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ABSTRACT Urban areas have been focused recently on the remote sensing applications since their function

closely relates to the distribution of built-up areas, where reflectivity or scattering characteristics are the

same or similar. Traditional pixel-based methods cannot discriminate the types of urban built-up areas

very well. This paper investigates a deep learning-based classification method for remote sensing images,

particularly for high spatial resolution remote sensing (HSRRS) images with various changes and multi-

scene classes. Specifically, to help develop the corresponding classification methods in urban built-up areas,

we consider four deep neural networks (DNNs): 1) convolutional neural network (CNN); 2) capsule networks

(CapsNet); 3) same model with a different training rounding based on CNN (SMDTR-CNN); and 4) same

model with different training rounding based on CapsNet (SMDTR-CapsNet). The performances of the

proposed methods are evaluated in terms of overall accuracy, kappa coefficient, precision, and confusion

matrix. The results revealed that SMDTR-CNN obtained the best overall accuracy (95.0%) and kappa

coefficient (0.944) while also improving the precision of parking lot and resident samples by 1% and 4%,

respectively.

INDEX TERMS Deep learning, convolution neural network, urban built-up area, capsule network, model

ensemble, high resolution remote sensing classification.

I. INTRODUCTION

In recent years, deep learning has been applied in many

applications, such as computer vision and wireless commu-

nications [1]–[16]. Compared with traditional pixel-based

methods (e.g., minimum distance supervision classifica-

tion [17], iterative self-organization (ISO) cluster unsuper-

vised classification [18], support vector machine (SVM)

classification [19], random forest classification [20]), deep

learning is considered to be an effective method for extracting

multi-layer features that often contain abstract and semantic

information [10]. Hence, deep learning plays an important

The associate editor coordinating the review of this manuscript and
approving it for publication was Yi-Zhe Song.

role in the field of target detection and classification. Current

deep learning models have managed to offer a baseline for the

use of deep learning in high spatial resolution remote sensing

(HSRRS) image applications. One of the representative algo-

rithms in deep learning is the neural network, which includes

the deep belief network (DBN) [21], recurrent neural network

(RNN) [22], and convolutional neural network (CNN) [23].

Many CNN algorithms have been successfully applied as

powerful information extractors in computer vision, natural

language processing (NLP), and medical and remote sensing

image processing [8], [24], [25].

Remote sensing scene classification (RSSC) can provide

a series of semantic classes which can assist in land cover

and land use classification. HSRRS images with higher
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spatial resolution are typical categories for RCCS. Hence,

HSRRS is often applied in urban mapping, target detection,

precision agriculture, and natural resourcemanagement. Over

recent years, extensive efforts have been made in develop-

ing feature representations and classifiers for the task of

HSRRS image scene classification in broader areas of appli-

cation. Urban areas have been focused on recently in remote

sensing applications. Urban land cover classification, urban

green space detection [26], hard target detection [27], urban

flood [28], urban water and gas pollution [29], and so on have

emerged with the occurrence and development of HSRRS

imaging [30]. With the development of remote sensing tech-

nology, there are a number of HSRRS images, such as the UC

Merced land use dataset [31], the SAT-4 and SAT-6 airborne

datasets [32], the SpaceNet dataset [33], the remote sensing

image classification benchmark (RSI-CB) dataset [34], and

the Aerial Image Dataset (AID) [19]. The HSRRS image

dataset displays texture and color information more clearly

because of its higher spatial resolution. HSRRS images con-

tain multiple scene classes, various changes compared with

traditional remote sensing images, and are very hard to rec-

ognize with traditional pixel-based methods. Deep learn-

ing enables the object-level recognition and classification of

HSRRS images, and has the potential to better understand the

contents of HSRRS images at the semantic level.

Deep learning algorithms can automatically learn features

from inputted raw data using deep architecture neural net-

works (e.g., CNN, CapsNet), and generate powerful deep

learning features directly [6]. These algorithms have achieved

a lot of results in scene classification and object detection.

Urban built-up area detection and classification is one of

the important applications, and its application with HSRRS

images is of significance in practical applications. The clas-

sification of traditional remote sensing images in urban areas

focusing on land cover, gives little or no consideration to

urban functions [35], [36]. Meanwhile, urban functions relate

with types of land use. For example, both residents and city

roads belong to the same construct, but belong to different

functional areas. In addition, urban planning and emergency

response are connected with the functional partition of itself.

Therefore, the classification of urban built-up areas is impor-

tant for urban planning, urban ecological environment evalu-

ation, urban emergency response, and so on.

In this paper, to demonstrate the different function and

features of built-up area, two efficient approaches have been

proposed to classify the urban built-up areas into different

function area with HSRRS images based on deep learning.

The result of classification will support the function anal-

ysis and provide ideas for urban functional zoning refine-

ment. Meanwhile, in order to improve the precision of single

category, two algorithms based on multi-model ensemble

were put forward. The flowchart of our work is shown in

Fig. 1. First, we apply both CNN andCapsNet architectures to

find an approach that performs well with HSRRS images for

urban built-up area scene classification. Furthermore, multi-

model ensemble based methods were proposed to design a

FIGURE 1. The flowchart of urban built-up area scene classification.

procedurewith stable performance and extensible capabilities

that could be extended into other area types or fields. The

contributions of this paper can be summarized as below:

(1) Deep learning-based scene classification algorithm:

Considering the limited capability of traditional clas-

sification algorithms, especially in complex and large-

scale built-up scenes based on HSRRS images, two

deep learning-based methods, CNN and CapsNet, were

proposed for more effective and powerful identification

performance, because of their automatic multi-scale

feature extraction abilities.

(2) Multi-model ensemble scene classification algorithm:

Two multi-model ensemble based algorithms have

been put forward for better identification ability, due

to the limited performances of CNN and CapsNet in

single category recognition.

II. RELATED WORKS AND BACKGROUND

Land use and land cover classification with remote sensing

images are based on the hypothesis that same things have the

same or similar spectrums and different things display foreign

spectrums. The traditional classification approaches applied

spectral information in pixel scale to obtain a map of classes.

Spatial information was then combined with spectral infor-

mation for land use classification [37], subsequently improv-

ing classification accuracy. With the improvement in the

spatial resolution of remote sensing images, semantic level

information has obtained more attention in land use or land

cover classification.

Over recent years, deep learning has been extensively

studied and used due to the efficient feature extraction and

performance improvements in computer vision and pattern

recognition. Recently, CNN has been extended into remote

sensing field, including target recognition and detection, land

use and land cover classification with satellite or space-

borne remote sensing images. A large amount of research has

been conducted on object or target detection using HSRRS

images in urban areas. Region-based CNN (R-CNN) [38],

Fast R-CNN [39], Faster R-CNN [40], and region-free meth-

ods have been proposed to extract features for linear SVMand

then achieve the target category. Airplanes, building blocks,

green spaces, and other objects have been focused on in urban

area based on HSRRS images. Tayara and Chong et al. [41]

proposed a uniform one-stage model for object detection

based on CNN and obtained a better mean average precision

and computation time. Zhai et al. [42] proposed a method

VOLUME 7, 2019 36275



W. Li et al.: Deep Learning-Based Classification Methods for Remote Sensing Images in Urban Built-Up Areas

FIGURE 2. The HSRRS image dataset. (a)-(j) Building, avenue, road,
airport, storeroom, roadside-tree, residents, bridge, parkinglot and
marina, respectively.

based on a position-sensitive balancing (PSB) framework

and residual network that takes full advantage of the fully

connected network to detect 10-class objects. Although these

methods could obtain object categories with higher precision

and speed [41], only significant differences in characteristics

classes were extracted. Meanwhile, when required to obtain

many categories with the same or similar characteristics

based on CNN, the traditional classifiers would be added.

Usually, CNN would be used to extract features and then

SVM or other classifiers followed to classify types of land

use or cover (e.g., forest, farm, structure, grass, wasteland,

water). These approaches are suitable for classifying small

amounts of data and cannot discriminate or obtain finer func-

tion types in urban built-up areas. CNN as ‘‘end-to-end’’

models has proven to be more suitable for finer classification

in urban built-up areas based on HSRRS images.

III. METHODOLOGY

The HSRRS image dataset for scene classification in urban

built-up areas was constructed by collecting building, avenue,

road, airport, storeroom, roadside tree, residents, bridge,

parking lot, and marina images from the RSI-CB and UC

Merced datasets. The size of one image is 128 × 128 pixels

in 3 channels, and some examples of the dataset are shown

in Fig. 2. It shows that some of the classes are similar in

shape (e.g., roads and bridges, avenues and bridges), some are

similar in color (e.g., residents and roadside trees, residents

and buildings), and some are similar in texture (e.g., roadside

trees and avenues, bridges and parking lots). All of these

similarities make scene classification difficult in urban built-

up areas.

A. CNN

Deep learning is characterized by ‘‘end-to-end’’ learning

(e.g., feature learning, feature abstraction, model learning)

and depends on a multi-layer task module to achieve the final

goal. A CNN is a typical deep learning algorithm that is good

at computer vision and image classification. In this paper, the

typical structure of CNN will be described.

A CNN consists of one or several convolutional layers

which are followed by fully connected layers that output

the results. The structure of the typical CNN could be used

FIGURE 3. Typical CNN architecture.

for the 2-dimensional image. In our experiments, an input

image is 128 × 128 × 3, which means the width and height

of the image is 128 and 3 is the number of color channels.

A convolutional layer has ρ kernels of size m ×m × h,

where m is smaller than 128 and h is equal to or smaller

than 3. The kernels can generate a local connection structure

and then convolve with the images to construct ρfeature

maps with a size of 128 − m + 1. A non-linearity function

will then be performed on each feature map between the

convolutional and pooling layers. After that, every feature

map will be subsampled with maximum pooling over η × η

local regions, and η is usually smaller than 5. Following

the convolutional layers, some fully-connected layers will be

placed to output the classification results. The overall archi-

tecture of a typical CNN with one convolution layer is shown

in Fig. 3.

The convolutional layer is the basic process of CNN,

and is a local operation. Therefore, the local information of

images can be obtained by putting certain size kernels on

local images. Kernels (also named filters) are usually trained

via network learning, and all kinds of kernels are focused

on the basic patterns (e.g., boundaries, colors, shapes, tex-

tures) contained in a complex enough deep CNN. In addition,

the ‘‘notation’’ representation will be abstracted by compos-

ing these kernels and followed by conducting the network

operations. After that, basic and general patterns are replaced

by conceptual representations, which are connected with the

specific sample categories.

The pooling layer usually contains two types of pool-

ing operation, one is average-pooling and the other is max-

pooling. The pooling layer has no parameters to learn, and

is only needed to assign super-parameters such as pooling

type, kernel size, and stride. The pooling operation is a type

of down-sampling and is also considered as a nonlinear con-

volution operation with p-norm.

The non-linearity mapping layer (also called the activation

function layer) is introduced to increase the expression capa-

bility of the whole network. Rectified linear unit (ReLu) is

one of the most popular activation functions, and is a segment

function that helps with the fast convergence of the random

gradient descent methods.

The fully connected layers act as classifiers, which map the

learned feature representations to the sample labeled space.

The role of the objective function layer is to measure the

error between the predicted value and the labeled real sample.

Usually, the cross-entropy loss function is applied in classifi-

cation issues.
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FIGURE 4. CapsNet architecture.

B. CapsNet

Fig. 4 shows the CapsNet architecture [43]. The first con-

volutional layer produces 256 feature maps with a 9 × 9

kernel and valid padding. In the PrimaryCaps layer, x1 and

x2 depend entirely on the size of the input image. The size

of each capsule is G1 × G2, which are computed based on

x1 and x2. F represents the number of channels in the primary

capsule, D1 and D2 are the dimensions of the output vector

in the primary and touting capsules, respectively. C represents

the number of classes.

As shown in Fig. 4, the input of the CapsNet fully con-

nected layer is the linear weighted summation combined with

the coupling coefficient, which can be obtained using the

following formula:

sj =
∑

i

coijûj/i

with ûj/i = Weijui,

cij =
exp(bij)

∑

k exp(bik )
(1)

where u is the output of the up-level CapsNet; Weij is the

weight coefficient; coij is the coupling coefficient; b depends

on u; the initial of b is set as 0; the next layer of S can be

obtained with b, u, and Wij; and vj is the activation function

which is given by,

vj =

∥

∥sj
∥

∥

2

1 +
∥

∥sj
∥

∥

2

sj
∥

∥sj
∥

∥

(2)

C. ENSEMBLE LEARNING

The deep learning model ensemble usually contains ‘‘Data

level’’ and ‘‘Model level’’ aspects. The data level ensemble

focused on the augmentation in training, and this process

could solve the problems of unbalanced samples.

Model level ensembles can contain single models or multi-

models. A multi-layer ensemble containing single models is

one of the most important model ensembles. As the semantic

information of different layers can complement each other,

a multi-layer ensemble could be used for semantic segmen-

tation, image classification, and so on. Importantly, it links

different layers in order to improve discrimination accuracy.

The multi-model ensemble approach contains four meth-

ods: simple averaging, weighted averaging, voting, and stack-

ing. In our experiment, the weighted average generated by

the same model with different training rounds (SMDTR) is

TABLE 1. Confusion matrix.

applied as,

S =

∑N
i=1 wisi

N
with wi ≥ 0

N
∑

i=1

wi = 1 (3)

where wi and si represent the weight and score of the i-th

(i = 1, 2, 3) model, respectively. The wi is defined as the

ratio between the training accuracy of i-th model and the sum

of the three model.

D. CLASSIFICATION EVALUATION INDICATORS

A confusion matrix is the most commonly used indicator in

classification. As indicated in Table 1 (n classes as example),

the horizontal is the predicted label and the vertical direction

is the true label. The diagonal element is the number correctly

classified.

Overall accuracy is another indicator for classification,

and is applied to evaluate the proportion correctly classified.

Hence, the overall accuracy can be given as,

OA =
1

N

n
∑

i=1

Cii

with i = 1, 2, · · · , n (4)

where Cii is the number correctly classified for class i; n is

the number of categories, and N is the number of the total

sample. The kappa coefficient calculated from the confusion

matrix is used to check consistency and evaluate classification

precision. As indicated in formula (5), it not only considers

the overall accuracy but also considers the variations in the

number of samples in each category,

k =
p0 − pe

1 − pe

with p0 =
1

N

n
∑

i=1

Cii

pe=
1

N 2

∑n

i=1
(Ci+× C+i)

i=1, 2, · · · , n (5)

The precision is an indicator for measuring the accuracy

of each category, and represents the number classified into

class i by the model, which actually belong to the true class

I (i = 1, 2, . . . . . . , n). It is also calculated from the confusion
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TABLE 2. The number of each object category for training and testing.

TABLE 3. The types of data augmentation: image normalization, scaling,
rotation, and shift.

matrix, and for the i-th class, we can obtain the precision for

each category as

Pi =
Cii

C+i
(i = 1, 2, · · · , n) (6)

IV. EXPERIMENTS

To obtain the best performance in terms of accuracy and

stability, we designed several approaches for built-up area

classification. There are 10 objects needing to be classified

in our experiment, the numbers of each object for training

and testing are shown in Table 2.

A. DATA AUGMENTATION

Effective data augmentation not only enlarges the number of

training samples, but also increases their diversity. On one

hand, it could avoid over fitting. On the other hand, it could

improve the performance of the model [44]. As the number

of our samples is within the range of [266, 1207], making it

a limited sample, geometric transformations are proposed for

data augmentation (Table 3). The types of data augmentation

consisted of image normalization, scaling, rotation, width

shift, and height shift. As the HSRRS image dataset collected

by airborne or satellite is a little inclined, the performed shifts

are on width and height, and both the rotation and scale

factors are lower.

B. CNN-BASED CLASSIFICATION ARCHITECTURE

The HSRRS image scene classification architecture based

on CNN is shown in Fig. 5. The purpose of the classifi-

cation architecture is to preserve local details and extract

FIGURE 5. CNN architecture for HSRRS image classification.

semantic information. Under the consideration of the above,

the designed architecture consists of three parts. The first part

is the HSRRS image input, and the size of each image is

128×128 pixels, and the number of channels is 3. In the sec-

ond part, four convolutional layers are applied to extract

features. Meanwhile, two layers of max-pooling (2 × 2) are

inserted into the CNN layers to reduce the parameters and

keep useful features. The third part is a fully connected layer

for image classification.

1) FEATURE EXTRACTION

CNN-based feature extraction consists of three aspects: con-

volutional layers, activation function layers, and pooling lay-

ers. As shown in Fig. 5, there are four convolutional layers in

our architecture. That is two 3 × 3 kernels with a dimension

of 128, and 3× 3 kernels with a dimension of 64. The ReLU

activation function is applied in our experiment as it uses a

threshold to get the activation value without other operations.

So it is faster in the speed of convergence of the network based

on ReLU. To avoid over-fitting and reduce the number of

parameters, a max-pooling layer with 2×2 kernels is applied

after each convolutional layer.

2) CLASSIFICATION STRATAGEM

The fully connected layers are applied to combine the fea-

tures with previous edges. In our work, we used three

fully connected layers with 1024, 512, and 10 (number of

category) neurons, respectively, to connect with the next

convolutional layer. The Softmax model is usually exploited

to calculate the probability of each category.
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FIGURE 6. Variations in (a) accuracy and (b) loss during training and
testing epochs of CNN.

3) LOSS FUNCTION AND REGULARIZATION

The cross-entropy loss (also called Softmax loss) function is

the most popular objective classification function in CNN.

It is defined as:

Lcross−entropy loss = Lsoft max loss = −
1

N

N
∑

i=1

log(
ehyi

∑C
j=1 e

hj
)

with yi ∈ {1, 2, . . . . . . ,C}

h = (h1, h2, . . . . . . , hC )T (7)

where C is the number of categories, yi is the real label, and

h is the final output of the network, which is also called the

forecast result of the sample i.

Dropout is the most commonly used regularization in

CNN, which equips with the fully connected layer. It not

only reduces the complexity of the network, but is also an

effective ensemble learning method in deep learning models.

The principle of dropout is that the weight of the neuron

is set to 0 randomly with probability p for each neuron in

every layer in training, and all of the neurons are active with

their weight multiplied by (1 − p) to ensure the weights

FIGURE 7. CapsNet architecture for HSRRS image classification.

of the training and testing possess the same expectations.

The variations in accuracy and loss in training and testing

epochs based on CNN are shown in Fig. 6 (a) and (b),

respectively. It shows that the accuracy of testing is lower

than that of training, and the loss of testing is higher than

that of training when the model is convergent. Moreover, both

accuracy and loss fluctuated abruptly around the 7-9 testing

epoch.

C. CapsNet-BASED CLASSIFICATION ARCHITECTURE

Fig. 7 shows the CapsNet architecture for HSRRS image

dataset classification in urban built-up areas. The architec-

ture can be divided into two main layers: (1) a convo-

lutional layer (including convolutional, activation function,

and pooling layers), and (2) a capsule layer (including Pri-

maryCaps, ConvCaps, activation function, and RouteCaps).

The function of the capsule layer is similar to the fully

connected layer in CNN, but it can get vectors instead of

scalars.
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FIGURE 8. Variations in (a) accuracy and (b) loss during training and
testing epochs of CapsNet.

D. MODEL ENSEMBLE ARCHITECTURE

The variations in accuracy and loss during training and test-

ing epochs are shown in Fig. 8. It is easy to see that the

accuracy and loss of training is better than that of testing

when the model is convergent. In addition, both accuracy and

loss fluctuated abruptly around the 5-10 testing epoch. This

phenomenon tells us that the CapsNet model we trained and

tested is suitable for finer classification in urban built-up

areas.

In order to improve robustness, reduce the randomness

of the model, and increase the accuracy of scene classifi-

cation, a model ensemble architecture is considered based

on CNN (cf. SMDTR-CNN) and CapsNet (cf. SMDTR-

CapsNet). The flowchart is shown in Fig. 1. SMDTR was

used to collect several models produced during the training

epochs, with weighted averaging then being performed on

selected models to construct a new model for urban built-up

area classification. In Fig. 9(a), we can see the variations in

accuracies in training and testing epochs using SMDTR-CNN

and SMDTR-CapsNet approaches.

FIGURE 9. Iterations of training and testing accuracy changes on the
HSRRS image dataset using the (a) SMDTR-CNN method and
(b) SMDTR-CapsNet method.

V. RESULTS AND ANALYSIS

The results can be divided into two parts: (1) an evaluation

of the robustness and practicability of the model, and (2) an

evaluation of scene classification precision in urban built-up

areas.

A. MODEL VALIDATION

Fig. 10 shows the variations in validation accuracy during the

test epoch based on CNN and CapsNet. It can be seen that

after about 20 epochs the accuracies of CNN and CapsNet

converge. Although the accuracies of CNN and CapsNet fluc-

tuated abruptly during the 3-15 epochs, with a worse accuracy

for CNN, the convergent accuracy of CNN is higher than

that of CapsNet. After model ensemble learning, the overall

accuracy and kappa coefficient have been improved by about

0.2% and 0.002 for CNN, respectively.

B. CLASSIFICATION ACCURACY EVALUATION

1) CONFUSION MATRIX

The confusion matrices based on CNN, CapsNet, SMDTR-

CNN, and SMDTR-CapsNet are shown in Fig. 11. The larger
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FIGURE 10. Validation accuracies of CNN, CapsNet, SMDTR-CNN, and
SMDTR-CapsNet.

the number of diagonal elements, the better the classification

is. From the figure, we can see that the parking lot and

residents samples often divided into other classes by mistake

in CNN, CapsNet, and SMDTR-CapsNet methods. 13%

of parking lot samples and 10% of resident samples were

mistakenly divided into bridge in the CapsNet method. This

may correlate with the principle of CapsNet, which focuses

on the spatial position relationship, as the spatial direction

of the parking lot and residents samples seems similar to the

bridge samples.

2) ACCURACY AND KAPPA COEFFICIENT

Table 4 shows the overall accuracy and kappa coeffi-

cient of the methods. It can be seen that the accuracy of

SMDTR-CNN is 0.2%more than CNN. In addition, the accu-

racy of SMDTR-CapsNet is 0.6% lower than CapsNet. The

three ensemble models in SMDTR-CapsNet are produced by

searching local maximum, and there is one model produced

with 7 training epoch which may not be appropriate for the

whole dataset.

FIGURE 11. The confusion matrices based on (a) CNN, (b) CapsNet,
(c) SMDTR-CNN, and (d) SMDTR-CapsNet.

3) PRECISION

The precision of each category obtained by the four methods

is displayed in Table 5. It indicates that the model ensemble
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TABLE 4. The overall accuracy and kappa coefficient of the four methods.

TABLE 5. Category precision of the four methods.

based on CNN (cf. SMDTR-CNN) improved the precision of

parking lot and residents samples by 1% and 4%, respectively,

while reducing the precision of storeroom samples from 99%

to 95%. Themodel ensemble based on CapsNet (cf. SMDTR-

CapsNet) increased the precision of parking lot samples from

86% to 88%, while reducing the precision of resident samples

from 89% to 87%, and airport samples from 99% to 96%. Our

work indicates that it is shown that four DNN-based meth-

ods achieve different performances on different categories

of images. It is possible to design more flexible ensemble

learning method to finish the classification task in the future

work.

VI. CONCLUDING REMARKS

This paper has developed a deep learning-based classification

method for HSRRS images with various changes and multi-

scene classes. In order to develop corresponding classifica-

tion methods in urban built-up areas, we adopted four DNN,

i.e., CNN, CapsNet, SMDTR-CNN, and SMDTR-CapsNet.

The performances of the proposed methods have been con-

firmed in terms of accuracy, kappa coefficient, precision,

and a confusion matrix. The results revealed that SMDTR-

CNN obtained the best overall accuracy (95.0%) and kappa

coefficient (0.944), while also improving the precision of

parking lot and resident samples by 1% and 4%, respectively.

There are still some problems to be studied further, for

example just the SMDTR is applied to improve the capability

of CNN and CapsNet method, and the ensemble of differ-

ent models could be considered for better classification task

further. What’s more, more complex net such as AlexNet,

VGGNet could be used in HSRRS image classification

task.
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