp. 595–601, Jun. 1987.

[4] A. Nandi and E. Azzouz, “Algorithms for automatic modulation recogni-

tion of communication signals,” IEEE Trans. Commun., vol. 46, no. 4, pp.

431–436, 1998.

[5] O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modu-

lation classification techniques: Classical approaches and new trends,” IET

Commun., vol. 1, no. 2, pp. 137–156, April 2007.

[6] B. Kroon, S. Bergin, I. O. Kennedy, and G. O’Mahony Zamora, “Steady

state RF fingerprinting for identity verification: One class classifier versus

customized ensemble,” in Proc. Artif. Intell. Cogn. Sci., 2010, pp. 198–

206.

[7] K. Youssef, L. Bouchard, K. Haigh, J. Silovsky, B. Thapa, and C. V.

Valk, “Machine learning approach to RF transmitter identification,” IEEE

J. Radio Freq. Identificat., vol. 2, no. 4, pp. 197–205, Dec. 2018.

[8] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based

radio signal classification,” IEEE J. Sel. Topics Signal Process., vol. 12,

no. 1, pp. 168–179, Feb. 2018.

[9] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep

learning models for wireless signal classification with distributed low-cost

spectrum sensors,” IEEE Trans. on Cogn. Commun. Netw., vol. 4, no. 3,

pp. 433–445, Sept. 2018.

[10] N. E. West and T. O’Shea, “Deep architectures for modulation recog-

nition,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN),

Piscataway, NJ, USA, Mar. 2017, pp. 1–6.

[11] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-

D. Yao, “Modulation classification based on signal constellation diagrams

and deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3,

pp. 718–727, Mar. 2019.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification

with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-

cess. Syst., vol. 25, 2012, pp. 1097–1105.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015.

[Online]. Available: http://arxiv.org/abs/1409.4842

[14] Y. Zhou, T. Lin, and Y. Zhu, “Automatic modulation classification in

time-varying channels based on deep learning,” IEEE Access, vol. 8, pp.

197 508–197 522, Oct. 2020.

[15] P. Qi, X. Zhou, S. Zheng, and Z. Li, “Automatic modulation classification

based on deep residual networks with multimodal information,” IEEE

Trans. on Cogn. Commun. Netw., vol. 7, no. 1, pp. 21–33, Mar. 2021.

[16] S. Rajendran, R. Calvo-Palomino, M. Fuchs, B. Van den Bergh, H. Cor-

dobes, D. Giustiniano, S. Pollin, and V. Lenders, “Electrosense: Open and

big spectrum data,” IEEE Commun. Mag., vol. 56, no. 1, pp. 210–217, Jan.

2018.

[17] J. L. Xu, W. Su, and M. Zhou, “Likelihood-ratio approaches to automatic

modulation classification,” IEEE Trans. Syst., Man, Cybern. C, vol. 41,

no. 4, pp. 455–469, July 2011.

[18] W. Xie, S. Hu, C. Yu, P. Zhu, X. Peng, and J. Ouyang, “Deep learning in

digital modulation recognition using high order cumulants,” IEEE Access,

vol. 7, pp. 63 760–63 766, 2019.

[19] B. Kim, J. Kim, H. Chae, D. Yoon, and J. W. Choi, “Deep neural network-

based automatic modulation classification technique,” in Proc. Int. Conf.

Inf. Commun. Technol. Converg. (ICTC), Oct. 2016, pp. 579–582.

[20] J. Lee, B. Kim, J. Kim, D. Yoon, and J. W. Choi, “Deep neural network-

based blind modulation classification for fading channels,” in Proc. Int.

Conf. Inf. Commun. Technol. Convergence, Oct. 2017, pp. 551–554.

[21] S. Hu, Y. Pei, P. P. Liang, and Y. Liang, “Deep neural network for robust

modulation classification under uncertain noise conditions,” IEEE Trans.

Veh. Technol., vol. 69, no. 1, pp. 564–577, Jan. 2020.

[22] T. Yucek and H. Arslan, “OFDM signal identification and transmission

parameter estimation for cognitive radio applications,” in Proc. IEEE

GLOBECOM, Dec. 2007, pp. 4056–4060.

[23] A. Punchihewa, V. K. Bhargava, and C. Despins, “Blind Estimation of

OFDM parameters in Cognitive Radio Networks,” IEEE Trans. Wireless

Commun., vol. 10, no. 3, pp. 733–738, 2011.

[24] A. Bouzegzi, P. Ciblat, and P. Jallon, “New algorithms for blind recog-

nition of OFDM based systems,” Signal Processing, vol. 90, no. 3, pp.

900–913, 2010.

[25] R. Heath and G. Giannakis, “Exploiting input cyclostationarity for blind

channel identification in OFDM systems,” IEEE Trans. Signal Process.,

vol. 47, no. 3, pp. 848–856, Mar. 1999.

[26] H. Ishii and G. W. Wornell, “OFDM blind parameter identification in

cognitive radios,” in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio

Commun. (PIMRC), vol. 1, Sept. 2005, pp. 700–705.

[27] F. Gini and G. Giannakis, “Frequency offset and symbol timing recovery in

flat-fading channels: a cyclostationary approach,” IEEE Trans. Commun.,

vol. 46, no. 3, pp. 400–411, Mar. 1998.

[28] Y. Yao and G. Giannakis, “Blind carrier frequency offset estimation in

SISO, MIMO, and multiuser OFDM systems,” IEEE Trans. Commun.,

vol. 53, no. 1, pp. 173–183, Jan. 2005.

[29] H. Bolcskei, “Blind estimation of symbol timing and carrier frequency

offset in wireless OFDM systems,” IEEE Trans. Commun., vol. 49, no. 6,

pp. 988–999, Jun 2001.

[30] N. E. West and T. O’Shea, “Convolutional radio modulation recognition

networks,” in Proc. Int. Conf. Eng. Appl. Neural Netw., 2016, pp. 213–226.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv:1409.1556, 2014.

[32] C.-F. Teng, C.-Y. Chou, C.-H. Chen, and A.-Y. Wu, “Accumulated polar

feature-based deep learning for efficient and lightweight automatic modu-

lation classification with channel compensation mechanism,” IEEE Trans.

Veh. Technol., vol. 69, no. 12, pp. 15 472–15 485, Dec. 2020.

[33] F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic modulation classi-

fication: A deep learning enabled approach,” IEEE Trans. Veh. Technol.,

vol. 67, no. 11, pp. 10 760–10 772, Nov. 2018.

[34] K. Yashashwi, A. Sethi, and P. Chaporkar, “A learnable distortion correc-

tion module for modulation recognition,” IEEE Wireless Commun. Lett.,

vol. 8, no. 1, pp. 77–80, Feb. 2019.

[35] S. Chen, Y. Zhang, Z. He, J. Nie, and W. Zhang, “A novel attention co-

operative framework for automatic modulation recognition,” IEEE Access,

vol. 8, pp. 15 673–15 686, 2020.

[36] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-end learning

from spectrum data: A deep learning approach for wireless signal iden-

tification in spectrum monitoring applications,” IEEE Access, vol. 6, pp.

18 484–18 501, 2018.

[37] R. Zhou, F. Liu, and C. W. Gravelle, “Deep learning for modulation

recognition: A survey with a demonstration,” IEEE Access, vol. 8, pp.

67 366–67 376, 2020.

[38] Modulation Classification With Deep Learning. Mathworks, Natick, MA,

USA, 2019.

[39] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for

automatic modulation recognition in cognitive radios,” IEEE Trans. Veh.

Technol., vol. 68, no. 4, pp. 4074–4077, Apr. 2019.

[40] G. J. Mendis, J. Wei-Kocsis, and A. Madanayake, “Deep learning based

radio-signal identification with hardware design,” IEEE Trans. Aerosp.

Electron. Syst., vol. 55, no. 5, pp. 2516–2531, Oct. 2019.

[41] Q. Cheng, Z. Shi, D. N. Nguyen, and E. Dutkiewicz, “Sensing ofdm signal:

A deep learning approach,” IEEE Trans. Commun., vol. 67, no. 11, pp.

7785–7798, 2019.

[42] S. Hong, Y. Zhang, Y. Wang, H. Gu, G. Gui, and H. Sari, “Deep learning-

based signal modulation identification in OFDM systems,” IEEE Access,

vol. 7, pp. 114 631–114 638, 2019.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3102223, IEEE Access

Park and Han: Deep Learning-based Automatic Modulation Classification with Blind OFDM Parameter Estimation

[43] A. Dandawate and G. Giannakis, “Statistical tests for presence of cyclo-

stationarity,” IEEE Trans. Signal Process., vol. 42, no. 9, pp. 2355–2369,

1994.

[44] T. O’Shea and N. West, “Radio machine learning dataset generation with

GNU radio,” Proc. GNU Radio Conf, vol. 1, no. 1, 2016.

[45] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning

deep features for discriminative localization,” in Proc. IEEE Conf. Com-

put. Vis. Pattern Recognit.(CVPR), Jun 2016, pp. 2921–2929.

[46] Inside the FFT Black Box Serial and Parallel Fast Fourier Transform

Algorithms. CRC New York, 2019.

[47] M. Thoma, “Analysis and optimization of convolutional neural network

architectures,” Masters’s Thesis, Karlsruhe Institute of Technology,

Karlsruhe, Germany, Jun. 2017. [Online]. Available: https://martin-

thoma.com/msthesis/

MYUNG CHUL PARK received his B.S. and

M.S. degrees from Kypungpook National Univer-

sity, Daegu, Korea, in 2013 and 2015, respectively.

He is currently pursuing his Ph.D. degree. His

main research interests are wireless communica-

tion system and automatic modulation constella-

tion.

DONG SEOG HAN received the B.S. degree

in electronic engineering from Kyungpook Na-

tional University (KNU), Daegu, South Korea, in

1987, and the M.S. and Ph.D. degrees in electrical

engineering from the Korea Advanced Institute

of Science and Technology, Daejon, South Ko-

rea, in 1989 and 1993, respectively. From 1987

to 1996, he was with Samsung Electronics Co.,

Ltd., where he developed the transmission systems

for QAM HDTV and Grand Alliance HDTV re-

ceivers. Since 1996, he has been with the School of Electronics Engineering,

KNU, as a Professor. He was a courtesy Associate Professor with the De-

partment of Electrical and Computer Engineering, University of Florida, in

2004. He was the Director with the Center of Digital TV and Broadcasting,

Institute for Information Technology Advancement, from 2006 to 2008. His

main research interests include intelligent signal processing and autonomous

vehicles.

14 VOLUME 4, 2016


