
Research Article

Deep-Learning-Based Bughole Detection for Concrete
Surface Image

Gang Yao,1,2 Fujia Wei ,1,2 Yang Yang ,1,2 and Yujia Sun1,2

1Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education,
Chongqing 400044, China

2School of Civil Engineering, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Fujia Wei; weifujia13@163.com and Yang Yang; yy20052710@163.com

Received 4 March 2019; Accepted 22 May 2019; Published 16 June 2019

Academic Editor: Robert Černý
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Bugholes are surface imperfections that appear as small pits and craters on concrete surface after the casting process. 0e
traditional measurement methods are carried out by in situ manual inspection, and the detection process is time-consuming
and difficult. 0is paper proposed a deep-learning-based method to detect bugholes on concrete surface images. A deep
convolutional neural network for detecting bugholes on concrete surfaces was developed, by adding the inception modules
into the traditional convolution network structure to solve the problem of the relatively small size of input image (28 × 28
pixels) and the limited number of labeled examples in training set (less than 10 K). 0e effects of noise such as illumination,
shadows, and combinations of several different surface imperfections in real-world environments were considered. From the
results of image test, the proposed DCNN had an excellent bughole detection performance and the recognition accuracy
reached 96.43%. By the comparative study with the Laplacian of Gaussian (LoG) algorithm and the Otsu method, the
proposed DCNN had good robustness which can avoid the interference of cracks, color-differences, and nonuniform il-
lumination on the concrete surface.

1. Introduction

Bugholes are surface imperfections that appear as small pits
and craters on concrete surface after the casting process [1].
0ese imperfections appear as regular or irregular pits with
diameters ranging from few millimeters to 15mm in di-
ameter and are usually scattered randomly around the
surface of the concrete. Bugholes are recognized as a major
problem in the construction industry very early on [2, 3]. On
the one hand, building owners and architects are getting
stricter on quality of concrete surfaces. Surfaces are
demanded to be flat and free of surface bugholes to leave an
aesthetically pleasing impression. On the other hand, even
though bugholes are primarily an aesthetic issue for exposed
concrete structures and do not affect the structural strength
of concrete, it does reduce the adhesion properties of the
fiber-reinforced plastic (FRP) material applied to the con-
crete surface [4]. Additionally, research has indicated that
salt accumulated in bugholes causes premature degradation

of reinforced concrete (RC) structures [5]. Moreover, these
surface bugholes are generally considered a nuisance for
subsequent processes since these imperfections need to be
filled before paint coating is applied to the concrete surface,
and this additional surface preparation is a labor-intensive
and costly process.

Owing to its influence on the quality of concrete
surfaces, the methods for the detection of bugholes were
established very early on. In the 1970s, construction
professionals attempted to assess concrete surface quality
by manually counting the number and measuring the
diameter of bugholes and then calculating percentage of
holed areas on the surface, which was considered time-
consuming and impractical [2, 3]. 0erefore, an improved
method classifying concrete surface quality was proposed
by0omson [6], who suggested using bughole photos with
different degrees of coverage as reference samples to
compare with actual concrete surface. 0e current method
[7, 8] of bughole rating developed by the American
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Concrete Institute (ACI) based on the idea introduced by
0omson and the ACI method compares the concrete
surface to be assessed with a set of standard surface
photographs representing seven scales, and the expert who
is performing the comparison determines which scale the
concrete surface being inspected belongs to. While simple
in principle, some people argue that the comparison with
photographs of reference samples can be problematic due
to the variability between different printed scales of the
reference samples and the subjectivity of the human eye
[9, 10]. In addition, one surface may have several types of
bugholes combined or a combination of several different
surface imperfections such that the use of the reference
becomes rather difficult and subjective. Moreover, there is
a large amount of concrete engineering in practical states,
and the manual inspection method is not only time-
consuming and labor-intensive but also costly.

In order to obtain a better evaluation of the concrete
surface, more objective and intelligent methods need to be
developed. Digital image processing technology is con-
sidered a powerful automated tool that can provide ob-
jective results quickly [11, 12], and it has been successfully
applied in bridge coating quality assessment in recent years.
Lee et al. developed an automated processor that can
recognize the presence of bridge coating rust defects [13].
In order to solve the problem of nonuniform illumination,
Chen et al. proposed the adaptive ellipse approach (AEA),
the box-and-ellipse-based adaptive-network-based fuzzy
inference system (BE-ANFIS), and the support-vector-
machine-based rust assessment approach (SVMRA) [14–
16]. In order to adapt to various background colors and
overcome the effects of background noise or nonuniform
illumination, Shen et al. proposed a rust defect recognition
method based on color and texture feature, which com-
bines the Fourier transform and color image processing
[17]. Son et al. employed the J48 decision tree algorithm to
rapidly and accurately determine rusted surface area [18].
In order to improve the detection accuracy of the rusted
areas on steel bridges, Liao et al. proposed a digital image
recognition algorithm that consisted of the K-means
method and the double-center-double-radius (DCDR)
algorithm [19]. Shen et al. proposed an artificial-neural-
network-based rust intensity recognition approach
(ANNRI) [20]. In addition to detecting rust, researchers
also applied a variety of image processing techniques on
visual images to detect cracks, including edge detection
methods [21–24], morphological operations [25–27], dig-
ital image correlation [28, 29], and image binarization
[30, 31]. A comparative study of fast Haar transform
(FHT), fast Fourier transform, Sobel edge detector, and
Canny edge detector showed that FHT has the best per-
formance [22]. Lim et al. used the Laplacian of Gaussian
(LoG) edge detector to detect surface cracks in concrete
bridge decks and obtain global crack maps through camera
calibration and robotic localization [23]. Talab et al. used
multiple filters such as Sobel and Area filters to change the
small area to the background and used the Otsu method to
detect major cracks [24]. Some researchers have verified
that the morphological operations are effective for crack

detection [25, 26, 32]. Rimkus et al. used digital image
correlation (DIC) technique to detect and locate cracks in
concrete surfaces [28]. Kim et al. and Li et al. suggested
using image binarization methods to extract crack in-
formation from digital images [30, 31].

0e current research focused on the use of image
processing technology to detect surface cracks and rust
with relatively few studies on surface bugholes. Zhu and
Brilakis proposed an image processing method to detect
bugholes (referred to as air pockets in their paper) on the
concrete surfaces [33], but this method did not consider the
influence of nonuniform illumination. Ozkul and Ismail
developed a bughole measuring device for rating the quality
of a concrete surface [1]. Silva et al. developed an expert
system that uses image analysis methods to classify the
surface quality of self-consolidating concrete for precast
members by calculating the percentage area, diameter, and
distribution of the bugholes [34]. Hirano et al. used a
thresholding method to detect bugholes in the images, but
using this method, it is difficult to detect small bugholes
[35]. Liu et al. established a method to detect surface
bugholes via image analysis and published evaluation pa-
rameters; the OTSU image threshold segmentation tech-
nology is adopted to extract the characteristics of bugholes
on the concrete surface [36]. Isamu et al. developed an
image analysis method using color images to quantify the
bugholes distributed on concrete surfaces [37].

0e application of digital image processing technology
(IPT) has promoted the advancement of quality inspection
methods of structural surface. However, the direct use of
image processing technology for surface defect inspection
has several disadvantages. First, the algorithms are tailored
for certain images in the studied datasets, which affect their
performance on new datasets [38]. Second, due to the effects
of noise such as illumination, shadows, and combination of
several different surface imperfections, the detection results
of the image processing algorithms may be inaccurate
[39–41]. Finally, the image processing algorithms are often
designed to aid the inspector in defect detection and still rely
on human judgement for final results [25]. One possible
solution is using deep-learning algorithms to analyze the
inspection images [42]. In recent years, deep-learning al-
gorithm has shown remarkable performance in image object
recognition [43–46] and deep convolutional neural net-
works (DCNN) have attracted wide attention as an effective
recognition method [47]. Several researchers have applied
this method to detect concrete surface cracks. Zhang et al.
conducted a comparative study on the image classification of
pavement cracks using three methods: deep convolution
network, support vector machine, and integrated learning.
Results showed that the detection effect of the deep con-
volution network was better than the other two methods
[48]. Cha et al. used a convolution neural network based on
deep learning to detect cracks in concrete images [49]. Wang
et al. proposed a convolutional neural network (CNN) for
recognizing cracks on asphalt surfaces at subdivided image
cells; the accuracy of the proposed CNN can achieve high
accuracies 96.32% and 94.29% on training data and testing
data, respectively [50].
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In this paper, a deep convolutional neural network
(DCNN) has been used to detect bugholes on concrete
surfaces, and the effects of noise such as illumination,
shadows, and combinations of several different surface
imperfections in real-world environments were considered.
0e performance of the proposed method was compared
with that of the traditional image processing methods.

2. Main Concrete Surface Defect Classification

0ere are many different types of quality defects of concrete
surfaces. 0e most common surface defects are cracks,
bugholes, and color-differences. Figures 1–3 show the image
characteristics of these three types of defects.

Cracks, bugholes, and color-differences have its own
features. Cracks are generally irregularly line-shaped, as
shown in Figure 1. Owing to the different reflectivities of
light, a bughole is normally darker than the rest of the
concrete surface. 0e greater the depth, the darker the color.
As shown in Figure 2(a), typical bugholes are nearly circular.
However, irregularly shaped bugholes also exist, as shown in
Figure 2(b). Additionally, because of the smaller depth of
some bugholes, the contrast with the normal concrete
surface is not obvious, as seen in Figure 2(c). Color-
difference is the color that deviates from the color of a
normal or desired concrete surface. It has neither a par-
ticular shape nor a clear border, as shown in Figure 3.

0e previous studies ignored the situation that multiple
defects existed on a concrete surface at the same time.
However, this situation often occurs during the concrete
casting stage. 0e concrete surface bughole images were
classified according to a combination of surface defects, as
shown in Table 1.

3. Proposed Method for Concrete Surface
Bughole Detection

Figure 4 shows the proposed method’s general flow with
training steps (solid lines) and testing steps (dashed lines).
0e DCNN was trained for a total 30 training epochs. 0e
model was evaluated on the validation set after every
training epoch. When the DCNN classifier was well trained,
the testing images were scanned by the validated classifier to
generate a report of bugholes.

3.1. Database Establishment. To train a CNN classifier, raw
images of concrete surfaces with multiple types of defects
(including cracks, bugholes, and color-differences) were taken
from several completed construction sites with a mobile
phone camera. 0e shooting distance to the objects ranges
from 1.0 to 5.0m. 0e bugholes need to be visible in images
with the naked human eye. 0e total number of raw images
was 116, with a resolution of 3,120× 4,160 pixels. Among the
116 raw images, 80 were used for training and validation and
36 were cropped into 800 small images (256× 256 pixel
resolutions) for testing. Due to the small size of bugholes, the
pixels of a single bughole range from 18×18 to 60× 60.0e 80
raw images were cropped into smaller images (28× 28 pixel

resolutions), which were manually annotated as bughole (i.e.,
positive sample) or not bughole (i.e., negative sample) to
generate a database, as shown in Figure 5.

0e total number of prepared training images in the
database was 4 K. According to the ratio of training set,
validation set � 4 :1 [49], the number of training set images
was 3.2 K, and the number of validation set images was
0.8 K.

3.2. Overall Architecture. 0is section describes the overall
architecture of the DCNN used in this study, including
parameter selection of each layer. Figure 6 presents the
DCNN architecture, which was the original configuration
for concrete bughole detection. 0e first layer was the
input layer of 28 × 28 × 3 pixel resolutions, where each
dimension indicated height, width, and channel (i.e., red,

(a)

(b)

(c)

Figure 1: Concrete surface crack images.
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(a) (b) (c)

Figure 2: Concrete surface bughole images.

(a) (b) (c)

Figure 3: Concrete surface color-difference images.

Table 1: Image categories of concrete surface bughole.

Category Image Description

1 Only bughole

2 Crack + bughole
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Table 1: Continued.

Category Image Description

3 Color-difference + bughole

4 Crack + color-difference + bughole

(a) (b)

Figure 5: Positive and negative samples.

Training Testing on new image Reporting

Building database

Training set Validation set

Trained DCNN classifierTraining DCNN

Preprocessing

Training

Testing

Figure 4: Flowchart for detecting concrete surface bugholes.
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green, and blue), respectively. Due to the relatively small
size of input image (28 × 28 pixels) and the limited
number of labeled examples in training set (less than
10 K), this network utilized the inception modules ar-
chitecture proposed by Szegedy et al. [51]. �e inception
architecture was able to approximate an optimal local
sparse structure in convolution vision network, which
allowed for utilizing efficient dense computation instead
of insufficient numerical calculation on nonuniform
sparse data structure directly. By applying the inception
modules into the traditional convolution network
structure, less network parameters can be obtained, which
meant that the model would be more robust to the
overfitting, especially when a small dataset was used.
Besides, the batch normalization layer was inserted before

activation function in all layers, which made the network
easier to train and improved the generalization ability of
final model [52]. Table 2 shows the convolution config-
uration and inception architecture.

�e convolution layer has proved to be greatly effective
in extracting different features from images. Instead of the
fully connected layer in traditional neuron network, each
neuron of convolution layer is connected to only a local
region of the input volume. �e spatial extent of this
connectivity is a hyperparameter called the receptive field
of the neuron (equivalently, this is the filter size). �e
extent of the connectivity along the depth axis is always
equal to the depth of the input volume. Meanwhile, the
filter has the shared weights for input images. For the first
few layers with local receptive fields, convolution layers
can extract elementary visual features such as oriented
edges, end-points, and corners. �ese features are then
combined by the subsequent layers in order to detect high-
order features. For example, suppose that the input volume
has size of 28 × 28 × 3 (e.g., an input image with three
channels of red, green, and blue). If the receptive field (or
the filter size) is 5 × 5, then each neuron in the convolution
layer will have weights to a 5 × 5 × 3 region in the input
volume, for a total of 5 × 5 × 3 � 75 weights (and +1 bias
parameter), giving output of size (28 − 5)/1 + 1 � 24. So,
after the convolution layer, the feature map gets a size of
24 × 24.

In general, the pooling layers will be periodically inserted
into the convolution layers of a CNN architecture, reducing
the number of parameters and saving computation resources
required for data storage, which also avoids overfitting to a
certain extent. �e pooling units can perform different
functions, such as max pooling, average pooling, or even L2-
norm pooling, of which the max pooling was the most
commonly used [53]. It divides the input image into several
rectangular areas and outputs the maximum value for each
subarea. Figure 7 shows an example of max pooling, with a
stride of 2, where the pooling layer output size is calculated
by the equation in the figure.

�e ReLU layer applies the nonsaturating activation
function f(x) � max(0, x) to perform a threshold opera-
tion on each element of the input. It can increase the
nonlinearity of the decision function and the entire net-
work and will not affect the receptive fields of the con-
volution layer. In addition, the sigmoid function
f(x) � (1 + e−x)−1 and the saturating hyperbolic tangent
f(x) � tanh(x) are often used to increase the nonlinearity.
Figure 8 depicts several examples of nonlinear functions.
Compared to other functions, ReLU function is more
popular, because it can speed up the neural network’s
training speed without significantly affecting the general-
ization accuracy of the model [45].

�e loss layer is used to determine how the training
process penalizes the difference between the predicted and
actual results of the network, which is usually the last level of
the network. �e softmax function is often used in the last
layer of the CNN architecture, as the output layer, to classify
input data. �e softmax function is given by Equation (1),
which is expressed as the probabilistic expression,

Input
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MaxPool
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Conv
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Figure 6: Overall architecture of the proposed DCNN.
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p(y(i) � n ∣ x(i);W), for the ith training example out of m
training examples, the jth class out of n classes, and weights,
W, whereWT

nx
(i) are inputs of the softmax layer. �e sum of

the right-hand side for the ith input always returns 1, be-
cause the function always normalizes the distribution. In
other words, the following equation returns probabilities of
each input’s individual classes:

p y(i) � n ∣ x(i);W( ) � 1

∑nj�1eWT
j x

(i)

eW
T
1 x

(i)

eW
T
2 x

(i)

⋮
eW

T
n x

(i)


,

for i � 1, . . . , m.

(1)

�e network is trained using a stochastic gradient
descent (SGD) algorithm with a minibatch size of 100 out
of 4,000 images. SGD, using backpropagation, is consid-
ered the most efficient and simplest way to minimize de-
viations [54, 55]. A disadvantage of the SGD method is that
its update direction is completely dependent on the current
batch. �us, its update is very unstable. A number of
improvements have been proposed and used, including the
proposed use of a momentum method, in which the sto-
chastic gradient of momentum reduction remembers the
updated Δw at each iteration and determines the next
update as a linear combination of the gradient and the
previous update [56]:

Δw :� αΔw− η∇Qi(w),
w :� w + Δw,

(2)

that leads to

w :� w− η∇Qi(w) + αΔw, (3)

where the parameter, w, which minimizes Qi(w), is to be
estimated and η is a step size (learning rate).

As small and decreasing learning rates were recom-
mended [57], the exponential decay learning rates depicted
in Figure 9 were used in this study. �e x-axis represents
epochs, so that the learning rates are updated each time. As
shown in Figure 9, the error tends to converge after 30 it-
erations. Weight decay and momentum parameters are
assigned as 0.0001 and 0.9.

4. Testing and Discussion

To evaluate bugholes detection performance of the trained
DCNN, 36 images not used in training were cropped into

Table 2: Dimensions of layers and operations.

Type Patch size/stride Output size Depth #1× 1 #3× 3 #5× 5 Pool proj. Params

Input 28× 28× 3 0
Convolution 5× 5/2 24× 24× 20 1 1.5 K
Batch norm 24× 24× 20 0
Max. pool 3× 3/2 12×12× 20 0
Inception (2) 12×12× 64 2 16 32 8 8 10.3 K
Batch norm 12×12× 64 0
Max. Po1ol 2× 2/2 6× 6× 64 0
Inception (3) 6× 6× 512 2 192 208 48 64 214K
Batch norm 6× 6× 512 0
Avg pool 6× 6/1 1× 1× 512 0
Convolution 1× 1/1 1× 1× 10 1 5.1 K
Softmax 1× 1× 1 0 0.01K
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800 small images (256× 256 pixel resolutions) for testing.
�ese images were taken from several construction sites.�e
test results of some images are shown in Figure 10. �e
yellow box marks the discriminated bugholes, and the
number inside indicates the labeled number of bugholes in
one image.

From the test results above, the proposed DCNN showed
excellent performance in detecting bugholes on the concrete
surfaces. When there simultaneously exist multiple types of
defects, including cracks and color-differences, the trained
DCNN also accurately detects the bughole defect without
interference from other defects, as shown in Figures 10(b)
and 10(c). Furthermore, under the circumstance of non-
uniform illumination, the trained DCNN can also exclude

the noise of strong light or shade and recognize the bugholes
with a high accuracy, as shown in Figure 10(d).

By the image detection experiment, it can be found that
the error mainly occurs at the edge of the image and the
color-difference area, as shown in Figure 11. �e identifi-
cation error, as shown in Figure 11(a), is basically caused by
improper images cropping, and the reason for identification
error in Figure 11(b) seems to be the shape of stronger color-
difference region, similar to bugholes.

By performing image testing on the trained DCNN, the
recognition accuracy reached 96.43%, as shown in Table 3.
Note that if pixels that are actually nonbughole are erro-
neously detected as bughole, it will be regarded as false
positives; conversely, if pixels that are actually bugholes are
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Figure 10: Results of image testing using the trained DCNN. Concrete surface with (a) only bugholes, (b) both bughole and crack, (c) both
bughole and color-difference, and (d) nonuniform illumination.
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incorrectly classified as nonbughole, it will be considered as a
false negative.

5. Comparative Study

In order to compare the performance of the proposed
DCNN-based bughole detection method and the tradi-
tional edge detection methods, it is necessary to conduct a
comparative study. According to the study of related re-
searchers, the Otsu method has the highest accuracy of
identify the bugholes on concrete surface compared with
the global threshold method, the nonmaximum suppres-
sion edge detection method, and the canny edge detection
method. Talab et al. and Liu et al. [24, 36] used the Otsu
method to detect cracks in the image and achieved good
detection results. Lim et al. [23] used the Laplacian of
Gaussian (LoG) algorithm to detect cracks, and the results
showed that the LoG algorithm successfully detected the
crack in the image. �erefore, the Laplacian of Gaussian
(LoG) algorithm and the Otsu method were chosen for
comparative study.

�e bughole detection results under different methods
are shown in Figure 12. For these four types of images, the
method presented in this paper all had good recognition
results and can accurately identify the region and the
number of bugholes in images. Moreover, the trained
DCNN can avoid the interference of cracks, color-
differences, and uneven illumination on the concrete sur-
face.When there exist only bugholes on the concrete surface,
the LoG method and the Otsu method can identify bugholes
well, as shown in Figure 12(a). However, when there exist
multiple types of defects on the concrete surface as shown in
Figures 12(b) and 12(c), the detection performance of both
the LoG method and the Otsu method are prone to be poor.

Both the Otsu method and the LoG method are hard to
obtain good bughole detection results as expected because of
the noise of color-difference. As shown in Figure 12(d),
when the illumination of the concrete surface was uneven,
the Otsu method could not detect the bugholes at the
shadows; although the LOG method perform well in
detecting bugholes, strong light would drastically lower the
detection performance.

6. Conclusion

�is paper proposed a deep-learning-based method to
detect bugholes on concrete surface images. �e concrete
images required for the training, validation, and testing
were taken from several construction sites by a mobile
phone camera. �e total number of raw images was 116.
�e 80 images were cropped into 4,000 smaller images of
28 × 28 pixel resolutions to build the database for training
and validation processes, and the 36 images cropped into
800 small images (256 × 256 pixel resolutions) were used
for the testing process. Due to the relatively small size of
input image (28 × 28 pixels) and the limited number of
labeled examples in training set (less than 10 K), this
network utilized the inception modules architecture. From
the results of the image test, the proposed DCNN had an
excellent bughole detection performance and the recog-
nition accuracy reached 96.43%, expanding the application
of deep-learning-based methods in the detection of con-
crete surface defects.

�e effects of noise such as illumination, shadows, and
combinations of several different surface imperfections in
real-world environments were considered. By the compar-
ative study with the Laplacian of Gaussian (LoG) algorithm
and the Otsumethod, it is clear that the proposed DCNNhas

Detected image

(mm)

0 10 20 30 40 50 0 10 20 30 40 50

(mm)

Original image
0

10

20

30

40

50

(m
m

)

0

10

20

30

40

50

(m
m

)

(a)

Detected image

(mm)

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

(mm)

Original image

(b)

Figure 11: Results of image testing with (a) false-negative error and (b) false-positive error.

Table 3: Accuracy of the proposed DCNN on testing images.

Number of images 800
Number of pixels 52,428,800
Number of pixels with false-positive errors 592,445
Number of pixels with false-negative errors 1,279,263
Percentage of false-positive errors 1.13%
Percentage of false-negative errors 2.44%
Accuracy 96.43%
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good robustness and can avoid the interference of cracks,
color-differences, and nonuniform illumination on the
concrete surface; using both the Otsu method and the LoG
method, it was difficult to detect bugholes effectively due to
the interference of color-difference and nonuniform
illumination.

However, a common limitation of deep-learning-based
methods is that the network training requires a large amount
of labeled training data, so it is necessary to add more images
to extend the database. In the next stage, the major task is to
establish a quality evaluation system of concrete surface
based on computer vision.

Original image DCNN method OTSU method LoG method

(a)

Original image DCNN method OTSU method LoG method

(b)

Original image DCNN method OTSU method LoG method

(c)

Original image DCNN method OTSU method LoG method

(d)

Figure 12: Comparison of image recognition results under different methods. (a) Type 1: only bugholes; (b) type 2: both cracks and
bugholes; (c) type 3: both color-differences and bugholes; (d) type 4: uneven illumination.
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