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ABSTRACT Over the last decade, Passive Optical Networks (PONs) have emerged as an ideal candidate

for next-generation broadband access networks. Meanwhile, machine learning and more specifically deep

learning has been regarded as a star technology for solving complex classification and prediction problems.

Recent advances in hardware and cloud technologies offer all the necessary capabilities for employing deep

learning to enhance Next-Generation Ethernet PON’s (NG-EPON) performance. In NG-EPON systems,

control messages are exchanged in every cycle between the optical line terminal and optical network units

to enable dynamic bandwidth allocation (DBA) in the upstream direction. In this paper, we propose a novel

DBA approach that employs deep learning to predict the bandwidth demand of end-users so that the control

overhead due to the request-grant mechanism in NG-EPON is reduced, thereby increasing the bandwidth

utilization. The extensive simulations highlight the merits of the new DBA approach and offer insights for

this new line of research.

INDEX TERMS Deep learning, dynamic bandwidth allocation, machine learning, NG-EPON, optimization,

PON, simulations.

I. INTRODUCTION

According to Cisco’s Visual Networking Index forecast,

the global Internet traffic, which amounted to approximately

27 Tbps in year 2016, will reach a whopping 106 Tbps by

year 2021 [1]. This unprecedented growth in Internet traffic

combined with the advancement in the backbone network,

have accentuated the bottleneck in the first/last mile. Over the

last decade, Passive Optical Network (PON) has been viewed

as the most promising solution to the access bottleneck prob-

lem. More notably, the Ethernet PON family (i.e., 1G-EPON,

10G-EPON, and 100G-EPON) has been considered the most

promising PON variant, due to its cost effectiveness, high

bandwidth capacity, and ability to efficiently support quality-

of-service (QoS) [2].

Next-Generation EPONs (NG-EPON) are expected to sup-

port an increasing number of users, provide much higher

data rates, and support stringent QoS requirements for new

and diverse range of applications (e.g., Tactile Internet).

Accommodating all these requirements would increase the
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complexity of NG-EPON systems; thus, ‘‘efficiently cus-

tomized’’ NG-EPONs can become the new trend. That is,

traditional ‘‘one-size-fits-all’’ approaches will not work, and

optimizing the different aspects of data transmission in

NG-EPONs to provide better services to larger number of

users while being energy and bandwidth-efficient is not an

easy task. One of the most powerful tools that could help

address the foregoing challenges and which has recently

begun to be adopted in optical networks in general [3]–[7]

and PONs in specific is machine learning [8]–[15]. In partic-

ular, deep learning has been gaining popularity as a stellar

approach for solving complex classification and prediction

problems. Given sufficiently-large training data, deep neural

networks can be trained to optimize some objective function

by exploiting hidden or implicit patterns in the training data.

The huge amount of data that can be collected by monitoring

different parameters in NG-EPON make machine learning a

great candidate for network performance optimization.More-

over, recent advances in GPU technology and Cloud Comput-

ing provide the processing and storing capabilities needed for

training computationally-expensive machine learning models

such as the deep learning ones [16].
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FIGURE 1. Typical NG-EPON architecture [17].

As illustrated in Fig. 1, a typical NG-EPON has a tree

topology that comprises an Optical Line Terminal (OLT)

residing at the Internet Service Provider (ISP)’s central

office (CO), and connecting via a passive optical splitter a

set of Optical Network Units (ONUs) located at the end-

users’ premises. The transmission in the downstream direc-

tion is typically performed by the OLT via broadcasting

data to the ONUs using time division multiplexing (TDM);

whereas in the upstream direction, TDM and/or wavelength

divisionmultiplexing (WDM) can be employed, coupledwith

a dynamic bandwidth allocation (DBA) scheme. The com-

munication between the OLT and the ONUs is conducted via

the Multi-Point Control Protocol (MPCP), which enables the

ONU to send a REPORT message to the OLT, informing it

about its upstream bandwidth demands. In return, the OLT

would respond with a GATE message granting the ONU a

time slot. This exchange happens in a cyclic manner, which

causes a control bandwidth overhead that may be large when

the network is provisioned with a large number of ONUs and

long EPON distances [18]. The overhead may vary depend-

ing on the employed DBA scheme. For instance, with online

schedulers (i.e., where the OLT schedules grants ‘‘on-the-

fly’’ without waiting until all the REPORT messages are

received; e.g., IPACT [2]), the idle time and subsequently the

packet delay are reduced. However, ensuring fairness among

ONUs and supporting QoS is not easily attainable as the

OLT would lack a holistic view of all the ONU demands.

This problem is resolved using offline schedulers, where the

OLT waits until all the REPORT messages are received,

and then preforms DBA and schedules grants accordingly.

This enables the OLT to support QoS and enables fairness

among ONUs, at the expense of decreased channel uti-

lization due to the control overhead between transmission

cycles [18], [19].

In this paper, we propose a novel DBA scheme that

employs deep learning (thus-called Deep-DBA) with the

offline scheduler to improve the network bandwidth uti-

lization so as to provision more users and/or push more

services into the network. More specifically, we build

a Long-Short Term Memory (LSTM) Recurrent Neural

Network (RNN) [20] and train it to predict the bandwidth

requests of ONUs for a certain number of future cycles based

on past cycles. This gives the OLT a holistic view of the

requests of all the ONUs for the predicted future cycles, and

allows it to schedule future time slots without requiring the

ONUs and the OLT to exchange REPORT/GATEmessages in

every cycle. Extensive simulation results highlight the merits

of the new approach and show how Deep-DBA is able to

preserve the advantages of offline DBAs, while achieving

higher bandwidth utilization compared to online schemes.

More specifically, the main contribution of Deep-DBA is

reducing the bandwidth overhead. This bandwidth gain can

be used to provision more users and/or services in the

network. The other contribution is that Deep-DBA is an

offline scheme but at the same time exhibits a similar per-

formance to online schemes in terms of throughput and

delay.

The rest of the paper is organized as follows. In Section II,

we present a survey of the related state-of-the-art works.

Section III presents the proposed Deep-DBA scheme. Exten-

sive simulation and experimental results are presented in

Section IV. Finally, we conclude the paper and discuss future

extensions in Section V.

II. RELATED WORK

In this section, we review the state-of-the-art works that

employ machine learning to enhance the operation and per-

formance of bandwidth allocation in PONs.

To offer better QoS support to PON subscribers, the authors

of [8] presented a service level agreement (SLA)-based

proportional-integral-derivative (PID) controller. The PID is

enhanced with an online neural network to tune the param-

eters of the PID controller. The input layer of the machine

learning model has three neurons representing the past three

error-readings of the PID. Similarly, the output layer has three

neurons representing the three parameters used to tune the

PID controller.

To optimize the upstream bandwidth allocation in PONs,

the authors of [9] proposed to dynamically (re)allocate the

SLA parameters, which are represented by the Committed

Information Rate (CIR, which is the guaranteed bandwidth

provided to the user), the Excess Information Rate (EIR,

which is some additional bandwidth that may be provided to

the user), and the Peak Information Rate (PIR, which is the

maximum bandwidth that can be assigned to a user), based

on the user profile. Namely, using K-means clustering, users

are classified into three different groups: heavy, light, and

flexible for specific periods of the day. Subsequently, excess

bandwidth is allocated to the EIR of heavy users to improve

their QoS. The limitation of this scheme is that the majority of

users were classified as flexible. This work is then extended

in [10], such that user groups are further classified based

on the bandwidth usage during weekdays and weekends.

Furthermore, a ‘‘Grey Forecasting Model’’ is employed to

predict the future bandwidth demand trend of users in the

flexible group, that is, whether they will shift or not to the
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heavy or light groups to have a more balanced distribution of

the excess bandwidth.

To predict the additional packets that may arrive during

the polling period, the authors of [11] proposed a data min-

ing forecasting DBA, so-called DAMA, which employs an

enhanced k-nearest neighbor (k-NN) algorithm. Results show

that predicting the additional bandwidth improves the net-

work performance in terms of latency and jitter.

In [12], the authors proposed an artificial neural net-

work (ANN) decision-makingmodel to predict the bandwidth

demand of an ONU. The ANN model is trained to predict

uplink latency under different network scenarios so as to

dynamically allocate bandwidth to meet low latency require-

ments.

To support Tactile services, the authors of [13] employed a

Bayesian estimation to approximate the packet inter-arrival

time for Poisson-distributed Tactile traffic in a WDM-

PON. For Pareto-distributed traffic, the authors used a

maximum-likelihood sequence estimation to approximate the

On and Off durations. The estimations are performed at the

ONU, and are then sent to the OLT using a REPORT mes-

sage. Consequently, the OLT evaluates the average bandwidth

demand of each ONU and maintains the low latency con-

straint by dynamically varying the number of active wave-

length channels.

Finally, the authors of [14] proposed a machine learning

based DBA (MLP-DBA), where an ANN model is deployed

at theOLT to identify theOn andOff periods of bursty Internet

traffic for the next polling cycle of every ONU. Based on

this prediction, the bandwidth demand during the waiting

time is evaluated. Consequently, if the sum of the requested

bandwidth plus the predicted bandwidth is greater than the

maximum bandwidth allowed for each ONU, an extra cycle

is introduced by generating additional GATE messages for

these ONUs at the beginning of the next polling cycle. This

would offer lower latency and enable the support of Tactile

services.

As can be seen, none of the above reviewed works

addressed the challenge of improving the bandwidth utiliza-

tion in PONs. In our work, we tackle this problem by making

use of deep learning (more specifically using a Long-Short

Term Memory Recurrent Neural Network) with the offline

scheduler to predict the user demands (i.e., the bandwidth

requested using REPORT messages) so as to reduce the

amount of exchanged control messages between the OLT and

ONUs, and eliminate the idle time of the offline scheduler

between predicted cycles. This would in turn reduce the

network latency and allow for provisioning more services

and/or users in the network.

III. DEEP LEARNING-BASED DBA (DEEP-DBA)

A. SYSTEM MODEL

In NG-EPON systems, in every polling cycle, each ONU

sends to the OLT a REPORT message depicting its buffering

queues’ occupancies, which reflects the end-users’ band-

width demands. Consequently, the ONUs are granted time

FIGURE 2. Proposed machine-learning based system model.

slots by the OLT in the next cycle using GATE messages;

these time slots are sized depending on the DBA discipline.

As illustrated in Fig. 2, to reduce the control messaging

overhead (which can be significant depending on the num-

ber of connected ONUs, the distance between the OLT and

ONUs, and the channel speed), we propose to employ a

machine learning model to predict the bandwidth demand of

an ONU for the nextQ cycles based on its demands in the past

P cycles. Here, bandwidth demands can be collected in three

forms: 1) incoming traffic flows/streams at the end-user side;

2) REPORT messages in every polling cycle, which depict

the bandwidth demands; and 3) GATE messages issued by

the OLT in every polling cycle, which indirectly reflect the

bandwidth demands of the ONUs. The latter two depend on

the employed DBA algorithm and the network architecture

and settings, as these affect the behavior of the network and

thus the bandwidth included in the REPORT and GATE mes-

sages. Consequently, the machine learning model is trained

on the collected data, and the obtained model is saved and

embedded as a module in the DBA so as to perform predictive

bandwidth allocation.

B. BANDWIDTH DEMAND PREDICTION USING DEEP

LEARNING

Internet traffic in NG-EPON can be seen as time series,

which corresponds to the bandwidth demand in every cycle.

To predict Internet traffic, several linear prediction techniques

based on statistical learning have been proposed [21]–[23].

Although these methods can learn the linear correlation

structure of the time series, they fail to learn nonlinear

patterns [24]. Recently, non-linear prediction has been per-

formed using neural networks, which have been widely used

due to their ability to approximate any linear or non-linear

patterns in an accurate manner even when the underlying data

relationships are unknown. Results in [25]–[27] show that by

using neural networks, better prediction outcome in terms of

accuracy can be obtained compared to previous methods such

as AutoRegressive Moving Average (ARMA), AutoRegres-

sive Integrated Moving Average (ARIMA), AutoRegressive

AutoRegressive (ARAR) and HoltWinter algorithm.

While Feed-Forward Neural Networks are able to pro-

vide accurate prediction and fast response time, they fail

to handle sequence data, and they are only limited to
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FIGURE 3. Employed LSTM RNN model.

data within a fixed-size window. In contrast, RNNs take

into consideration past-seen input to make predictions in

the current time step making it a good candidate for

sequence-to-sequence predictions. However, conventional

RNN models suffer from vanishing and/or exploding gradi-

ent problems, which limits the RNN’s capability to model

long-term dependencies [28]. Consequently, LSTMnetworks

have been designed to address these foregoing issues [20],

and they were demonstrated to outperform neural networks

and traditional RNNs for many applications [27]–[30]. More-

over, recent studies suggest that Convolutional Neural Net-

works can be used for time series forecasting as shown

in [31], [32].

We note that any of the aforementioned models that can

handle sequence-to-sequence time series predictions can be

used to perform predictive DBA. In this work, based on

similar findings in related problems [28]–[30] and extensive

experimental results on our dataset, we choose to employ an

RNN LSTM model. Note that only one model is needed by

the proposed scheme and it is employed at the OLT. Fig. 3

depicts the general LSTM architecture that we employ to

predict future sequences from previous ones. As illustrated,

the LSTMnetwork is fed a sequence ofP cycles as input, such

that each cycle p ∈ P includes the ONU’s reported queue

size. The output of the model would be the next sequence of

Q cycles, where each cycle q ∈ Q includes the predicted total

queue size for this ONU in this cycle. This is an improvement

over previous works [30], [33] since not only we are predict-

ing the traffic in the next time step t + 1 (next cycle), but we

are also predicting the bandwidth demands for the upcoming

t + Q time steps.

C. OPERATION OF DEEP-DBA

The key principle behind Deep-DBA is to make use of the

predictions made by a machine learning model using the

past P REPORTs, so as to allocate bandwidth for the next

Q cycles without requiring any further REPORT messages

within those cycles. Thus, a Deep-DBA cycle would typically

comprise two sets of cycles; namely the reporting cycles

{p
1
, p

2
, · · · , pP} and the prediction cycles {q

1
, q

2
, · · · , qQ}.

For simplicity and without loss of generality, we illustrate

in Fig. 4 the operation of the proposed Deep-DBA for P = 2,

and Q = 8. As observed, during the reporting cycles, every

ONU sends a REPORT message requesting bandwidth based

on its queue size (just like with regular DBA approaches).

Consequently, the OLT runs the DBA algorithm (i.e., TDBA)

and responds with a GATE message that includes a grant for

the next cycle only, based on the employed scheduling dis-

cipline (i.e., Limited, Gated, etc.). However, the OLT keeps

record of the foregoing request to be used for prediction.

As such, during the last reporting cycle pP , as soon as the OLT

receives the Pth REPORT message from an ONU, it uses the

P saved requests of this ONU as input to the deep learning

model, so as to predict its request sizes for the next Q cycles;

thereby marking the start of DBA prediction time TDeep−DBA.

When predictions are obtained by the deep learning model

and the OLT has the predicted request sizes for all ONUs,

these predicted request sizes are considered as if they are

REPORT messages received from the ONUs for cycles

{q
1
, q

2
, · · · , qQ}. After the prediction, the OLT will apply the

same DBA scheme used to grant transmission windows for

each ONU for cycles {q
2
, · · · , qQ , p

1
} without requiring any

further REPORT messages. This reduces the effective cycle

time, and increases the network utilization. Subsequently,

the OLT informs the ONUs of their transmission windows for

cycles {q
2
, · · · , qQ , p

1
} usingGATEmessages sent during the

first prediction cycle q
1
. This can be accomplished in three

different ways:

1) The OLT sendsQ×N GATEmessages in a contiguous

manner, where N is the number of ONUs.

2) The OLT incorporates 4 grants in one GATE message

(which adheres to the default GATE message struc-

ture), so that Q×N
4

GATEs are sent in a contiguous

manner.

3) The format of the GATE message is modified so that it

can includeQ grants, which enables the OLT to send N

GATEs in a contiguous manner.

As observed in Fig. 4, the GATE message based on the

predicted REPORT for the first ONU to start upstream trans-

mission should arrive before the start of the second prediction

cycle q
2
. Hence, there is sufficient time to do the machine

learning prediction which starts in the beginning of the last

reporting cycle pP , when the REPORT of the 1st ONU arrives,

and continues through the first prediction cycle q
1
. Therefore,

the time from the start of TDeep−DBA until the latest moment

for the first GATE to reach its corresponding ONU is almost

equal to the duration of 2 cycles, which is more than sufficient

given the instantaneous output that is normally produced by

a trained deep learning model [16].

In the next Deep-DBA cycle, during the first reporting

cycle p
1
, the ONUs start data transmission immediately;

however, they also send REPORT messages at the end of

their transmission window marking the start of the reporting

97310 VOLUME 7, 2019
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FIGURE 4. Operation of the proposed deep-DBA scheme.

TABLE 1. Summary of notations.

cycles. The total number of cycles in one Deep-DBA cycleK ,

can be obtained as:

K = P+ Q. (1)

To highlight the merits of the offline Deep-DBA, we cal-

culate its gain compared to regular offline and online DBA

schemes. For the reader’s convenience, we summarize the

notations used in Table 1.

The total delay caused by a GATE message destined for

ONU j in cycle i is computed as follows:

T
G
j
i

= (2 × T
proc
G ) + T transG + T

prop
j . (2)

Similarly, the total delay caused by a REPORTmessage from

ONU j in cycle i is computed as follows:

T
R
j
i

= (2 × T
proc
R ) + T transR + T

prop
j . (3)

As illustrated in Fig. 4, the reporting cycles with Deep-DBA

are similar to the offline cycles of a legacy DBA (that is,

an ONU sends a request message in cycle i− 1, and receives

a grant from the OLT for cycle i). However with Deep-DBA,

two salient overhead periods that occur in these cycles are

eliminated in the prediction cycles, namely the end of the

cycle idle time, T endi , and the REPORT messages transmis-

sion time. The overhead T endi comprises the time taken by

the N th REPORT message to be transmitted and processed,

the time taken to compute the DBA, TDBA, and the time taken

by the first GATE message to be transmitted and processed.

Thus, T endi can be computed as follows:

T endi =

{

TRNi
+ TDBA + TG1

i
i ∈ {p

1
, p

2
, . . . , pP}

0 i ∈ {q
1
, q

2
, . . . , qQ}

(4)

As such, the total overhead caused by REPORT messages

during a Deep-DBA cycle i, Ri, would be obtained by:

Ri =

{

(N − 1) × T transR i ∈ {p
1
, p

2
, . . . , pP}

0 i ∈ {q
1
, q

2
, . . . , qQ}

(5)

Here, the transmission delay of the N th ONU is accounted

for in (4). Thus, the control overhead would only be incurred

in the reporting cycles. Therefore, the total overhead using

Deep-DBA can be computed as follows:

ODeep−DBA =

P
∑

i=1

(T endi + Ri). (6)

Conversely, in a regular NG-EPONmodel, the total overhead

using offline scheduling would be computed as follows:

OREG =

K
∑

i=1

(T endi + Ri). (7)

Consequently, the total gain G obtained via Deep-DBA can

be estimated as follows:

G = OREG − ODeep−DBA =

Q
∑

i=1

(T endi + Ri). (8)

For example, for N = 128 ONUs, a maximum cycle time

of 2 ms, and an upstream speed of 10 Gbps, the REPORT

overhead would amount to a data rate of 43 Mbps [34].

In contrast, for P = 2 and Q = 6, Deep-DBA would lower

this value to 11Mbps. This is a gain of 32Mbps in throughput,

which allows to provision more users and/or more services in

the network.Moreover, increasingQ and/or decreasingPmay

further decrease the control overhead; however, this may be
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TABLE 2. Simulation parameters.

at the expense of the model prediction accuracy, which might

affect the overall network performance as we show in the next

section.

IV. PERFORMANCE EVALUATION

To validate the effectiveness of the proposed approach,

we generate training data and conduct extensive simula-

tions using OMNET++ [35]. The simulation parameters,

as in [36], are shown in Table 2. The 95% confidence inter-

val of the simulation results gave ≈ 2% variation, which

is statistically insignificant; hence it is not shown in the

figures.

A. DATASET

Without loss of generality, to validate the feasibility of the

proposed Deep-DBA scheme, in this work, we generate traf-

fic for the Gated and Limited scheduling disciplines, which

are the most widely used legacy disciplines for predictive

DBA schemes [19]. Namely, we implement a traffic gen-

erator at each ONU, which generates Poisson-distributed

and Pareto-distributed traffics; the latter has 2000 alternating

(i.e., ON/OFF periods) sources to emulate the long-range

dependence and self-similarity of bursty Internet traffic [37].

Our proposed scheme does not depend on a particular traffic

distribution; rather, it is designed to predict the user demands

independent of the traffic arrival distribution. The selection of

Poisson and Self-Similar traffics is for simulations purposes,

as these are the most commonly adopted distributions in the

literature. We note that conducting performance evaluation

using real captured datasets may be more persuasive and

insightful. However, as detailed in [27], [29], [30], LSTM

models (which we also employ in our work) are shown to

be efficient and have highly accurate predictions when real

traffic traces are used. Thus, evaluating Deep-DBA using

LSTMmodels with a real captured dataset, albeit being more

insightful, may not provide different results, and thus may

not change the conclusions made in this work. Furthermore,

different from previous works [14], we only make use of the

request sizes, which are already included in the REPORT

messages sent from the ONUs to the OLT, and no extra

features are used to train the LSTM model so as not to

add additional information in the REPORT messages. This

also experimentally proved to be sufficient for predicting

FIGURE 5. Dataset preparation.

requested bandwidth without any added value for extra fea-

tures.

Overall, our dataset consists of 8 million REPORT mes-

sages collected at all the different network loads, which is

large enough to build robust LSTM models that general-

ize well. For different P-to-Q values, different datasets are

prepared as shown in Fig. 5 to train, validate and test the

corresponding P-to-Q LSTMmodel. For example, if a 2-to-2

model is employed, two REPORTmessages are used as input,

and the next two REPORT messages are used as output, and

so on. As is custom in such settings, 80% of the dataset is

used for training, 10% for validation, and 10% for testing.

B. TRAINING THE LSTM MODEL

The proposed scheme employs one LSTM model at the

OLT to predict the bandwidth demands of all ONUs at all

network loads. The dataset is normalized by dividing each

request value by the maximum queue size, and the LSTM

model is trained on the entire dataset which consists of the

bandwidth demands collected from REPORT messages at

all the different network loads. Since our model is trained

to predict Internet traffic for all network loads, it does not

matter when the peak hour happens and how the traffic

volume is changing during the day [38] because the model

would be able predict the traffic accordingly. As the loss-

function, we use the Mean-Squared Error (MSE) between the

predicted queue sizes and the actual queue sizes. The opti-

mizer used to train our models is ‘‘AdaGrad’’ with a learning

rate 0.01. For different values of P and Q, a defined DBA

scheme (i.e., Gated, Limited, etc.), NG-EPON architecture,

and traffic distribution, the hyper-parameters of the LSTM

network are tuned accordingly. The LSTM models had 2 to

3 hidden layers and training each model took between 10

to 50 epochs. We have also considered both the Pareto and

Poisson traffic distributions. However, since the results were

very similar for both traffic types, we only report the ones

for the Pareto distribution as it captures the bursty nature of

Internet traffic [37]. We use the Tensorflow backend to build

and train our LSTMmodels [39]. The training was performed

on a machine with Intel XEON processor, Nvidia Quadro

P2000 GPU card, and 64 GB of RAM. Training each LSTM

model took on average about 4 to 8 hours.

97312 VOLUME 7, 2019
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FIGURE 6. Comparison of different P-to-Q LSTM models: a) Throughput, b) Average delay, c) REPORT overhead, d) Total overhead.

C. SETTING P-TO-Q

To achieve the highest gain using Deep-DBA, P must be

set as small as possible, and Q must be set as large as

possible. However, the selection of these values must not

be at the expense of high prediction error and poor network

performance (in terms of packet latency and network through-

put). Thus, we built different LSTM models for different P

and Q values and compared the obtained MSE by running

the models on the test set. For P = 1 (i.e., the smallest

possible value for P), the LSTM models had significantly

high errors; whereas for P ≥ 2, the errors were adequate.

Consequently, we varied the values of P and Q and measured

the performance of each built model. As shown in Table 3a,

we first built LSTM models with equal values of P and Q

starting from 2. Results show that when P andQ are smallest,

the lowest MSE is obtained. Next, to check the impact of

increasing P, we built LSTMmodels withQ = 2 for different

values of P. Results in Table 3b show that increasing P does

not yield lower MSE and therefore will not have a positive

impact on the performance. Finally, as shown in Table 3c,

we set P = 2 and increaseQ. As expected, theMSE increases

as the value of Q increases.

Given these findings, we set P = 2, since increasing P

would not offer lower MSE values. In addition, increasing

P would entail increasing Q to even higher values, which in

turn will cause higher prediction errors. For example, setting

P = 2 and Q = 8 means for every K = 10 cycles, 8 cycles

are prediction cycles, which sums up into 80% of all cycles

being prediction cycles. Thus, to obtain the same percentage

when P = 4, Q must be set to 16.

To choose the best value of Q, we compare the network

performance under Deep-DBA with the Limited discipline

for different values of Q. As shown in Fig. 6a, the through-

put on high loads increases with increasing Q values, since

increasing the number of prediction cycles will decrease

both the REPORT and T endi overheads, leaving the gained

bandwidth to be used by the ONUs. Fig. 6b shows small

difference in delay for different models. However, the lowest

delay is obtained for Q ≤ 6, whereas the delay increases for

higher values of Q. This is caused by the mis-predictions of

these models; this behavior is related to the obtained MSE

errors corresponding to each of these models. Fig. 6c and

Fig. 6d highlight how both the REPORT and total over-

head (i.e., T endi + Ri) decrease as the value of Q increases.
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TABLE 3. Mean square error with: (a) P = Q, (b) P ≥ Q, (c) P ≤ Q.

However, for high values of Q, the low REPORT and total

overhead bandwidth are due to the long cycle times caused

by over-predicting ONU bandwidth demands by the LSTM

model. These over-predictions cause the OLT to grant larger

transmission windows compared to what is actually needed

by the ONUs, which results in wasted bandwidth. Thus,

choosing the bestQ value would be equivalent to maximizing

the throughput, meanwhile minimizing the average delay

and total wasted bandwidth (which comprises both the total

overhead and prediction error wasted bandwidth). This is

equivalent to maximizing the following objective function:

f (P,Q) =
throughput(P,Q)

delay(P,Q) × waste(P,Q)
. (9)

Therefore, to choose the best P-to-Q ratio, we normalize the

different parameters, which are obtained from simulations,

and plot f (P,Q) in Fig. 7. Results show that the best P-to-

Q under the Limited discipline is 2-to-6, with an MSE of

8.1×10−6. In contrast, the best P-to-Q value under the Gated

scheme is 2-to-2, with an MSE of 1.7 × 10−4. Yet, it can be

observed that the 2-to-4 model could also achieve a ‘‘good-

enough’’ trade-off between an ‘‘acceptable’’ f (P,Q) value

and higher network utilization. We note that the MSE under

the Gated scheme is higher compared to the Limited scheme

due to the high fluctuations of queue sizes, especially at

higher loads, making training of such models more difficult.

We validate the performance of the best P-to-Q models

under the Limited and Gated schemes in Fig. 8 (i.e., with

FIGURE 7. Choosing P-to-Q for: a) Limited scheme, b) Gated scheme.

the 2-to-6, and 2-to-2 models, respectively), by comparing

the predicted Internet traffic versus the actual Internet traffic.

Here, ‘‘Link Load’’ corresponds to the load on the access link

(i.e., between the user and theONU).We observe that with the

Limited scheme, the predicted traffic misses some very short

bursts; however, it closely tracks the actual traffic overall. On

the other hand, as expected, for the Gated scheme, the margin

of mis-predicted queue size and incoming bursts is slightly

larger (except at Load 1.0, which makes the system no longer

in steady state). Moreover, we deduce that as Q increases and

P decreases, the accuracy of the predictions decreases, and

vice versa. Hence, there is a trade-off between the number of

predicted cycles and the accuracy of predictions.

D. COMPARISON WITH OTHER SCHEMES

Fig. 9 compares the performance of the proposed Deep-DBA

scheme under the Limited discipline (i.e., using the

2-to-6 LSTM network) with the prediction-based IPACTwith

Grant Estimation (IPACT-GE) scheme that predicts the size

of incoming requests between two successive cycles [40],

the legacy offline Limited (i.e., Lim-Offline) DBA scheme,

the legacy online Limited (i.e., Lim-Online), and the

most recent machine learning based predictive DBA (i.e.,

MLP-DBA) [14]. High loads beyond 0.8 are included in the

figures because stress-testing the PON performance at high

loads is common practice in the literature, and is usually
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FIGURE 8. Predicted vs. actual bandwidth demand: a) Limited scheme (with 2-to-6), b) Gated scheme (with 2-to-2).

FIGURE 9. Comparison of schemes under the limited discipline: a) Throughput, b) Average Delay, c) REPORT Overhead, d) Total Overhead.

conducted to capture a comprehensive performance mea-

surement, which aids at performing network engineering

and user provisioning (which typically accounts for peak

utilization).

As shown in Fig. 9a, Lim-Offline exhibits the low-

est throughput due to the control and T endi overheads.

Lim-Online, MLP-DBA, and IPACT-GE exhibit higher

throughput since they are online schemes and thus do

not incur the T endi overhead. Deep-DBA exhibits increased

throughput similar to the online schemes even though it is an

offline scheme. This improvement is due to the reduction of

the control and the T endi overheads.
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FIGURE 10. Comparison of schemes under the gated discipline: a) Throughput, b) Average Delay, c) REPORT Overhead, d) Total Overhead.

As shown in Fig. 9b, the online schemes exhibit the low-

est delay, which is expected since they have no T endi over-

head, which reduces the idle and cycle times.MLP-DBA and

IPACT-GE show slightly better results compared to the legacy

Lim-Online since they use bandwidth prediction with the

specific aim of decreasing the packet delay. The Lim-Offline

scheme exhibits higher delays due to the overhead TREG
calculated in (7). On the other hand, even though Deep-DBA

is an offline scheme, its performance is much better than

the Lim-Offline scheme and is closer to the online schemes.

This is due to the gain achieved as per (8). However, as pre-

viously mentioned, lower packet delays could be attained

using Deep-DBA for different P-to-Q ratios. Nevertheless,

these may either affect the prediction accuracy and/or may

not achieve the most optimal bandwidth utilization.

The control overhead due to REPORT messages can be

observed in Fig. 9c. The online schemes have a higher

REPORT overhead than the offline scheme. This is because

the online schemes do not have the T endi overhead, which

results in a shorter cycle time compared to the offline

schemes. Typically, at lower loads, the cycle time is shorter,

which causes more control messages to be exchanged in

short periods of time; as such the control overhead decreases

as the load increases. However, we notice that Deep-DBA

achieves the lowest control overhead over all loads (e.g.,

around 42 Mbps with Deep-DBA, compared to 60 Mbps for

the Lim-Offline scheme, and around 75 Mbps for the online

schemes). At higher loads, the cycle time is equal to the

maximum cycle time; hence, the control overhead reaches its

lowest value for all schemes (e.g., 5.5 Mbps with IPACT-GE,

offline Limited, and offline Limited-GE), whereas it is equal

to 1.5 Mbps with Deep-DBA. This highlights the advan-

tages of Deep-DBA, which enables the OLT and ONUs to

only exchange control messages in reporting cycles every K

cycles, as opposed to every cycle.

Fig. 9d shows the total overhead observed in the network

(which is the control messaging overhead plus the cycle idle

time) under all schemes. As noticed, even though online

schemes are optimized to reduce the idle time, Deep-DBA is

still able to achieve the lowest total overhead. This bandwidth

gain can be used so that more users can be provisioned in the

network, and better QoS support can be attained. This again

highlights the merits of Deep-DBA over existing approaches.

In Fig. 10, we compare the performance of Deep-DBA

under the Gated discipline (i.e., using the 2-to-2 and

2-to-4 LSTM models) with the offline Gated DBA scheme

(Gated-Offline). Due to their nature, the prediction of

IPACT-GE in [40] and MLP-DBA in [14] cannot be directly
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applied to an offline Gated scheme. As shown in Fig. 10a,

the 2-to-2 Deep-DBA provides the same throughput as the

offline Gated discipline, whereas the 2-to-4 provides lower

throughput, which is captured by f (P,Q) in (9).

In Fig. 10b, the average delay with Deep-DBA is a bit

higher than with Gated-Offline. This is due to the ‘‘mis-

predictions’’ of the LSTM model, which will make the ONU

buffer more packets (thus, request more bandwidth), thereby

making the OLT grant the ONUs larger transmission win-

dows even at low loads. This effect is caused by the nature

of the Gated discipline, which unlike the Limited disci-

pline, does not bound the bandwidth demand by a maximum

value; thus, the mis-prediction would have a snowballing

effect.

Finally, Fig. 10c and Fig. 10d show howDeep-DBA exhibit

lower REPORT and total overheads thanGated-Offline. More

importantly, the results here show how the chosen model (i.e.,

2-to-2 or 2-to-4) presents a tradeoff between higher band-

width utilization (that is, higher bandwidth gain) and down-

graded network performance (i.e., throughput and delay).

All these foregoing experiments highlight the merits of

Deep-DBA in combining the advantages of offline and online

schemes. They also demonstrate its ability to be adaptive

to any network configuration and settings. In other words,

as long as the dataset (whether it is real traces or gener-

ated via simulations) is available, the right machine learning

model can be built, and consequently an efficient Deep-DBA

scheme can be employed. More importantly, the results pro-

vide insights into the design of future machine learning-based

NG-EPONs.

V. CONCLUSION

In this paper we proposed Deep-DBA, a novel DBA scheme

for NG-EPONs, which employs deep learning to predict the

future bandwidth demands of ONUs by peep-holing only a

few previous ONU demands, so as to reduce the overhead due

to the request-grant mechanism. Results demonstrate how

Deep-DBA is able to combine the advantages of both the

online and offline schemes, thereby improving the network

utilization achieved with online schemes, and at the same

time maintaining the properties of fairness and QoS support

that offline schemes enable, without impairing the network’s

performance. The fast progress in the field of machine learn-

ing promises new and better architectures and techniques

that will be able to increase the number of prediction cycles

and decrease the prediction error. The proposed method has

the flexibility to employ any current or future sequence-

to-sequence machine learning model. Moreover, Deep-DBA

can operate with any scheduling scheme; thus, future works

can employ more schemes to further improve the network

performance. In our future extensions of this work, we will

use real traffic traces and/or traffic emulators to provide a

more comprehensive study.
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