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Abstract

We study investor sentiment on a non-classical asset such as cryptocurrency using machine
learning methods. We account for context-specific information and word similarity by using
efficient language modelling tools such as construction of featurized word representations
(embeddings) and recursive neural networks (RNNs). We apply these tools for sentence-level
sentiment classification and sentiment index construction. This analysis is performed on a
novel dataset of 1220K messages related to 425 cryptocurrencies posted on a microblogging
platform StockTwits during the period between March 2013 and May 2018. Both in- and
out-of-sample predictive regressions are run to test significance of the constructed sentiment
index variables. We find that the constructed sentiment indices are informative regarding
returns’ and volatility predictability of the cryptocurrency market index.

Keywords: sentiment analysis, lexicon, social media, word embedding, deep learning, RNN

JEL Classification: G41, G4, G12

1 Introduction

Classical asset pricing theories, mainly relying on the concept of arbitrage, face challenges in the
face of a surge of new asset classes like cryptocurrencies. Compared to classical financial assets
whose fundamental value can be determined from cash flows such as dividends and earnings,
fundamental value of cryptocurrencies is harder to grasp. The techniques behind cryptocurrencies,
such as blockchain, ICOs (Initial Coin Offerings), decentralized schemes, complicate fair price
estimation.

Sentiment plays a significant role in price evolution, given possible arbitrage opportunities and
"intangible" fundamental values, see Aboody et al. (2018). Therefore reliable measurement of
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cryptocurrency sentiment is particularly of interest. Sentiment provides explanatory power on
firms’ future performance, especially when fundamental information is incomplete or biased, see
Tetlock et al. (2008); Lerman and Livnat (2010); Feldman et al. (2010); Loughran and McDonald
(2011).

There has been a growing body of research recently on predictability of markets’ dynamics using
information distilled from textual data sources. These include studies on traditional asset markets’
prediction, see Yu (2013), Plakandaras et al. (2015), Nassirtoussi et al. (2015), Persio and Honchar
(2016) as well as cryptocurrencies, see Mai et al. (2018), Cheuque Cerda and L. Reutter (2019).

News about cryptocurrencies, similar to financial news about stock markets, can be used to
construct sentiment. We use a body of text messages from social media used by the crypto
community to collect representative opinions on cryptocurrency trends. In particular, we use
StockTwits, a leading social media platform for traders and investors. Messages on the StockTwits
platform appear to have predictive value for returns; as found by Chen et al. (2018), sentiment
distilled from StockTwits’ messages performs better with respect to return predictability compared
to sentiment obtained from discussions on Reddit focusing on crypto related topics. Microblogging
users tend to react promptly to events, news and other possibly non-public information, which
allows real-time sentiment assessment.

We collect large amounts of text messages from StockTwits and then use a deep learning method
to distil the sentiment in the crypto community. This approach allows to appropriately account
for the domain-specific terms widely used by this community, such as "mining", "blockchain",
"ICO", "wallet", "shitcoin", "binance", ”hodl” as well as non-text characters that convey emotions,
such as emojis and emoticons.

A pioneer study by Chen et al. (2018) demonstrates the performance of cryptocurrency-specific
sentiment, with a domain-specific lexicon created by the TF-IDF (Term Frequency - Inverse Doc-
ument Frequency) scheme. However, the traditional bag-of-words approach does not account for
context-specific dependencies between words and therefore important information about seman-
tic structure of the sentence is lost. We therefore employ deep recurrent neural network (RNN)
sequence models such such as LSTM and GRU to learn long-term semantic and syntactic depen-
dencies in the messages. We augment these models with Word2Vec-based embeddings to speed
up calculation and allow for domain-based lexicon construction.

We create crypto-sentiment indices using a RNN predictions as well as utilizing an approach
of lexicon expansion. We extend general social media lexica by Renault (2017) viewed as seed
lexica by incorporating domain-specific terms with a certain degree of similarity in their word
embeddings. The indices we create demonstrate predictive ability with respect to logarithmic
returns of a cryptocurrency index "CRIX" developed by Trimborn and Härdle (2018) as well as its
volatility. We expand standard predictive regression models for autoregressive mean and variance
to show statistical significance of sentiment variables.

2 Language modelling framework

In this section we describe traditional and new approaches to language modelling. Several ad-
vances in natural language processing have been done recently which deliver superior performance
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compared to traditional methods such as the bag-of-words approach. Most of them are based on
deep learning and do not require extensive feature engineering but are able extract valuable
information via smart analysis of context dependencies, feature embeddings and autoregressive
factorization of textual information.

2.1 Modern approaches to language modelling

We can differentiate between classical and more recent deep-learning-based approaches to natural
language modelling for a variety of tasks. Tasks usually addressed by NLP are text classification,
word sequence modelling/next word prediction, text meaning extraction, parts-of-speech tagging.
These tasks are addressed by such classical models as bag-of-words representation combined with
linear/nonlinear classifiers (logistic regression/SVM), naive Bayes, hidden Markov models.

More advanced tasks such as machine translation, named entity recognition require understand-
ing of long-range dependencies between words in a context. Such state-of-the art techniques as
neural language models (recurrent RNN models, discussed in more detail below) and more re-
cently introduced attention-based models such as BERT and XLNet. The Bidirectional Encoder
Representations from Transformers (BERT) proposed recently by Devlin et al. (2018), have been
shown to achieve state-of-the-art results on a wide variety of NLP tasks. They apply a masked
language model in a multi-layer bidirectional "transformer" encoder proposed by Vaswani et al.
(2017) to generate context-specific word and sentence representations. Working with a BERT
model involves pre-training on a specified corpus and fine-tuning of all parameters for a specific
task. Additional layers e.g. classification layers can be trained for the purpose of sentiment anal-
ysis. An advantage of BERT is its usage of the multi-headed attention mechanism which gathers
information about the relevant context of a word and represents it in a "smart" embedding. A
disadvantage is a discrepancy between pre-training and fine-tuning phases when the "masked"
tokens used in training do not occur during fine-tuning.

Another disadvantage of BERT is that while the predictions for the masked tokens are made in
parallel, dependencies between the predictions are not learned. The XLNet approach proposed by
Yang et al. (2019) aims to improve on this aspect by capturing bidirectional context and simul-
taneously avoiding masking and independent parallel predictions. The XLNet model has three
main elements: first, bidirectional context is captured by means of permuting the autoregressive
factorization order of the input sequence. Positional encoding is used to keep track of the original
sequence order. Second, the training is improved using the so-called two-stream self-attention
mechanism: the usual self-attention mechanism described in Vaswani et al. (2017) is separated
into content and query streams and this achieves blocking the embedding content while using the
query stream to pass the positional encodings. Lastly, the segment recurrence mechanism and
relative encoding scheme of a state-of-the-art AR language model, Transformer-XL by Dai et al.
(2019), are integrated into XLNet architecture. Finally, both XLNet and BERT are quite large
models with tens or even hundreds of millions of parameters which require significant computing
capabilities to reproduce the SOTA results. GPUs/TPUs counted in numbers equal to batch size,
with large amounts of RAM have been used for training and fine-tuning the pre-trained models.

Modern deep learning-based methods are known to constantly improve their performance as the
amount of training data increases, unlike traditional learning approaches. This happens because
the usual bias-variance trade-off becomes less of a problem as the complexity of neural models can
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be set up arbitrarily large and as long as there is proper regularization in place and a large training
data set is available, both bias and variance can be reduced simultaneously without hurting
each other. This as well as the advantage of parallelization of mini-batch gradient descent and
architecture flexibility make modern deep learning-based methods the tool of choice for language
modelling when large amounts of text data can be harvested from online messaging services.

2.2 Recurrent neural network models

Recurrent neural networks (RNN) are quite effective for natural language processing tasks because
they have "memory". They can read inputs such as words one at a time, and remember some
information/context through the hidden layer activations that are passed from one time step to
the next one. This allows a uni-directional RNN to take information from the past to process
later inputs. Another type of RNN, a bi-directional RNN, can process context from both the past
and the future time steps.

Basic RNNs are known to suffer from the problem of "vanishing gradients". This problem causes
the simple RNN to fail at capturing long-period syntactical dependencies in sentences, for instance,
between words, which are located far from each other but still having a meaningful connection.
Therefore other refined versions of RNN have been proposed, such as the LSTM (long short-term
memory) and GRU (gated recurrent unit) schemes, introduced by Hochreiter and Schmidhuber
(1997) and Cho et al. (2014), respectively. Building blocks of these RNN types are connected by
memory states which are activated or de-activated using gates. This modification enables GRU
and LSTM networks to "keep track" of syntactical/grammatical structures and remember them
for many time steps.

A general architecture of a sentiment prediction LSTM/RNN network is presented in Figure 1.
It consists of the input sequence, an embedding lookup matrix, several layers of LSTM/GRU
cells/units, an output sequence, mean pooling and softmax layers. The core of this structure are
the LSTM or GRU cells. Structures of these cells are presented in Figures 2, 3, respectively.

The LSTM architecture in Figure 2 introduces the "cell state" ct which is the memory of the cell:
it is able to keep information about the previous states of LSTM cells. The amount of information
stored in the cell state is controlled by the "gates": a forget gate ft, an input gate it, and an output
gate ot. The gates, in their turn, depend on the current input (vector representation of a word)
xt and the information about the previous cell contained in the "hidden state" ht.

At time step t, the forget gate ft determines how much of the previous state ct−1 will be kept
based on the values of the previous hidden state ht−1 and the current input xt:

ft = σ (Wfxt + Ufht−1 + bf ) , (1)

where the sigmoid function σ(x) = 1/{1 + exp(−x)} outputs a value between 0 and 1 for each
number in the cell state ct−1.

The LSTM cell generates an update to ct−1 through a new candidate value of the cell state, c̃t,
which also depends on xt and ht−1 and is created using a tanh activation:

c̃t = tanh (Wcxt + Ucht−1 + bc) , (2)
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Figure 1: General architecture of an RNN
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Figure 2: Structure of an LSTM unit

Figure 3: Structure of a GRU unit
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where tanh(x) = {exp(x) − exp(−x)}/{exp(x) + exp(−x)}.

To decide what will be stored in the next cell state ct, it is then decided, "how much" of the new
candidate state c̃t will be fed into ct. This is done through the input gate it, which, analogously
to the situation with the forget gate ft, outputs a number between 0 and 1 for each value of c̃t:

it = σ (Wixt + Uiht−1 + bi) . (3)

An updated value of the cell state ct is then a weighted sum of the previous cell state value ct−1

and the new candidate value c̃t with ft and it as weights:

ct = ft ⊙ ct−1 + it ⊙ c̃t, (4)

where ⊙ denotes element-wise multiplication.

Finally, the next value of the hidden state ht is a "filtered" value of the cell state ct, which is put
through the tanh activation and multiplied element-wise by the values of the output gate ot:

ht = ot ⊙ tanh(ct), (5)

ot = σ(Woxt + Uoht−1 + bo). (6)

The resulting hidden state value ht is propagated along LSTM cells within LSTM units as well
as between the units and also upwards to the next hidden layer. The final output of a unit is a
sequence h0, h1, . . . , hT which is fed into the next layer of a deep LSTM network.

Deep LSTM network architecture captures long-term dependencies efficiently. It essentially bal-
ances information from older and newer contexts through employing the memory state: hence the
name "long short-term memory".

A similar system of equations describes the GRU architecture, which is a more parsimonious
representation of a gated RNN unit with memory. In a GRU unit shown in Figure 3, there is a
"reset gate" rt and an "update gate" zt. The latter merges the forget and input gates of an LSTM
unit together. Also the cell and hidden states are combined into one hidden state ht.

The reset gate rt controls the amount of past information contained in ht−1 which is kept at time
step t. Similarly to LSTM, The update gate zt is used to update ht through filtering ht−1 and the
new candidate value h̃t. The system of equations describing the GRU architecture is as follows:

zt = σ (Wzxt + Uzht−1 + bz) , (7)

rt = σ (Wrxt + Urht−1 + br) , (8)

h̃t = tanh (Whxt + Uhrt ⊙ ht−1 + bh) , (9)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t. (10)

Parameters of LSTM and GRU networks such as Wo, Wi, Wf , Wc, Uo, Ui, Uf , Uc, bo, bi, bf , bc

and others are found via a "backpropagation through time" (BPTT) procedure. This procedure
accumulates gradients along the input sequence x. We provide the details of the BPTT procedure
for the LSTM architecture in Appendix 6. Very similar results can be found by reasoning along
the same lines for the simpler case of GRU.
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2.3 Representation of sentence inputs

To build a language model like a sentiment prediction model for messages, input sentences must
have vector representation. The simplest approach would be to use one-hot vector representation,
where the dimension of representation vectors is the size of the vocabulary which may be quite
large.

Besides being costly to train, the language model relying on one-hot representations of terms in
the input sentence is not able to find meaningful relations between words. Therefore it makes
sense to obtain vector representations of words in a space of features of lower dimensionality than
the vocabulary size. Dense representations obtained in a context-oriented manner are able to
better reflect meaningful word analogies between words.

Several approaches have been proposed to learn dense feature vector representations of words
(word embeddings) such as latent semantic analysis, see Deerwester et al. (1990) or neural lan-
guage model methods. The former relies on singular value decomposition (SVD) to extract word
embeddings from high-dimensional term-document matrices. The latter tries to predict a word
in a sentence using a fixed "window" of context words via a feed-forward neural network with a
softmax output activation where the softmax goes over all the words in the vocabulary. The final
output of such a model is not the prediction itself, but the embedding vectors which have been
learned in the process.

The disadvantages of these methods are easy to see: the former approach requires significant
computational cost if the term-document matrix is large; furthermore, context is not explicitly
accounted for. In the latter method the primary hurdle is also the computational cost of training a
high-dimensional softmax classifier. One of the most popular proposed solutions to this problem
is the Word2Vec model introduced by Mikolov et al. (2013). It covers two ways of generating
dense embeddings: skip-gram and CBOW (continuous bag of words). In skip-gram, one predicts
the context words c1, c2, . . . , cC from a given word w. In CBOW, a word w is predicted from the
context c1, c2, . . . , cC .

Let us consider the more popular skip-gram model to illustrate Word2Vec approach. The goal
is to maximize the conditional probability p(c|w; θ) of obtaining context words given the current
word; this probability can be parameterized as a softmax:

p(c|w; θ) =
evc·vw

∑
c′∈C
c′ 6=c

ev
c′ ·vw

, (11)

where vc and vw ∈ R
d are vector representations or embeddings of c and w, respectively. The

parameters θ are vci
, vwi

for w ∈ P , c ∈ C, where P and C are the vocabulary and the set of all
contexts, respectively. The objective function to maximize is therefore

arg max
θ

∏

w∈P

∏

c∈C

p(c|w; θ). (12)

In fact, the objective in (12) is not practical as it is very computationally expensive to compute
because of the summation over all c′ in the denominator in (11). One popular solution to this
problem is to use the so-called negative sampling which randomly samples several "noise" words
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Figure 4: Structure of a Word2Vec neural model

from the corpus based on their frequency. This amounts to generating "normal" and "noise" pairs
(w, c) ∈ D and (w, c) ∈ D′, respectively, where D ∪ D′ comprises the entire corpus. Then the
negative sampling objective can be formulated as follows:

arg max
θ

∑

(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′

log σ(−vc · vw), (13)

where σ is the softmax function. For more details, see Goldberg and Levy (2014).

The Word2Vec model is graphically represented as a shallow neural network model with one hidden
layer with shared weights Ṽ for all context words c; see Figure 4. In fact, the objective in (13)
is an approximation to the original objective (12) and as such does not give optimal predictions
for context words, but tends to produce meaningful embeddings V which can be further used
in training a deep RNN model. The RNN architecture shown in Figure 1 has an embedding
layer which can be learned by the RNN training procedure. On the other hand, this layer can
be separately pre-trained via the Word2Vec algorithm and then inserted into the RNN and used
either as fixed parameters or an initialization method. Thus reduction in computational cost can
be achieved or the RNN training algorithm will converge more quickly if the embedding layer is
pre-trained.
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3 Data and preprocessing

3.1 StockTwits

StockTwits1 is a microblogging platform popular among investors and traders. It bears resem-
blance to Twitter, mut is more focused on finance-related topics. One of the features contributing
to its popularity is availability of messages and user streams related to financial assets (including
cryptocurrencies), generated by investors. According to StockTwits, more than one million users
now use the platform to share information and ideas, reaching an audience of more than 40 million
people across the financial web and social media. Conversations are organized around "cashtags"
which combine the dollar sign and tickers into unique identifiers for financial assets (e.g. $SPY
for S&P 500) and allow indexing people’s thoughts and ideas about specific assets. Users can also
express their sentiment by labeling messages as "Bearish” (negative) or “Bullish” (positive) via a
toggle button. Such labeled data benefits offer a convenient data source for textual analysis in
the context of supervised learning.

Since 2014 StockTwits have added streams and symbology for cryptocurrencies and tokens, from
100+ in the beginning to 400+ recently. This new vibrant asset class has successfully attracted
huge attention from a large investor community and newcomers. New cryptocurrencies are regu-
larly added to the list of cashtags supported by StockTwits.2 A cashtag refers to a cryptocurrency
if it ends with ".X" (e.g. $BTC.X for Bitcoin, $LTC.X for Litecoin).

It must be noted that Twitter in 2012 also launched cashtags allowing its users to follow stocks
and later cryptocurrencies. StockTwits’ cashtag feature however has existed longer as part of their
interface and has more functionality. It is also much more user-friendly for the finance-focused
community. For instance, StockTwits not only give the related cashtag streams, but also provide
assets’ current trading information, as well as a visual representation of assets’ prices over time
via an interactive graph. On StockTwits, there is an option of sorting for charts and videos.
Most importantly, on Twitter there is no option of sentiment labeling by the user which is crucial
for obtaining a dataset suitable for supervised learning purposes. All this and some other useful
features demonstrate a pronounced focus on finance experts which is more likely to attract a larger
and more relevant community of traders and investors who can provide informed opinions on the
asset price direction. For these obvious reasons we choose to use StockTwits and not Twitter as
the data source.

We use StockTwits’ application programming interface (API) to download all messages containing
a cashtag referring to a cryptocurrency. StockTwits API also provides the user’s unique identifier
for each message, the time it was posted with one-second precision, and the sentiment associated
by the user ("Bullish", "Bearish" or unclassified). Our final dataset contains 1,220,728 messages
from 33,613 distinct users, posted between March 2013 and May 2018, and related to 425 cryp-
tocurrencies. Overall, 472,255 messages are classified as bullish (38.6%) and 92,033 as bearish
(7.5%), and the rest is unclassified. The imbalance between the numbers of positive and negative
messages shows that crypto investors are optimistic on average, as previously found by Kim and
Kim (2014) or Avery et al. (2016).

1https://stocktwits.com/
2This list can be found at https://api.stocktwits.com/symbol-sync/symbols.csv.
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Figure 5: Weekly number of crypto-related messages on StockTwits and CRIX value (log scale).

Before processing After processing

$BTC.X why can’t it hold $14k ??
Shameless pumpers said 25 by Christ-
mas

cashtag why cant it hold moneytag ? ?
shameless pumpers said numbertag by
christmas

$BTC.X Merry Xmas to all coiners and
no coiners alike! 2018 is gonna be lit!!

cashtag merry xmas to all coiners and
negtag_coiners alike ! numbertag is
gonna be lit ! !

$XVG.X all greeeeeeeeb cashtag all greeeb
$NEO.X In NEO I trust!!!
https://neousd.bid/

cashtag in neo i trust ! ! ! linktag

Table 1: Pre-processing of StockTwits messages

Figure 5 shows the number of messages per week related to cryptocurrencies on StockTwits, and
the weekly average of the cryptocurrency index CRIX, see Trimborn and Härdle (2018). Investor
attention skyrocketed similar to the prices during the 2017 market boom, but declined as the prices
dropped in 2018. This indicates a certain relationship between investors’ discussion intensity on
StockTwits and crypto price movement.

3.2 Preprocessing

We follow the textual data pre-processing procedure suggested by Oliveira et al. (2016) and Chen
et al. (2018). First, all messages are lower-cased. To remove letter repetitions, which has been
shown to be a widespread feature of sentiment expression on microblogs (Brody and Diakopou-
los; 2011), sequences of repeated letters are reduced to a maximum length of 3 (for example,
"Cooooool" is truncated as "coool"). Tickers (such as "$BTC.X", "$ETH.X", etc.), currency such
as dollar or euro values, hyperlinks, numbers and mentions of users are respectively replaced by
the words "cashtag", "moneytag", "linktag", "numbertag" and "usertag". Numbers are substituted
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by a single tag since the whole set of distinct numbers is too large. For privacy reasons, all
users and URL addresses are replaced by "usertag" and "linktag", respectively. We also exclude
messages composed only of cashtags, URL links or pure punctuation. The prefix "negtag_" is
added to any word consecutive to "not", "no", "none", "neither", "never" or "nobody". Stopwords
with less potential function in the sentence, such as articles, prepositions, pronouns, are removed.
Other stopwords such as conjunctions, common adverbs and adjectives, auxiliary verbs are re-
tained, as they are important for the sentence structure which is learned by an RNN network. All
punctuation except the characters "?" and "!" is removed. Exclamation and interrogation marks
are kept as it was previously shown that they often improve lexicon accuracy, see Renault (2017)
and Table 3 of Chen et al. (2018). Table 1 shows examples of messages before and after processing.

4 Language modelling and sentiment prediction

In this section, we proceed to message modelling with RNN. We define and train several RNN
setups and select the best-performing one which is then used to build the sentiment index.

4.1 Supervised RNN setup

As noticed before, two features of StockTwits’ messages make them useful for language modelling’
research. First, they contain explicit references to the asset they are concerned with via "cashtags".
This allows us to select messages which are only related to cryptocurrencies. Second, users are
encouraged to report their sentiment corresponding to the posted message as "Bullish" (positive)
or "Bearish" (negative), which results in a large dataset suitable for supervised learning purposes.

To avoid domination of the corpus by excessively prolific users (possibly robots), we impose a
maximum proportion of 1% of the dataset per user, as suggested by Pang et al. (2002). The full
filtered dataset of 528,443 messages is randomly split into a training subset of 422,755 messages
(80% of all samples) as well as validation and hold-out test subsets of 52,844 messages in each
one (10% of all samples in each). We use the technique of stratified sampling to ensure equal
proportions of positive and negative messages in train, validation and test datasets.

Input data have an unbalanced structure: just about 16% of all labeled messages are bearish while
the rest are bullish. Various methods have been proposed to address this problem:

• down-sampling the majority class,

• over-sampling the minority class,

• more advanced techniques such as SMOTE (Synthetic Minority Oversampling Technique)
see Chawla et al. (2011).

We apply oversampling to under-represented bearish messages in the train subset. Oversampling
is not applied to the validation and test subsets; the hold-out test subset should retain the
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distribution of the real-world data, while the validation subset should have a distribution matching
that of the test subset in order to optimize with respect to the test subset.

We set up recurrent neural network models using methodology from Section 2, presented in Table
2. Two different approaches are tested: in the first one embeddings are initialized randomly from
the uniform distribution on the interval [−0.1, 0.1]. In the other they are pre-trained using the
Word2Vec model of the dimension d = 256. The context window size is chosen to be 10; sentences
of size longer or shorter than 50 words are cropped or padded with zeros to reach the length of
50.

We fix setups for LSTM and GRU RNN architectures shown in 2 which have been found to work
well after trying various other hyperparameter setups. Dropout is a state-of-the-art regularization
technique used to prevent overfitting neural networks of different architectures. The usual dropout
approach for RNNs is to randomly switch off connections between the hidden and the output
layers. Recently a recurrent dropout version has been efficiently used which drops connections
between recurrent units of the network, see Gal and Ghahramani (2015).

Word2Vec

Algorithm Skip-gram

Embedding dimension 256

Context window size 10

Number of epochs 25

Common parameters

Maximum encoded message length 50

Unknown embedding vector U [−0.1, 0.1]

Loss function Binary cross-entropy

Batch size 32

Number of epochs 20

LSTM GRU

Recurrent layers 2 Recurrent layers 3

Recurrent unit 64 Recurrent unit 128

Recurrent
dropout

50%
Recurrent
dropout

50%

Dropout 50% Dropout 50%

Activation tanh Activation tanh

Optimizer Adadelta Optimizer Adadelta

Table 2: Parameters’ setup for RNN

4.2 Estimation results

Performance metrics of the tested RNN setups are shown in Table 3. It follows that the LSTM

13

Electronic copy available at: https://ssrn.com/abstract=3310784



Precision Recall F1-score Data

LSTM
(pre-trained
embeddings)

Bullish 0.94 0.87 0.90 44,233

Bearish 0.50 0.69 0.58 8,611

Weighted avg. /
Total

0.87 0.84 0.85 52,844

GRU
(pre-trained
embeddings)

Bullish 0.96 0.66 0.78 44,233

Bearish 0.32 0.85 0.47 8,611

Weighted avg. /
Total

0.86 0.69 0.73 52,844

LSTM (random
embeddings)

Bullish 0.92 0.89 0.90 44,233

Bearish 0.50 0.58 0.54 8,611

Weighted avg. /
Total

0.85 0.84 0.84 52,844

GRU (random
embeddings)

Bullish 0.93 0.78 0.85 44,233

Bearish 0.38 0.69 0.49 8,611

Weighted avg. /
Total

0.84 0.77 0.79 52,844

Table 3: Performance metrics for RNN models

setup with word embeddings pre-trained by Word2Vec demonstrates better performance than
other setups. Performance is measured in terms of precision and recall which are standard mea-
sures of exactness and completeness of pattern recognition and classification algorithms. These
measures are suitable for ranking classification algorithms’ performance on imbalanced datasets
which is also the case for the current study. Precision and recall over both classes are calculated
as weighted averages where weights are percentages of bullish and bearish messages.

Assuming that a "true positive" (tpBe
i ) is an instance of correct prediction of a bearish message

and a "true negative" is an instance of correct prediction of a bullish message, then there is a
"false negative" (fnBe

j ) when a bullish message is classified as bearish. Accordingly, there is a
"false positive" (fpBe

k ) when a bearish message is classified as bullish. Then precision P Be and
recall RBe for bearish messages are defined as follows:

P Be =

∑
i tpBe

i∑
i tpBe

i +
∑

k fpBe
k

, (14)

RBe =

∑
i tpBe

i∑
i tpBe

i +
∑

j fnBe
j

. (15)

Similarly, the values of precision and recall for bullish messages can be found by "switching" the
confusion categories for bearish and bullish classes.

Lower precision for bearish messages is caused by a higher rate of false positives when regarding
bearish messages as positives as there are many more bullish messages ("negatives") which become

14

Electronic copy available at: https://ssrn.com/abstract=3310784



false positives.

Considering the final task of constructing the sentiment index, we prefer a lower false negatives’
rate for bearish messages to avoid underestimation of risk. In other words, we would like the
measure of recall to be higher for bearish messages. Intuitively, higher recall implies ability to
correctly identify all the relevant samples in the dataset.

LSTM model with pre-trained and randomly initialized embeddings provide similar weighted
average recall. Simultaneously the precision of the pre-trained case is higher than that of the
random case; that is, the pre-trained setup predicts bearish messages with more certainty. LSTM
specifications demonstrate better performance than GRU ones. Therefore the LSTM model with
pre-trained embeddings is chosen for sentiment index construction.

4.3 Sentiment index construction

We create an aggregate cryptocurrency sentiment index which is designed as representative opinion
from the crypto community using the StockTwits platform. We then test whether the constructed
index is relevant for future market performance and can be used to predict price and volatility
evolution of the cryptocurrency index CRIX.

There are several ways available to build a sentiment index in our framework. One is to use
a "seed" lexicon of terms with known sentiment scores and use cosine similarity to extend this
lexicon using the embedding vectors of new context-specific terms. To further illustrate this
approach, we trained the Word2Vec algorithm according to the setup given in Table 2 using
528,443 messages with a vocabulary size of 9200. Examples of Word2Vec-based seed and other
corpus term similarities are presented in Tables 4 and 5. We show 10 terms from both bullish and
bearish seed lexica most frequently used in the corpus; for each of these terms, we show 5 most
similar non-seed context-specific corpus terms according to their cosine similarities.

We use a seed dictionary of 1311 terms from Renault (2017) constructed for StockTwits forums.
The terms collected in this seed lexicon are commonly used across different assets discussed on
the forums and can be viewed as "finance domain general" lexicon. Each word in the lexicon has
a sentiment score in the interval of [−1, 1]. Then we augment it with new context-specific terms
as follows:

1. for each seed word dS, find 2 most similar non-seed words dNS using the trained embeddings,
determined by non-negative cosine similarity value CS(dS, dNS) with CS(a, b) defined as

CS(a, b) =

∑L
i=1 aibi√∑L

i=1 a2
i

√∑L
i=1 b2

i

, (16)

where a, b are numeric vectors of dimension L,

2. assign a sentiment score SW (dNS) to the non-seed word d calculated as

SW (dNS) = CS(dS, dNS) × SW (dS), (17)

with SW (dS) actually known from the seed lexicon.
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After this procedure, the seed lexicon is augmented by further 1,286 terms counting 2,597 words
in total. An illustration of these additional terms is presented in Figure 6, where context-specific
bullish and bearish terms are grouped into "word clouds" reflecting term frequency. The larger the
font of the term in the "word cloud", the higher is the frequency. Context-specific terms emerge
in the visualization and sometimes otherwise normally positive or neutral words acquire negative
connotation and vice versa.

The crypto sentiment index is quantified by averaging the sentiment scores across cryptocurrency-
related messages (where the cashtag ends with ".X" to indicate a crypto asset). The sentiment
score of an individual message m, scoreS/NS;m is calculated by averaging the sentiment weights of
both seed and non-seed cryptocurrency-specific terms within the message:

scoreS/NS;m = N−1
m

Nm∑

i=1

SW (d
(i)
S/NS,m), (18)

where Nm stands for the total number of words in the message m and d
(i)
S/NS;m denotes the ith

dS or dNS in the message m, SW is as defined in (17). Then daily sentiment index, using equal
weights of scores across messages within the same trading day t, is generated as follows:

sentexpand
t = M−1

t

m=Mt∑

m=1

scoreS/NS;m (19)

where Mt stands for total number of messages posted during the day t. The index is smoothed
using the 1-week moving average to level out idiosyncratic jumps in individual investors’ opinions.
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Terms from seed dictionary

"buy" "dip" "hold" "good" "bears" "long" "higher" "holding" "cheap" "love"

Most
similar
terms
from
corpus

"buy buy" "buy dip" "buy hold" "all good"
"poor
bears"

"going
long"

"much
higher"

"still
holding"

"coins
cheap"

" "

(0.432) (0.319) (0.348) (0.253) (0.303) (0.248) (0.327) (0.348) (0.368) (0.218)

"strong
buy"

"on dip" "hold hold" "oh man" "bulls" "hodl long"
"symmetri-

cal
triangle"

"commis-
sion"

"so cheap"
"buy

volume"

(0.258) (0.301) (0.249) (0.244) (0.265) (0.232) (0.221) (0.206) (0.278) (0.211)

"view
today"

"easy
work"

"usd10380"
"really
good"

"hibernat-
ing"

"lasts" " "
"sale

limited"
"holly

satoshi"
" "

(0.246) (0.256) (0.230) (0.234) (0.260) (0.218) (0.215) (0.202) (0.211) (0.208)

"mar-
ketout-
look"

"more dip"
"guys
hold"

"B" "jealousy" "hold long" " " "70k"
"dumb
bears"

" "

(0.228) (0.239) (0.219) (0.225) (0.243) (0.203) (0.215) (0.192) (0.204) (0.200)

"holding
ico"

"big dip" "hodl"
"loading

zone"
"go home" " "

"nice con-
solidation"

"getting
close"

"nakamoto
"

" "

(0.228) (0.226) (0.216) (0.208) (0.233) (0.199) (0.211) (0.183) (0.198) (0.199)

Table 4: Most similar corpus terms related to bullish seed terms (cosine similarity in brackets)
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Terms from seed dictionary

"sell" "bulls" "dump" "shit" "sold" "short" "drop" "crash" "scam" "bearish"

Most
similar
terms
from
corpus

"sell sell" "bears"
"pump
dump"

"piece shit"
"panic
sold"

"big short" "big drop"
"bitcoin
crash"

"irrational"
"still

bearish"

(0.325) (0.265) (0.374) (0.292) (0.277) (0.261) (0.287) (0.261) (0.236) (0.293)

"dump
dump"

"most
bears"

"dump
dump"

"past
hours"

"glad sold" "futures" "go down" "recover" "trash"
"short
term"

(0.243) (0.241) (0.280) (0.210) (0.248) (0.237) (0.224) (0.246) (0.232) (0.241)

" " "reversal" "BB" "absurd" "shoulda" "squeezed" "didn sell"
"flash
crash"

"crooks" " "

(0.231) (0.239) (0.231) (0.209) (0.245) (0.215) (0.212) (0.217) (0.220) (0.226)

" " " "
"another
pump"

" "
"bought

19k"
"reversing" "bounce" "plummet" "shitcoin" "lower low"

(0.221) (0.222) (0.210) (0.200) (0.241) (0.210) (0.209) (0.209) (0.217) (0.216)

"want sell" "ha ha" "whales" "lolll" "dumped"
"hey

bears"
"tried
warn"

"real
value"

"ponzi
scheme"

"red day"

(0.220) (0.216) (0.198) (0.199) (0.221) (0.207) (0.207) (0.197) (0.213) (0.215)

Table 5: Most similar corpus terms related to bearish seed terms (cosine similarity in brackets)
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Figure 6: Word clouds for bullish (top) and bearish (bottom) context-specific terms augmenting the seed lexicon

As a baseline case, we also calculate scoreS;m and the corresponding sentseed using only the
sentiment weights of the seed terms.

Another approach to constructing the sentiment index is to use a trained RNN model to predict
sentiment labels of unlabeled messages which constitute about 60% of the StockTwits’ messages’
dataset. We use the LSTM setup with pre-trained Word2Vec embeddings shown previously to have
the best performance for this purpose. Aggregated sentiment is constructed in the following way:
we obtain the number of bullish and bearish messages on day t: MBu

t and MBe
t , respectively. Each

quantity includes both known and predicted sentiments of each class. Then we test 2 sentiment
measures calculated from MBu

t and MBe
t :

1. as a logarithmic rate of change of the difference between the number of bullish and bearish
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messages D̃Mt
= DMt

+ Dadj on a day t, where DMt
= MBu

t − MBe
t , Dadj =

∣∣∣∣∣min DMt

t

∣∣∣∣∣ + 1

is an adjustment to avoid non-positive values:

sentlstm1
t = log

(
D̃Mt

D̃Mt−1

)
, (20)

2. as an alternative "bullishness" measure proposed by Antweiler and Frank (2004)

sentlstm2
t = log

(
1 + MBu

t

1 + MBe
t

)
. (21)

Many more alternative ways to construct the sentiment index can be considered such as taking
the maximum score rather than averaging sentiment scores across messages. Another way would
be to also come up with a different linear/non-linear function of various aggregate measures of
bullish/bearish messages. We leave these endeavors for future research.

In the next section, we perform econometric analysis of predictability of the cryptocurrency index
CRIX using three sentiment measures defined above.

5 Crypto sentiment index and asset return predictability

Figure 7 shows the time series of the crypto sentiment index and the log-returns of CRIX over
time. We would like to find out if the sentiment index has value regarding predictability of the
cryptocurrency index returns.

5.1 Return predictability of crypto assets

We consider the standard predictive regression model which is formulated as follows:

rm,t+1 = α + β · sentt + φ · Zt + ǫt+1, (22)

where rm,t+1 is the log return of CRIX, Zt is a vector of control predictors which includes the
logarithm of message volume (MsgV ol) and the moving average of rm,t (MA) as suggested by
Detzel et al. (2018). Furthermore, sentt is one of the sentiment measures defined by sentseed,
sentexpand, sentlstm1 and sentlstm2. Our main goal is to test the significance of β, after controlling
for Zt.

Table 6 shows the results of in-sample predictive regressions using the sample period from August
2014 to May 2018. Three sentiment measures quantified by sentseed, sentexpand, sentlstm1 and
sentlstm2 are reported. By comparing their significance, we observe that the sentiment indices
built using domain-specific information all make a more significant contribution to CRIX return
predictability compared to the domain-general sentseed measure built using only the seed lexicon.

The best significance results are achieved for sentexpand, the measure constructed using the ex-
panded lexicon. It appears that including domain-specific information in the form of lexicon
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expansion contributes information relevant for return prediction. Chen et al. (2018) discover that
topics contributing to predictability are related to the financial aspects such as market activi-
ties and transactions, whereas discussions about technology-related topics (blockchain, mining,
wallets) on Reddit are less informative regarding short-run predictions.3

Research by Chen et al. (2018) confirms the value of StockTwits for market return predictability.
Topics discussed there reflect investors’ outlook from global and industrial perspectives, which is
relevant for future price dynamics. With sentiment being considered, we find that explanatory
power of the technical indicators proposed by Detzel et al. (2018) has disappeared; message
volumes of StockTwits, as a proxy for market attention, cannot provide additional information
with regards to return predictability.

Out-of-sample predictive performance is a natural robustness check for in-sample predictions. A
model with good in-sample predictive performance may suffer from overfitting, so out-of-sample
performance is a useful diagnostic tool. Welch and Goyal (2007) produced a comparison between
a model exclusively relying on the historical average and a model with exogenous predictors. They
proposed an out-of-sample R-squared statistic to test this comparison:

R2
oos = 1 −

MSEA

MSEN

, (23)

where MSEA is the mean squared error of the model with exogenous regressors, MSEN is the
mean squared error of the historical average model. Obviously, if the augmented model yields
an MSE similar to that of the historical mean model, the additional information gain from the
predictive model is limited. We therefore look for predictive models whose mean square errors
are smaller than those obtained from the historical average-based models.

Given an estimation window of 1 year, out-of-sample forecasts for the future return are recursively
computed, see Spiegel (2008). The out-of-sample period is from August 2015 to May 2018. The
results of out-of-sample forecast evaluation for each in-sample setup are documented in Table 6.
The models with sentiment predictors sentlstm1 and sentexpand yield out-of-sample R-squared re-
sults of 0.064 and 0.055, respectively, whereas the model using the control variables and sentexpand

produces an out-of-sample R-squared of only 0.014. Therefore we can conclude that sentiment-
augmented models predominantly perform better than the baseline both in- and out-of-sample.

5.2 Return predictability of traditional assets

To answer the question whether predictability of returns given sentiment is exclusive to cryptocur-
rencies, we take stock price returns of Apple Inc. (AAPL) as a comparison benchmark for its
representative role on the social media and stock markets. Discussions about Apple in the social
media are extremely popular as it draws a lot of attention from investors and users of Apple-made
devices. For the purpose of comparison, we collect 449,761 relevant messages from 26,521 distinct
users who discuss AAPL, posted between May 2017 and January 2019. Overall, 133,316 messages
are classified as bullish (29.6%) and 48,186 as bearish (10.7%), while the remaining messages
are unclassified. Similar to the case of cryptocurrencies, the imbalance between the numbers of
positive and negative messages shows that online investors are optimistic generally.

3Reddit is a generic message board; a message board dedicated only to financial markets, covers a wider number
of topics related to cryptocurrencies including discussions about cryptocurrency technology such as the blockchain.
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Dependent variable rm,t+1 | rAAP L,t+1

sentlstm1 0.355
(0.014)

sentlstm2 0.340
(0.017)

sentexpand 0.314
(0.005)

sentseed 0.272 0.128
(0.082) (0.134)

MsgV ol -0.036 -0.030 0.032 -0.006 -0.308
(0.528) (0.586) (0.460) (0.900) (0.033)

MA Yes Yes Yes Yes Yes
R-squared 0.788 0.760 0.926 0.627 1.729

Out-of-sample R-squared 0.064 -0.133 0.055 0.014 -0.818

Table 6: Predictive ability comparisons

The table reports the results for predictive regression estimation for CRIX and AAPL log-returns. The control
variables include the returns’ moving average (MA) and message volume (MsgV ol). sentexpand, sentlstm1, sentlstm2

are defined in (19), (20) and (21), respectively. The p-values are reported in parentheses and have been computed
using Newey-West standard errors. The sample period is 2014-08-01 – 2018-05-15. The value of the out-of-sample
R-squared is shown in percent.

We use the general finance-themed seed lexicon from Renault (2017) to quantify the sentiment
toward AAPL and also test Apple’s stock return predictability both in-sample and out-of-sample.
As follows from Table 6, sentiment is not as informative compared to what we find for cryptocur-
rency. The message volume variable MsgV ol of AAPL has an effect of reverse predictability, that
is, higher message volume today means lower return tomorrow. Here high attention, reflected
by higher message volume, triggers behavioral overreaction. Although the value of R-squared is
relatively higher, it is caused by high explanatory power of message volume instead of sentiment it-
self. At the same time, out-of-sample performance is worse, which indicates adverse informational
contribution of the sentiment variable, compared to the historical average benchmark.

5.3 Sentiment and market volatility dynamics

Market fluctuations are often accompanied, preceded or followed by sharp increases in discussion
intensity on relevant online media. Therefore we can set up a hypothesis that sentiment extracted
from StockTwits’ microblogging users discussing cryptocurrency-related topics may carry predic-
tive value relative to the volatility of the underlying market. To incorporate distilled sentiment
into the dynamics of the variance process, we use squared sentiment measure as an exogenous
variable in a GARCH framework.

The sentiment-driven conditional variance dynamics are modeled as the integrated GARCH
(IGARCH) approach, Engle and Bollerslev (1986), given the non-stationary nature of the cryp-
tocurrency variance process. The property of stationarity in the second moment is violated due
to the presence of permanent shocks. The IGARCH model is specifically suited to address the
issue of highly persistent variance.
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Figure 7: Co-movement between CRIX return and sentiment index (weekly)
The sentiment measure constructed via RNN prediction defined in (20) is demonstrated.

The IGARCH setup with an exogenous variable Xt can be formulated as follows:

et = yt − Et−1yt, (24)

et = Ztσt, Zt ∼ t(ν),

σ2
t+1 = αe2

t + (1 − α)σ2
t + θXt, (25)

where 0 < α < 1, Et−1 is the expectation operator conditional on information available at t − 1,
σ2

t represents the conditional variance of the process at time t, t(ν) refers to the zero-mean t
distribution with ν degrees of freedom. The exogenous variable Xt here is the squared sentiment
measure (sentseed)2, (sentexpand)2, (sentlstm1)2 or (sentlstm2)2. The IGARCH(1,1) specification is
chosen based on the BIC criterion.

As shown in Table 7, sentiment drives the conditional variance process only when sentiment mea-
sures accommodate the domain-specific information, and the findings exclusively hold for cryp-
tocurrency. General finance-related sentiment performs worse for the crypto asset class. In other
words, volatility fluctuations in this market are more attributed to domain-specific sentiment.

In Figure 7, the co-movements between the CRIX index returns and a sentiment index are shown.
Figure 8 displays the dynamics of the conditional volatility of the CRIX index along with its ab-
solute returns. The variance dynamics in the specification of (25) driven by sentiment (sentexpand)
is very similar to the dynamics of the absolute return-based realized volatility of the cryptocur-
rency index. The crypto market experienced a number of large fluctuations starting from 2017
until the first quarter of 2018. The sentiment-driven volatility model is capable of capturing these
fluctuations quite well.

6 Conclusion

In this paper, we study market sentiment of cryptocurrency investors and traders on the Stock-
Twits platform. We apply machine learning methods such as recurrent neural networks (RNNs)
to construct sentiment indices reflecting opinions of the cryptocurrency community on the market
through time. Next, we integrate the newly built sentiment indices into predictive regressions for
autoregressive mean and variance of the returns of the CRIX cryptocurrency index.
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Coefficient Estimate Robust std p-value
CRIX

X = (sentlstm1)2

α 0.16754 0.02579 0.000
θ 0.00118 0.00049 0.019
ν 3.34760 0.19149 0.000

X = (sentlstm2)2

α 0.16953 0.02585 0.000
θ 0.00081 0.00034 0.016
ν 3.28249 0.19194 0.000

X = (sentexpand)2

α 0.14926 0.01831 0.000
θ 0.00021 0.00009 0.027
ν 3.65245 0.21875 0.000

X = (sentseed)2

α 0.12015 0.02177 0.000
θ 0.00421 0.00336 0.192
ν 3.71465 0.20182 0.000

AAPL
X = (sentseed)2

α 0.14032 0.10555 0.183
θ 0.00146 0.00134 0.277
ν 3.82638 0.57326 0.000

Table 7: Estimated coefficients of IGARCH(1,1) model

The robust version of standard errors (robust std) are based on the method of White (1982).

Figure 8: Sentiment-driven conditional volatility versus absolute return
The sentiment measure quantified by the extended lexicon defined in (19) is demonstrated.
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We observe that the RNN LSTM setup with a pre-trained embedding layer gives the best pre-
dictive performance over other RNN setups with GRU or LSTM units, pre-trained or randomly
initiated embeddings. This setup yields a higher recall with respect to bearish messages while
also demonstrating high accuracy. Such an outcome is preferred for the imbalanced dataset with
most of self-reported sentiment being positive, while bearish messages are under-represented.
Errors in prediction of bearish messages are more costly because they directly transform into
under-estimation of downside risk.

We set up two types of predictive regressions for the cryptocurrency index’ log-return time series:
for the autoregressive mean and variance. In the first case, adding the constructed sentiment index
variables to the set of the regressors significantly contributes to predictability of the log-returns
both in- and out-of-sample. In the second setup, we find that there is presence of unit root in the
GARCH specification of cryptocurrency index’ returns’ volatility. We therefore use an IGARCH
approach with squared sentiment as an additional predictor. We find that sentiment contribution
to crypto volatility prediction is significant. The sentiment-driven volatility model is capable of
capturing the actual fluctuations of absolute returns of the cryptocurrency index.
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Appendix

Backpropagation through time (BPTT) for LSTM

We predict the probability of a bullish message yT as ŷT = σ(WhhT +bh), where hT = oT ⊙tanh(cT ),
according to the above. A suitable loss function is the binary cross-entropy loss over samples n:

ET = −
∑

n

y
(n)
t log(ŷ

(n)
T ) + (1 − y

(n)
t ) log(1 − ŷ

(n)
T ). (26)

In the current case we deal with the many-to-one LSTM architecture: we predict a single value
ŷT for each sequence, so the backward pass is simplified to the last time point T only compared
to the backward pass for a many-to-many architecture.

We need to update Wo, Wi, Wf , Wc, Wh, Uo, Ui, Uf , Uc, bo, bi, bf , bc, bh via a gradient descent
approach by updating their gradients along the input sequence x1, . . . , xT . We can start by
deriving the backward pass equations for sample n and then apply stochastic gradient descent to
update the parameters for all n.

Using equations (1) - (6), the backward pass equations are as follows:

∂E
(n)
T

∂Wo

=
∑

t

δot ⊙ ot ⊙ (1 − ot) ⊗ xt, (27)

∂E
(n)
T

∂Wi

=
∑

t

δit ⊙ it ⊙ (1 − it) ⊗ xt, (28)

∂E
(n)
T

∂Wf

=
∑

t

δft ⊙ ft ⊙ (1 − ft) ⊗ xt, (29)

∂E
(n)
T

∂Wc

=
∑

t

δc̃t ⊙ (1 − c̃2
t ) ⊗ xt, (30)

∂E
(n)
T

∂Uo

=
∑

t

δot ⊙ ot ⊙ (1 − ot) ⊗ ht−1, (31)

∂E
(n)
T

∂Ui

=
∑

t

δit ⊙ it ⊙ (1 − it) ⊗ ht−1, (32)

∂E
(n)
T

∂Uf

=
∑

t

δft ⊙ ft ⊙ (1 − ft) ⊗ ht−1, (33)

∂E
(n)
T

∂Uc

=
∑

t

δc̃t ⊙ (1 − c̃2
t ) ⊗ ht−1, (34)

∂E
(n)
T

∂Wh

= hT · (ŷT − yT ). (35)

where δot = ∂E
(n)
T /∂ot, δit = ∂E

(n)
T /∂it, δft = ∂E

(n)
T /∂ft, δc̃t = ∂E

(n)
T /∂c̃t are found as follows
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using the chain rule:

δot = δht ⊙ tanh(ct),

δit = δct ⊙ c̃t,

δft = δct ⊙ ct−1,

δc̃t = δct ⊙ it.

In the above, we used the facts that ∂ tanh(x)/∂x = 1−tanh2(x) and ∂σ(x)/∂x = σ(x)(1−σ(x)).

Furthermore, ∂E
(n)
T /∂bh = ŷT − yT ; gradients for bo, bi, bf , bc, bh are obtained by removing outer

products with xt and ht−1 from equations (27)-(34), respectively.

Finally, derivatives with respect to the memory state ct, the hidden state ht and the input xt are
found as follows:

δct = δht ⊙ ot ⊙
(
1 − tanh2(ct)

)
, (36)

δct = δct + ft+1 ⊙ δct+1, (37)

δht−1 = U⊤
f · δft + U⊤

i · δit + U⊤
o · δot + U⊤

c · δc̃t, (38)

δht−1 = δht−1 + Wh · (ŷt−1 − yt−1), (39)

δxt = W ⊤
f · δft + W ⊤

i · δit + W ⊤
o · δot + W ⊤

c · δc̃t. (40)

Subtle details of LSTM backward pass implementation are contained in (37) and (39). Unlike
GRU, in LSTM framework gradients are propagated via both hidden h and memory c channels;
(37) reflects the accumulation of gradients via the memory state which is responsible for the
transfer of "memory" along the sequence x. In a more general many-to-many framework, (37)

follows from the chain rule for a function of several variables; for the error function E(n) =
∑

t E
(n)
t

along all t:

∂E(n)

∂ct

=
∂E

(n)
t

∂ct

+
∂E

(n)
t+1

∂ct

,

=
∂E

(n)
t

∂ct

+
∂E

(n)
t+1

∂ht+1

∂ht+1

∂ct+1

∂ct+1

∂ct

,

= δct + δct+1 ⊙ ft+1.

In fact, the first term disappears in the many-to-one architecture and only the second term from
the last step fT ⊙ δcT is propagated backwards from end to start of x.

Furthermore, (39) describes propagation of gradients via the hidden state. At each point t, both
inputs from (38) and loss function (26) are taken. To arrive at δht, inputs from the current loss
and next-step δht−1 are added together. Clearly, in the many-to-one architecture, δht = δht−1 for
all t except the last T and δhT = Wh · (ŷT − yT ).

In a deep LSTM network, the gradient δxt will be used to propagate errors down to lower hidden
layers. Thus, extension to networks with more one one layer such as one shown in Figure 1, is
straightforward.

Finally, we can apply a gradient descent algorithm such as θ = θ − αδθ with a learning rate α
and δθ = {δWo, δWi, δWf , δWc, δWh, δUo, δUi, δUf , δUc, δbo, δbi, δbf , δbc, δbh}.
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