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With the introduction of autonomy into the precision agriculture process, environmental
exploration, disaster response, and other fields, one of the global demands is to navigate
autonomous vehicles to completely cover entire unknown environments. In the previous
complete coverage path planning (CCPP) research, however, autonomous vehicles need
to consider mapping, obstacle avoidance, and route planning simultaneously during
operating in the workspace, which results in an extremely complicated and
computationally expensive navigation system. In this study, a new framework is
developed in light of a hierarchical manner with the obtained environmental information
and gradually solving navigation problems layer by layer, consisting of environmental
mapping, path generation, CCPP, and dynamic obstacle avoidance. The first layer based
on satellite images utilizes a deep learningmethod to generate the CCPP trajectory through
the position of the autonomous vehicle. In the second layer, an obstacle fusion paradigm in
the map is developed based on the unmanned aerial vehicle (UAV) onboard sensors. A
nature-inspired algorithm is adopted for obstacle avoidance and CCPP re-joint. Equipped
with the onboard LIDAR equipment, autonomous vehicles, in the third layer, dynamically
avoid moving obstacles. Simulated experiments validate the effectiveness and robustness
of the proposed framework.

Keywords: Deep learning-based path generation, complete coverage path planning, obstacle approximation and
fusion, nature-inspired path planning, velocity-based local navigator, re-joint paradigm

1 INTRODUCTION

In real-world applications such as environmental exploration (Rose and Chilvers, 2018), environmental
sensing (Stolfi et al., 2021) and disaster response (Carrillo-Zapata et al., 2020), and other autonomous
vehicle applications such as agricultural harvesting and forest surveillance, prospecting, search and
rescue vehicles, concurrent complete coverage path planning (CCPP), and mapping are needed to
navigate a vehicle to cover every part of the terrain in unknown environments (Wang et al., 2019; Iqbal
et al., 2020; Cèsar-Tondreau et al., 2021; Meng, 2021). In previous CCPP research, the vehicle needs to
concurrently consider mapping, obstacle avoidance, and route planning intractably while traversing in a
workspace, which makes the entire navigation system fairly complicated and computationally expensive
(Lee et al., 2014; Poonawala and Spong, 2017; Niyaz et al., 2019; Jiang et al., 2020). Particularly, in real-
time navigation, re-planning with unforeseen moving obstacles may be computationally expensive. This
study proposes a new framework that tackles issues of environment mapping, path generation, CCPP,
and dynamic obstacle avoidance in a hierarchical manner.
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1.1 Related Work
For decades, CCPP has undergone extensive research, and many
algorithms have emerged, such as the bio-inspired neural
network (BNN) approach, the Boustrophedon Cellular
Decomposition (BCD) method, and the deep reinforcement
learning approach (DRL). Luo and Yang (2008) developed the
bio-inspired neural network (BNN) method to navigate robots to
perform CCPP while avoiding obstacles within dynamic
environments in real time (Zhu et al., 2017). The robot is
attracted to unscanned areas and repelled by the accomplished
areas or obstacles based on the neuron activity in the BNN given
by the shunting equation (Yang and Luo, 2004; Li et al., 2018).
Without any prior knowledge about the environment, the next
position of the robot depends on the current position of the robot
and neuron activity associated with its current position (Luo et al.,
2016). However, it is time- and energy-consuming for the vehicles
and requires high computing resources to process fine-resolution
mapping (Sun et al., 2018). Unlike the BNN approach, the
boundary representation method that defines the workspace is
adopted by the Boustrophedon Cellular Decomposition (BCD)
method and the deep reinforcement learning approach (DRL).
The BCD method is proposed by Acar and Choset (2002), which
decomposes the environment into many line scan partitions and
is explored through a back-and-forth path (BFP) in the same
direction. The BCD is an effective CCPP method with more
diverse, non-polygonal obstacles in workspace. In trapezoidal
decomposition as a cell, it is covered in back-and-forth patterns.
For a complex configuration space with irregular-shaped
obstacles, BCD needs to construct a graph that represents the
adjacency connections of the cells in the boustrophedon
decomposition. Therefore, a deep leaning-based method may
promote it to a more efficient CCPP method (Sünderhauf et al.,
2018; Valiente et al., 2020; Rawashdeh et al., 2021). Similarly,
Nasirian et al. (2021) utilized traditional graph theory to segment
the workspace and proposed a deep reinforcement learning
approach to solve the CCPP problem in the complex
workspace. However, the most common shape of the
workspace is represented by polygons. As irregular areas of
non-convex polygons, they can still be decomposed into
multiple convex polygons (Li et al., 2011). Thus, the
representation of polygons is also adopted in this study to
express most workspace that needs to be explored. Such a
method simplifies the complex environments and solves the
covering irregularity for vehicles (Quin et al., 2021).

Faster R-CNN originated from R-CNN, and Fast CNN uses a
unified neural network (NN) for object detection shown in
Figure 4A. The faster R-CNN avoids using selective search,
which accelerates region selection and further reduces
computational costs. The faster R-CNN detector is mainly
composed of a region proposal network (RPN), which
generates region proposals, and a network that uses these
generated feature patches (FP) for object detection. The region
of interest (ROI) pooling layer is used to resize the feature patch
(RFP), finally concatenated with a set of fully connected (FC)
layers in our study. The two fully connected NN layers are utilized
to refine the location of the bounding box and classify the objects.
Faster R-CNN effectively uses the bounding box in our studies to

identify and locate vehicles and obstacles in the images. This is
also applied to the map obtained from farms, search, and rescue
scenes to distinguish the vehicles, machines, and human beings
on the image.

Although the above-mentioned CCPP approaches have
achieved remarkable results, such approaches may still be sub-
optimal when the starting and target positions required by the
vehicle are included in the path. Especially for multiple sub-
region exploration tasks shown in Figure 1A, the task is
considered continuous to explore the four sub-regions, and the
starting point of the next sub-region to be explored is the target
point of the last sub-region as shown by the red circles in
Figure 1. The selection of intermediate target points for
multiple polygonal exploration areas is still an open problem
because it needs to consider the shape and relative position of
each sub-region, as well as the entrance and exit of the exploration
area (Graves and Chakraborty, 2018). For simplicity, the
entrances of the next sub-region are selected as target points
here. The connection path length from the starting point to the
target point should be considered, as shown in the blue lines in
Figure 1B. In this case, ignoring the connection path may
increase the complete path length of the overall exploration
task (Xie et al., 2019). Thus, it is vital to consider the starting
and target points of the vehicle, including the exploration task,
and obtain a shorter path that effectively utilizes the limited
onboard resources. Another challenging problem that arises in
CCPP is obstacle avoidance (An et al., 2018; Wang et al., 2021).
Based on the excellent optimization and search capabilities of
nature-inspired algorithms, researchers have recently explored
many nature-inspired computational approaches to solve vehicle
collision-free navigation problems (Deng et al., 2016; Ewerton
et al., 2019; Lei et al., 2019, 2021; Segato et al., 2019). For instance,
a hybrid fireworks algorithm with LIDAR-based local navigation
was developed by Lei et al. (2020a), capable of generating short
collision-free trajectories in unstructured environments. Zhou
et al. (2019) developed a modified firefly algorithm with the self-
adaptive step factor to avoid the premature and improve the
operational efficiency of autonomous vehicles. Lei et al. (2020b)
proposed a graph-based model integrated with ant colony
optimization (ACO) to navigate the robot under the robot’s
kinematics constraints. Xiong et al. (2021) further improved
ACO using the time Taboo strategy to improve the algorithm
convergence speed and global search ability in a dynamic
environment. Cèsar-Tondreau et al. (2021) proposed a
human-demonstrated navigation system, which integrates the
behavioral cloning model into an off-the-shelf navigation stack.

1.2 Proposed Framework and Original
Contributions
This study proposes a progressive three-layer framework for the
CCPP navigation of autonomous vehicles. Initially, in the first layer,
a new type of deep learning-based complete coverage path
generation method is developed to generate complete coverage
trajectories without considering obstacles. A feature learning-
enabled fully convolutional deep neural network (FCNN) model
is developed to identify the edges of the workspace to be explored, in
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combination with the starting and target positions of the vehicle to
estimate waypoints given an occupancy grid map and generate the
CCPP paths. The generated paths are references to guide the vehicle
in the following layers to reset and continue CCPP with obstacle
avoidance once traversing in the vicinity of obstacles, which
improves the computational efficiency of vehicle re-planning.

In the second layer, the obstacles in the environment are
considered in this stage. A nature-inspired path planning method
is proposed to perform autonomous navigation of vehicles in the
environment. Particularly, the vehicle deeply re-plans when it
traverses in the vicinity of obstacles. In this study, the Bat
algorithm is utilized to plan a collision-free trajectory in light
of the size and shape of the obstacles. Once the vehicle completes
the re-planning near the obstacles, a new re-joint mechanism is
developed to enable the vehicle to re-join complete coverage
trajectories. Additionally, an environment-based obstacle
approximation and fusion paradigm is developed using image
processing of feature extraction. Based on the proposed obstacle
approximation and fusion method and the nature-inspired path
planning method integrated with the re-joint mechanism, the
autonomous vehicle takes less computational effort for optimal
path planning on the map populated with obstacles.

Furthermore, a reactive local navigator in the third layer is
developed to dynamically update the path and map in real time, so
as to avoid moving obstacles and unknown obstacles in the dynamical
environment. It dynamically adjusts the speed and direction based
on onboard LIDAR sensors to navigate autonomous vehicles locally,
thereby benefiting obstacle avoidance and safety assurance.

Overall, the framework composed of three layers advances
accurately and is efficiently based on the environmental
information layer by layer. Specifically, in the first layer, only
the satellite images are needed to provide the size and shape of the
searching area and the vehicle’s initial and final positions. In the
second layer, the images obtained from the unmanned aerial
vehicle (UAV) are required to gather detailed information of the
obstacles in the environment, such as minecarts, planters, and
vehicles. The third layer is based on onboard LIDAR sensors, used

for real-time local reactive navigation of autonomous vehicles,
avoiding moving obstacles, and building maps simultaneously.
The contributions of this study are summarized as follows:

1) A hierarchical framework is proposed for the autonomous
vehicle CCPP navigation in real-time environments;

2) A deep learning-based complete coverage path generation
method is developed to generate complete coverage trajectories
without considering obstacles;

3) For the problem of obstacle avoidance, an obstacle fusion
paradigm and Bat algorithm-based path re-joint method is
proposed;

4) Regarding avoiding dynamic and unknown obstacles in real-
time environments, a local reactive navigator is introduced.

The rest of this study is organized as follows: in Section 2, the
deep learning-based complete coverage path generation method
is addressed. The second layer with regard to the nature-inspired
algorithm and re-joint mechanism is explained in Section 3.
Section 4 shows the reactive local navigator based on LIDAR
sensors, which is the third layer in our proposed framework.
Simulation and comparison studies are presented in Section 5.
Several important properties of the presented framework are
summarized in Section 6.

2 DEEP LEARNING-BASED COMPLETE
COVERAGE PATH PLANNING

In the first layer, a deep learning-based method is proposed to
generate a path with the starting and end positions while
considering the shape of the explored areas for creating the
optimal back-and-forth (BFP) coverage trajectories.

2.1 Preliminaries
In this section, the required assumptions are described for the
proposed method. The region to be explored is assumed in a 2D

FIGURE 1 | (A) Illustration of multiple sub-regions exploration task. (B) The entire CCPP trajectory of multiple sub-regions with connection paths.
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environment, and the configuration space [ for autonomous
vehicle Δ is formulated as [ ⊆ R2. For this study, the boundary
of the area to be explored is first obtained based on image
processing. There are many existing studies on edge detection
(Poma et al., 2020; Nasirian et al., 2021), proving its
practicability and reliability (Wagner and Oppelt, 2020).
Hence, this study omitted this step and the workspace is
directly analyzed. Each region is described by a standard
form of convex polygon,
ζ � {V, E},V � {1, 2, . . . , n}, E � {(1, 2), . . . , (n, 1)}, where V is
a set of vertices in clockwise order and E a set of edges. The
vehicle’s exploration range (for the task of seeding, cleaning,
rescuing, etc.) is a circle with a diameter of d. The vehicle
starting position is denoted as Ps and the end position is
denoted as Pe. The CCPP path is denoted as
ω � {F 1,F 2, . . . ,F n}, while the full CCPP path is
Ω � {Ps,ω,Pe}. There are infinite potential solutions for
covering an area known as an NP-hard problem (Arkin
et al., 2000). Therefore, a variety of search patterns have
been developed, such as star, zigzag, spiral, or BFP. The BFP
path is utilized to establish the complete coverage path with
advantages of low spatial complexity to be tracked easily by the
autonomous vehicle.

2.2 Search Direction
Previous research has mainly focused on the CCPP exploration in
the workspace to be explored while ignoring the vehicle’s starting
and end positions in real-world scenarios. However, based on
energy optimization and constraint considerations, the entire
trajectories need to be considered. Therefore, for multiple
edges of the polygons, the starting and end points of the
vehicle should be combined to determine the vehicle’s search
direction. Meanwhile, in light of the properties of the BFP-based
CCPP trajectories, the optimal trajectory lines are parallel to one
of the edges of the area (Torres et al., 2016). The procedure of the
search direction is developed in Algorithm 1, and the process
details are discussed in the following sections. The algorithm
requires searching the set of opposite vertex pairs η, such as
vertices (i, j) in Figure 2A. One of the vertexes, such as i, finds its
adjacent vertex iadj, and the BFP is formed in parallel to the line
i, iadj with the gap distance based on the vehicle exploration range
d. In this case, the search direction θ is perpendicular to i, iadj
toward the j. The function Dist (i, j) calculates LR, the total length
of the BFP trajectory in the workspace.

LR � ∑n
s�1

�������������������������
xF s+1 − xF s( )2 + yF s+1 − yF s( )2√

(1)

Then, the starting and end points of the autonomous vehicle
are enclosed in the total length L to obtain the optimal CCPP
path Ω. Notably, the optimal BFP-based CCPP trajectory is first
obtained in light of the edge of the explored polygon before
combining it with the start and end points to obtain theminimum
total length. Thus, the search direction θ of the BFP is obtained in
the range of [ − π, π] represented by dashed lines with
autonomous vehicle BFP segmentation lines, as shown in
Figure 2B.

Algorithm 1. Pseudo-code for search direction.

2.3 Deep Learning-Based Path Generation
Through the obtained BFP path segmentation line, we take the
points that are intersections of the segmentation line and the
workspace edge as a regression problem, and a fully convolutional
deep neural network is utilized to estimate the positions of
different points. In light of the turning radius of the vehicle,
as shown in Figure 3B, the global CCPP trajectories are predicted
by the neural network (NN) from the input image. The input
image with resolution M × N is first divided into an IM × IN grid
map (Figure 3A). The grid map IM × IN is h times smaller than the
input image. Each grid contains h × h pixels, and the confidence
probability C(s) denotes the confidence of the points in the grid s.
C(s) tends to zero when no point in the grid s while the
confidence probability C(s)> T (c) represents the possible
points in the grid s, where T (c) denotes the confidence
threshold. In each grid, the location of the final CCPP
trajectory point is further refined by δm and δn in accordance
with the vehicle turning radius.

The fully convolutional neural network (FCN) designed by an
input tensor X(i) is gradually convolved by a stack of n residual
reduction modules as shown in Figure 3C. Each module is
composed of a series of two-dimensional convolutional layers,
with Mish as the activation function, and the channel and spatial
attention layer, allowing the network to highlight more relevant
features. In addition, each module ends with a convolutional layer
with stride 2 to reduce the spatial dimension of the input tensor.
After n residual reduction modules, the two dimensions of the first
dimension are reduced to a factor h + 1. Therefore, we insert a
transposed convolutional layer with a stride of 2 to obtain a two-
dimensional output tensor of IM × IN (refer to Figure 3). Add a
remaining connection of the output tensor from the n − 1 block to
include important spatial information in the tensor before the last
layer. Finally, similar to a single-stage target detection network, the
output tensor Y(i) and the shape IM × IN × 3 are calculated by 1 × 1
convolution operation, and the sigmoid and tanh are utilized as the
activation of the first and last two channels, respectively. Thus, the
confidence probability C(s) obtained by sigmoid predicts the
existence of possible waypoints. In contrast, the tanh function is
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limited between −1 and +1, and the two coordinate compensations
δm and δn of each unit are calculated.

3 PATH RE-JOINT AND OBSTACLE FUSION

In the second layer, through the generated deep learning-based
coverage paths, the obstacles in the environment are considered.

3.1 Obstacle Detection and Approximation
In the field of autonomous vehicles, map information is highly
important, especially for global path planning, which determines
the accuracy of the trajectory. However, for complex environments,
such as disaster sites, many obstacles are scattered or gathered in
various places, which bring safety and computational difficulties to
the path planning of autonomous vehicles. When acquiring the

disaster area or agricultural field map through drones, we need to
retrieve map information to obtain specific locations of obstacles
and approximate and merge a large number of obstacles into
several large convex obstacles, thereby improving the efficiency of
search and exploration tasks. Especially at the disaster site, the
rescue time is limited, and it is important to quickly locate and
approximate obstacles in the complex environment. Therefore, this
section proposes an effective method for obstacle detection,
obstacle approximation, and fusion.

3.1.1 Object Detection With Bounding Box
Many methods have been developed for object detection. The
most commonly usedmethods include single shot detector (SSD),
region-based faster convolutional neural network (Faster
R-CNN), region-based fully connected network (RCF). When
these deep learning CNN models perform object detection and

FIGURE 2 | (A) Construction of BFP path. (B) BFP search direction based on the vehicle’s starting and end position.

FIGURE 3 | (A) The occupancy grid map of the workspace. (B) The computation of the CCPP path waypoint location based on vehicle turning radius. (C)Overview
of the deep learning architecture.
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classification, they will obtain a bounding box based on the
object’s shape. The bounding box provides us with the specific
location of the object in the image and the object classification to
be found. In this study, we use Faster R-CNN as our object
detection method, which has been proven an efficient and
accurate method in many fields (Alzadjali et al., 2021).

3.1.2 Obstacle Approximation and Fusion
In this section, obstacles are approximated andmerged into larger
convex-shaped obstacles. Through object detection, we can
obtain a large amount of information in the pictures, such as
inaccessible and dangerous areas. The formed map is of great
assistance to the subsequent search and distribution of ground
vehicles. However, excessively unorganized obstacle information
on the map will cause computational costs to vehicle path
planning, especially as overlapping obstacles and excessive tiny
obstacles, which are very close to each other. Therefore, it is
essential to integrate multiple tiny obstacles or overlapping
obstacles into an approximation of the overall obstacle.

The method of finding the approximated obstacles is to find
the obstacles to be integrated in the area. For example, in
Figure 4B, the trucks parked in the mining site are considered
a greater obstacle in the environment. The red bounding box is
generated by the object detection method before the
approximation method merges multiple bounding boxes into
convex obstacles enclosed in the blue lines. Unmanned aerial
vehicles (UAVs) are particularly suitable for searching large-scale
farms and dangerous areas (Hassler and Baysal-Gurel, 2019). The
detailed information of the scene generated through the photos of
the drone’s onboard camera has made great contributions to
agriculture, search, and rescue (Alzadjali et al., 2021). By merging
a large number of scattered or even overlapping bounding boxes
in the image to approximate as a convex obstacle, we need to
select a set of suitable points from the bounding box.

Assuming that the image has been gathered and recognized,
the selection of points that approximates the obstacles will not be
internal of the bounding box; thus. only the corners of the
bounding box need to be considered. We then define the four

reference points as the leftmost (Rl), topmost (Rt), rightmost
(Rr), and bottommost (Rb) points of the convex hull as shown
in Figure 5. The reference points are found by initially identifying
the boundary box of obstacles to be integrated into the area. Then,
it finds the midpoint of the bounding box of the boundary
obstacle and expands half of the short side of the rectangular
bounding box. These four reference points are extended to an
axis-aligned rectangular ABCD, where A, B, C, and D are the
intersection between the vertical line through one reference point
and the horizontal line through another reference point. These
four reference points connection lines decompose the rectangular
ABCD into four triangle sections, such as top-left triangle
ΔDRlRt. The vertex points at the top left section, top right
section, bottom right section, and bottom left section are denoted
as Ptl, Ptr, Pbr, and Pbl, respectively. Thus, the four reference
points are also denoted as Rl � Ptl0, Rt � Ptr0, Rr � Pbl0, and
Rb � Pbl0. Different h, i, j, and k, implying the different numbers
of vertices are contained in the top left, top right, bottom right,
and bottom left section, respectively. The structure Phijk to be the
set of vertices consists of the convex hull, such that from Rl to
Ptlh via a number of top left corners of the bounding boxes with
m ≤ h. Thus, the Phijk is computed in linear time using the
structures Pmijk for m ≤ h

Phijk � max Pmijk + ΔPtlmPtlhRl( ) (2)
The initial convex polygon RlRrRtRb is expanded with

multiple triangles starting from the reference point Rl and
there are O (logn) structures to compute in linear time.
Therefore, the algorithm runs in O (nlogn) time. Because the
bounding boxes in the images may overlap, this algorithm is also
applicable to overlapping bounding boxes, as shown in
Figure 5B. Therefore, our obstacle approximation and fusion
approach adaptively fuse the bounding boxes of the detected
obstacles according to the size and shape of the vehicle to rule out
the gaps that are infeasible for the vehicle to pass through. Based
on the proposed obstacle approximation and fusion method and
the nature-inspired path planning method integrated with the re-

FIGURE 4 | (A) Schematic illustration of the faster region-based convolutional neural network (Faster R-CNN) object detection method. (B) The obstacle
approximation for a real map. Red boxes are the bounding boxes for object detection, and the green boxes are the approximation of the objects.
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joint mechanism, the autonomous vehicle takes less
computational effort for optimal path planning on the map
populated with obstacles.

3.2 Bat Algorithm-Based Path Re-Joint
3.2.1 Bat Algorithm
The Bat algorithm (BA) is a nature-inspired population-based
meta-heuristic optimization algorithm (Yang, 2010). The search
strategy of the BA is inspired by the social behavior of bats and the
use of echolocation in foraging and avoiding obstacles. The
echolocation process of bats is addressed as follows: 1) All
bats apply echolocation to sense the distance between the
current position and different sources, in which all bats can
distinguish food/prey and background barriers intelligently. 2)
Bats automatically adjust the wavelength and frequency of their
emitted ultrasonic pulses while foraging. They fly randomly at
positionX i with speed V i, fixed frequencyQmin, and loudnessA0

and continuously adjust the pulse transmission frequency
R ∈ [0, 1] depending on the proximity to the destination. 3)
The loudness of the bats varies from a minimum positive
constant Amin to A0. Hence, the update rule for the ith bat’s
frequency Qi, speed Vτ

i , and new solution X τ
i at time step τ are

provided by

Qi � Qmin + ζ Qmax −Qmin( ) (3)
Vτ

i � Vτ−1
i + X τ−1

i − Xgbest( )Qi (4)
X τ

i � X τ−1
i + Vτ

i (5)
where ζ denotes a randomly generated number within the interval
[0, 1] and Xgbest represents the current global best position
achieved by comparing all the positions among all the bats.
Because the bats also have speed limits, the speed is bond in
[Vmin,Vmax], where Vmin � −Vmax.

In order to achieve a balance between local search and global
search capabilities, a random walk procedure is processed in local
search under certain probability. The new solution Xnew to
replace the original solution X τ

i is governed by

X new � X τ
i + ρAτ (6)

where ρ is the scaling factor which is confined to the random
walk’s step size and ρ ∈ [ − 1, 1] is a random number. Aτ is the
average loudness of all bats at time step τ. Because bats approach
their target, the amplitude of the ultrasonic pulses decreases while
the pulse rate increases; the loudnessAτ+1

i and the pulse emission
rate Rτ+1

i must be updated as the iteration proceeds, which is
defined as

Aτ+1
i � γAτ

i (7)
Rτ+1

i � R0 1 − exp −ητ( )[ ] (8)
where γ and η are positive constants.A0 andR0 are initial values
of loudness and pulse rate, respectively.

3.2.2 Obstacle Avoidance and Path Re-Joint
In order to fulfill a high degree of autonomy in autonomous
vehicle navigation, environment modeling or map construction is
necessary to enable autonomous vehicles to generate collision-free
trajectories. Therefore, in this section, the BA is utilized to perform
autonomous navigation of vehicles in the grid-based environment;
especially, the vehicles deeply re-plan when they traverse in the
vicinity of obstacles. The grid map is composed of equal-sized grids,
referred to as the generated CCPP path in Section 2. It should be
noted that the grid occupied as obstacles is an inaccessible area in
Figure 6. When an obstacle is presented in front of the vehicle, the
current grid is defined as the initial pointS, and the next point on
the unoccupied grid on the CCPP path is defined as the target point
T. Then, the re-joint pathP is defined by the initial pointS, target
point T, and n waypoints among them:

P � S, wp1, wp2, . . . , wpn,T[ ] (9)
Each point is defined by its grid coordinates (x, y), and the

center of the grid pixel is regarded as a grid point. Path length is
defined by the sum of the Euclidean distance between two
adjacent points on the trajectory:

FIGURE 5 | The illustration of obstacle fusion. (A) The final obstacle fusion for a set of non-overlapping obstacles. (B) The obstacle fusion for a set of overlapping
obstacles\enleadertwodots.
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L P( ) � ∑n
i�0

���������������������������
xwpi+1 − xwpi( )2 + ywpi+1 − ywpi( )2√

(10)

where xwp0 and xwpn+1 denote starting and destination points. BA
is utilized to cut down the length of point-to-point navigations.
The trajectory is established between two points, which can be
selected from each grid centroid of the decomposed workspace.
Each point is recursively connected with the remaining points,
whereas the distances of connection lines passing through
obstacles are assigned with infinite numbers. As a result, the
point-to-point navigations with obstacles are excluded out, and
the feasible solutions are retained. The shortest paths between
each pair of points are selected from those feasible solutions
(Figure 6). The procedure of the proposed deep learning-based
CCPP is summarized in Algorithm 2.

Algorithm 2. Procedure of proposed deep learning-based CCPP.

4 REAL-TIME NAVIGATION OF
AUTONOMOUS VEHICLES

In the third layer, once the coverage trajectories are planned, a
velocity-based local reactive navigator with mapping capability is
considered to avoid moving obstacles while locally constructing

an environmental map. The environment of autonomous vehicle
navigation is dynamic, including static obstacles and moving
obstacles. The local navigation only reacts to their local
environment at any moment in time, aimed to create velocity
commands of an autonomous vehicle to traverse towards a
destination, such as the dynamic window approach of Fox
et al. (1997) and Borenstein et al. (1991). Including a sequence
of bread crumbs as local waypoints in the path planning, which
decomposes the coverage trajectories into a sequence of segments,
makes the model particularly efficient for the environment
densely populated by obstacles. In this case, a velocity obstacle
approach (VOA) for real-time autonomous vehicle navigation is
utilized in this study as our LIDAR-based local navigator (Fiorini
and Shiller, 1998). The required information is the other sensed
agents’ current position, velocity, and exact shape. The definition
of the VOA is defined as follows.

Δ represents the autonomous vehicle that needs to be
navigated, and M and N represent the dynamic obstacles
moving in the environment. Let PΔ, PM, and PN denote the
current positions of the autonomous vehicle A and dynamic
obstacles M and N , respectively. Similarly, VΔ, VM, and VN
denote the current velocity of the autonomous vehicle Δ and
dynamic obstacles M and N , respectively. The autonomous
vehicle has a fixed radius RΔ, a goal located at Pgoal

Δ , and a
preferred speed Vpref

Δ according to the road condition. To
compute the velocity obstacle (VO), Δ, M and N are mapped
into the configuration space, and the autonomous vehicle Δ is
shrunk into a point while expanding the obstacles M and N by
the radius of Δ. The VO can geometrically be interpreted in
Figure 7A. It is clear that the VO of autonomous vehicle Δ caused
by dynamic obstacle M, written as VOΔ|M, is the set of all
velocities of Δ resulting in a collision between Δ and M at some
moment in time, assuming thatMmaintains its velocity VM. Let
P ⊕ Q represent the Minkowski sum of two objects P and Q, and
let − P represent the object P appearing in its reference point:

P ⊕ Q � p + q | p ∈ P, q ∈ Q{ },−P � −p | p ∈ P{ } (11)
Let λ(P,V) represent a ray starting at position P and heading

in the direction of velocity V:

λ P,V( ) � P + tV | t≥ 0{ } (12)

FIGURE 6 | The illustration of the path re-joint mechanism.
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As shown in Figure 7A, the λ(PΔ,VΔ − VM) represents a ray
starting from PΔ and heading in the direction of the relative
velocity of VΔ − VM intersecting the Minkowski sum of M and
-Δ centered on PM. Then, velocity VΔ is in the VO of M. It
follows that if Δ chooses a velocity inside VOΔ|M or VOΔ|N , then
Δ and M or N will collide at some point in time. If the velocity
chosen is outside VOΔ|M and VOΔ|N , such a collision will never
occur. Therefore, the VO of M to Δ can be represented as

VOΔ|M VM( ) � VΔ | λ PΔ,VΔ − VM( ) ∩ M ⊕ − Δ ≠ ∅{ } (13)
The current autonomous vehicle VΔ subject to kinematics and

dynamic constraints restricts the admissible set of new velocity,
denoting this set asAS(VΔ). According to different conditions of
autonomous vehicles, such as maximum speed and maximum
acceleration, AS(VΔ) can have any shape. In Figure 7B, an
arylide yellow rectangle represents the admissible velocity set for
the current velocity VΔ. In each cycle of planning, the reactive
navigator selects a speed that lies outside of any velocity obstacles
caused throughmoving obstacles. As shown in Figure 7B, multiple
maroon areas are collision-free velocity set FS(VΔ) where
autonomous vehicles can avoid the moving obstacles M and N .

Our approach uses both the current position and velocity of other
moving obstacles to compute their future collision-free trajectories.
Obstacles are also considered in the environments, uncertainty in
radius, position, and velocity, as well as dynamics and kinematics of
the vehicles. The proposed velocity-based local navigator avoids
unforeseen moving obstacles on the planned trajectory, which re-
joins the previously planned route after it traverses in the vicinity of
the obstacle. Furthermore, each layer takes advantage of the results of
the previous layer as a reference to decrease the computational effort.

5 SIMULATED EXPERIMENTS AND
RESULTS

In this section, two simulation studies are conducted to validate
the feasibility and merit of the proposed framework. The first
simulation investigates the CCPP obtained by the deep learning
method. The second simulation, through more detailed images
obtained by drones, undertakes obstacle avoidance and re-joint

paths. Moreover, onboard LIDAR is utilized to identify moving
obstacles in the environment. The parameters of the proposed
framework are listed below. In the CCPP deep learning training,
3000 environment maps with polygonal shape areas are utilized
for training, with a resolution of 1000 × 1000 and h = 10. The
prediction made by the NN for the image is based on the spatial
dimension of 100 × 100. Parameters of BA are set as the following:
A0 � 0.1, R0 � 0.65, Qmin � 0.1, and Qmax � 0.75. Each
algorithm runs 200 times in a case, and the population size is 50.

5.1 Simulation and Comparative Studies in
CCPP Without Obstacles
In order to compare the proposedmodel with others, we compare the
proposed CCPP method with the well-known Boustrophedon
Cellular Decomposition (BCD) method (Acar and Choset, 2002).
In this section, the map is a satellite image from the North Farm of

FIGURE 7 | The illustration of velocity obstacle approach (VOA) in our model. (A) Velocity obstacles VOΔ|M and VOΔ|N for moving obstacles M and N . (B)
Admissible velocity set (AS) and collision-free velocity set (FS).

FIGURE 8 | Real-world satellite images taken from Google Maps. Three
targeted areas with specific starting and target points are assigned to CCPP
(image from Mississippi State University North Farm).
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Mississippi State University as shown in Figure 8. The starting and
target points are randomly selected. Different shapes of the targeted
areas are selected to perform coverage searches. The edges of the
targeted areas as three scenarios are highlighted in yellow, blue, and
green in Figure 8. The starting and target points are represented by
squares and stars, respectively. The exploration range d of the
autonomous vehicle is set as 5m. The shape of the targeted areas,
the starting and target positions of the autonomous vehicle are

considered. Then, the directions of the vehicle’s search of the
proposed CCPP in these three scenarios are achieved in Figures
9A–C, respectively.

In three scenarios, the proposed CCPPmethod has a shorter
path length regardless of the coverage path within the targeted
areas, the path connecting the starting and target points, and
the final total path. The trajectories of the proposed CCPP
method are shown in Figures 9A–C, respectively. The

FIGURE 9 | Real-world scenarios of autonomous vehicle CCPP trajectories in Figure 8. (A–C) Trajectories generated by proposed CCPP method. (D–F)
Trajectories generated by Boustrophedon Cellular Decomposition (BCD) method.

TABLE 1 | Performance analysis of the proposed CCPP method with Boustrophedon Cellular Decomposition (BCD) method (Acar and Choset, 2002) under different
scenarios.

Scenarios Models CCPP length in
targeted area (m)

Connection
path length (m)

Total
CCPP length (m)

Figure 9A BCD method 19615.91 552.38 20168.30

Figure 9B Proposed method 19147.27 552.38 19699.66

Figure 9C BCD method 8088.80 230.53 8319.33

Figure 9D Proposed method 7991.89 221.34 8213.23

Figure 9E BCD method 6579.39 315.20 6894.60

Figure 9F Proposed method 6480.83 168.58 6649.41

The best results compared from two models are specified in bold.
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trajectories of the BCD method are shown in Figures 9D–F,
respectively. The comparative studies are summarized in
Table 1.

The average precision (AP) metric is utilized to evaluate the
training results. A total of 3000 synthetic images with a
resolution of 800 × 800 are utilized for training and h = 8.
Then, the network is evaluated with 1000 synthetic images.
The network is trained with 200 epochs using Adam optimizer.
The learning rate is equal to 3e-4, and the batch size is 16. A
tunning point prediction is within the selected area as a true
positive (TP), while more predictions fall within the selected
range. Only one is counted as TP and all others as false positive
(FP). All ground-truths not covered by a prediction are
counted as false negatives (FN). Because different
confidence thresholds can obtain different recall and
precision values and the AP calculation is obtained by the
common definition of recall and precision, we change the
threshold value from 0 to 1 with step size 0.1. Multiple
results obtained by modifying the threshold show that recall
and precision are inversely proportional. The final confidence

threshold is set as 0.9. At a distance range of 8 pixels, the
average precision equals 0.9735.

Consequently, through the deep learning method, the turning
points of the autonomous vehicle are generated, and the final
CCPP paths are obtained, as shown in Figures 10A,B. The neural
network training and testing procedure are similar to the Deepway
model (Mazzia et al., 2021). However, the Deepway model relies
only on identifying row-based crops to manually sort the order of
waypoints that generates the final CCPP result. It remarkably limits
the usage scenarios of the model and requires additional labor time
to sort the waypoints. Our proposed model extends the range of
usage to random environments with arbitrary shape search areas
and considers the relative positions of the autonomous vehicle to
obtain the optimal CCPP path, as shown in Figure 10.

5.2 CCPP Amid Stationary and Dynamic
Obstacles
In this section, simulation studies are carried out to validate
the second and third layers of the proposed framework,

FIGURE 10 | Illustration of the final trajectory in light of the deep learning-based CCPP. (A) The final deep learning-based CCPP path regarding the targeted area in
Figure 9B. (B) The final deep learning-based CCPP path regarding the targeted area in Figure 9C.

FIGURE 11 | (A) Real-world images taken from UAVs. (B) Re-joint and collision-free CCPP trajectories.
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utilized for CCPP re-joint and obstacle avoidance in
environments with stationary and dynamic obstacles. Due
to the relatively large environment, in order to better show the
re-joining path of the autonomous vehicle, a part of the map is
truncated. More detailed information of the images is
obtained from the drones, as shown in Figure 11A, in
which haystacks and trucks are detected as obstacles.
Obstacles are then approximated and merged into a grid-
based map. The CCPP with obstacle avoidance function uses
the CCPP path obtained in the first layer as a reference to
decrease the computational effort. The proposed obstacle
avoidance method based on the BA algorithm will only be
triggered when an obstacle is presented in front of the vehicle.
The grid of the current position is taken as the starting point,
and the next grid of the CCPP reference path unoccupied by
obstacles is regarded as the target point to plan a collision-free
trajectory. The proposed method is unnecessarily to recalculate
for the complete map, which can flexibly adapt to the alterations
of obstacles in the map. The CCPP trajectory of static obstacle
avoidance is shown in Figure 11B. When there are unknown
and moving obstacles in the environment, such as the trucks in
Figure 11, the autonomous vehicles can still rely on the onboard
LIDAR to dynamically avoid obstacles and return to the original
coverage path to search the entire environment. Two specific
operations of the autonomous vehicle avoiding moving trucks
are shown in Figure 12. The autonomous vehicle, the first truck,
and the second truck are represented by dark blue circles, yellow
rectangles, and light blue rectangles, respectively. The
autonomous vehicle performs dynamic avoidance twice for
the first truck. The vehicle successfully avoids obstacles and
returns to the planned CCPP trajectory. The second truck first
stops at the original position before the vehicle avoids obstacles

according to the obstacle avoidance path planned by the second
layer of the framework. During the returning process, the truck
starts to move, and the vehicle can still avoid obstacles to the
updated truck position. These results prove that the proposed
CCPP framework is effective and efficient in coverage
navigation under real-world applications.

6 CONCLUSION AND FUTURE WORK

A new framework to tackle issues of environment mapping, path
generation, CCPP, and dynamic obstacle avoidance in a
hierarchical manner has been proposed. The proposed
framework comprises three layers that advance more
accurately and efficiently based on environmental information.
The framework adopts a layer-by-layer approach with the
intention of each layer treating the results of the previous
layer as a reference to reduce the computational effort.
Simulation studies validated the effectiveness and robustness
of the proposed framework. We are working on ROS-based
sensor configuration and implementation of this proposed model
on an actual mobile robot. Sensors being integrated include five
components: a camera, a Hokuyo LIDAR, a differential global
positioning system, a digital compass, and an inertial
measurement unit.
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