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VANET is the spontaneous evolving creation of a wireless network, and clustering in these networks is a challenging task due to
rapidly changing topology and frequent disconnection in networks. &e cluster head (CH) stability plays a prominent role in
robustness and scalability in the network. &e stable CH ensures minimum intra- and intercluster communication, thereby
reducing the overhead. &ese challenges lead the authors to search for a CH selection method based on a weighted amalgamation
of four metrics: befit factor, community neighborhood, eccentricity, and trust. &e stability of CH depends on the vehicle’s speed,
distance, velocity, and change in acceleration.&ese all are included in the befit factor. Also, the accurate location of the vehicle in
changing the model is very vital. &us, the predicted location with the Kalman filter’s help is used to evaluate CH stability. &e
results have shown better performance than the existing state of the art for the befit factor. &e change in dynamics and frequent
disconnection in communication links due to the vehicle’s high speed are inevitable. To comprehend this problem, a graphing
approach is used to evaluate the eccentricity and the community neighborhood.&e link reliability is calculated using the eigengap
heuristic. &e last metric is trust; this is one of the concepts that has not been included in the weighted approach to date as per the
literature. An adaptive spectrum sensing is designed for evaluating the trust values specifically for the primary users. A deep
recurrent learning network, commonly known as long short-termmemory (LSTM), is trained for the probability of detection with
various signals and noise conditions. &e false rate has drastically reduced with the usage of LSTM.&e proposed scheme is tested
on the real map of Chengdu, southwestern China’s Sichuan province, with different vehicular mobilities. &e comparative study
with the individual and weighted metric has shown significant improvement in the cluster head stability during high vehicular
density. Also, there is a considerable increase in network performance in energy, packet delay, packet delay ratio, and throughput.

1. Introduction

A vehicular ad hoc network, popularly known as VANET,
is a particular type of Mobile Ad Hoc Network (MANET),
where mobile nodes are considered vehicles moving on the
road [1]. &e advent of developments in VANET has paved
a way for the growth of Intelligent Transportation System
(ITS) applications. &ese are broadly classified into safety-
oriented applications that intended to increase safety and

reduce fatal road accidents.&e other is nonsafety that aims
to provide additional services to passengers like traffic
management, information sharing, and so on [2–4]. &e
vehicles communicate through the On-Board Units
(OBUs), known as Vehicle to Vehicle (V2V). &is becomes
essential for most ITS application owing to low cost and
availability [5]. Also, the vehicles can communicate with
the auxiliary facilities (or installed infrastructure) like
Road-Side Units (RSUs), using Vehicle-to-Infrastructure
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(V2I) communications. &e complete model design for
VANET communication is shown in Figure 1.
Typically, in the V2V communication protocol, two

approaches are used: flooding and relaying for data dis-
semination through the network. In flooding, each node
broadcasts the received data packet to its neighbor received
from the source. &is process is repeated with the motive to
reach the data packet to the source. In a flat, dense network,
this approach leads to a storm problem [6]. In the relaying
approach, the message broadcast from the source is for-
warded to all the neighboring vehicles, and then a few are
selected to forward it. &e probability of success for data
delivery is increased in the relaying approach but with high
overhead and delay. To tackle such a problem, clustering in
VANET is one of the prominent solutions. Some notations
are listed in Table 1, which will be used for further gradation.
&rough clustering in VANETs, there is information

gathering, aggregation, and dissemination. Clustering is
used to partition the network into smaller groups of moving
vehicles. Typically, the dynamic clustering is done, which
groups the vehicles on the fly as there is no physical con-
nection among them, and they all are moving. &ere are
several benefits like efficient bandwidth, proper distribution
of resources, and scalability that the clustering approach
offers [7]. &ere are many methods employed for clustering
in VANETs [8, 9]. &e urban roads are complicated as
vehicle positions change frequently; they have unevenly
distributed; thus, their routing and the forwarding capa-
bilities change with their position. &ese issues result in an
unstable network and a need for a cluster model that offers
high stability in the dynamic VANETscenario. &e methods
especially designed for the stability of the cluster are com-
pared in Table 2.
&rough this analysis, we can find that most of the

schemes conceived for stability are formulated on the effect
of a stability parameter. &e weighted scheme has also
considered the parameters like speed, distance, accelera-
tion, or link time. &ese schemes involve no information
about the type of vehicle present in the traffic scenario. &e
connectivity with the neighbor is also not explored. &ese
have been designed for highway where the vehicle’s speed is
too high, so the static cluster formation concerning speed
and position will change dynamic, which will affect the
stability of the cluster head. With all these literature an-
alyses, the authors have designed a weighted cluster head
selection based on multimetric. &e befit factor, commu-
nity neighborhood, eccentricity, and trust value are in-
troduced. Also, the concept of trust has not to be utilized to
date. &e following are the contributions made by the
authors in this paper:

(i) &e befit factor designed by tuthorshe authors in [19]
is based on Tleave, the time required by the vehicle to
complete the remaining segment of the lane. &is is
calculated based on the speed of the vehicle. &e
speed of any vehicle is a variable quantity; in such a
scenario, obtaining the accurate speed is essential for
cluster head stability.&is issue has been addressed in
this paper; the authors have predicted each vehicle’s

current location, and this position has been used to
calculate the befit factor. &e authors showcase the
validation through the comparative results.

(ii) &e authors also intended to improve the VANET
performance using an auxiliary facility, Road-Side
Units (RSUs), improving the network’s perfor-
mance. However, the trade-off between the number
of RSUs for better coverage and the high installation
and maintenance costs is resolved in this paper by
considering the angle suspended by the lanes. &e
effect of crossroads is also included to avoid am-
biguity in the direction of the lane.

(iii) &e authors have presented spectrum sensing as a
classification problem and proposed the sensing
method based on the recurrent neural network by
employing the LSTM. &e signal’s power spectrum
is given as input to the LSTM and uses various signal
noise data types to train the network.&e decision is
made according to the confidence of the noise class.
As the designed method is based on deep learning,
the network automatically learns the parameters
and can adapt well to different noise levels. &is
concept has been further extended to segregate the
vehicles into two categories: the primary (PU) and
secondary users. &e primary includes vehicles like
ambulance, a civic service that needs immediate
assistance. &e PU are given access to the network
bandwidth and improve the stability of the VANET.

(iv) VANET has a dynamic topology where the vehicles
travel at high speed and have frequent arrival with
an irregular interval between them. To have a stable
cluster, they have to be evolving in nature. &e
authors have designed the cluster-based evolving
graph model that calculates the metrics that could
select a stable cluster head to address this use.

&e authors designed a new multimetric weighted CH
selection scheme that considers different selection metrics
that increase the cluster stability and efficiency.&e designed
scheme is well tested on the real data map, taken for the
region Chengdu, southwestern China’s Sichuan province.
&e clustering efficiency is tested for various vehicle den-
sities, and also the network performance is evaluated using
the parameters. &e rest of the paper is organized as follows:
In Section 2, the network model and the position prediction
using the Kalman filter and the RSU placement are pre-
sented. In Section 3, the multimetric weighted CH selection
scheme is discussed with all its metrics. Section 5 presents
the simulation work and compares the proposed scheme
with the existing state of the art. In the last section, the
authors conclude the work with the prospects of the work.

2. Network Model with Prediction and
RSU Deployment

&eproposed scheme is mainly concentrated on the highway
environment. Here, the model is specially designed for
vehicles that are well equipped with a positioning system
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Figure 1: &e complete system model.

Table 1: List of symbols with the nomenclature.

Symbol Nomenclature

A Affinity matrix
BF Befit factor
C Cluster
CN Community neighbors
D Distance
Dig Diagonal matrix
dij Diagonal elements
ΔDthr &reshold distance
bμ, bf, bo &e bias of each gate in LSTM
NHD Neighborhood
ψvehi Relative velocity
ID Vehicular ID
L Length of the lane
Ecc Eccentricity
G(M,E, rl) Graph tuple
E Energy
M Total number of vehicles
N Total number of clusters
NCC Neighbor connection centrality
h Channel
H0 Hypothesis
Pd Probability of detection
tp Delay in p th path
Pf Probability of false alarm
9 Wavelength
rl Link reliability
RSUL−IDtran RSU
Q(·) Complementary distribution function
Sthr Speed threshold
Tleave Time to leave
TRF Transmission range factor
T Total simulation time
TR Transmission range
χ2 Chi-square probability distribution function
t An instant of time
tanh Activation function
Vvehi Velocity of the vehicle
ΔVthr Velocity threshold
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(e.g., a GPS), which acquires information about the current
location and an IEEE 802.11p-compliant radio transceiver
that enables the communication between the other vehicles
and the RSU (Road-Side Unit). &e cars typically share
different geographical proximity information, which can be
harnessed for effective traffic management and organization.
&e designed weighted, dynamic, adaptive, and fuzzy
clustering algorithm is manifested on the same ideology
[20–22]. Here, the vehicles are grouped in small clusters
based on their proximity concerning the RSU deployed near
the lanes. A cluster head (CH) is selected based on the
amalgamation of four components befit, trust, community
neighborhood, and eccentricity. &e rest are cluster mem-
bers (CM). &ere is an exchange of information among the
members using Vehicle-to-Vehicle (V2V) communication.

&e complete knowledge is like the parameter speed, ac-
celeration, distance travelled, location, and so on, which are
maintained in each CM. &e CH plays its role in broad-
casting important information to the in-range RSU and the
CM.
In this section, a detailed discussion of the designed

model is done. Each parameter for the CH selection is
examined and modeled without increasing the network’s
complexity and overhead delay.

2.1. Network Model. &e network model considered is
shown in Figure 2(a) that shows the nodes in the VANET in
an unclustered fashion. In Figure 2(b), the nodes are now
under each cluster head in continuous communication

Table 1: Continued.

Symbol Nomenclature

Vavg Average velocity
w A random number [0, 1]
σ2x Standard deviation
c SNR
x̂ Predicted coordinates
[x, y] Coordinates of vehicle
∅ Angle of the vehicle
no_lane Total number of lanes
δ Penalty
λ Eigenvalues
σf, σu, σ0 Gates in LSTM
Ap Channel gain
Pr Probability of receiving
G Antenna gain
⊙ Hamdard function
T(Y) Test statistics

Table 2: Comparison of various state-of-the-art schemes designed for CH stability.

Parameters for CH selection Clustering scheme

Year Speed ID
Signal
strength

Relative
speed

Neighbor
count

Link
lifetime

Position Individual Weighted
Network and utility

scenarios

2011
[10]

Yes Yes Yes — — — — Yes —
Multihop with

random walk mobility

2012
[11]

— — — Yes — — — PDR —
Multihop with

manhattan mobility
scenario

2013
[12]

— — — Yes — — — Least mobility —
Multihop with two

lanes
2015
[13]

— — — Yes Yes — — Neighbor count —
Multihop with a
dynamic scenario

2018
[14]

Yes — — — Yes Yes Yes Priority —
Multihop with two

lanes

2018
[15]

Yes — — — — Yes Yes
&e conditional
probability of link

reliability
—

Singel-hop with an
urban scenario

2019
[16]

Yes — Yes Yes — Yes — — Yes
Singel-hop with an
urban scenario and

highway
2019
[17]

Yes — — — — — Yes — Yes
Singel-hop with
highway

2019
[18]

Yes — — Yes — — Yes — Yes
Singel-hop with
highway
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with the RSU. &e network model’s consideration is as
follows: (1) &e real-time road map is taken for the study.
(2) &e vehicle mobility is considered for a fixed time
interval for study. (3) Each vehicle is considered as a node
that is variable with time, and each car possesses a unique
ID. (4) RSUs are effectively placed in each lane with proper
analysis of the road with an identical communication
range. (5) Each vehicle and the RSU are equipped with
buffer memory and a GPS device for real-time data col-
lection and synchronization. (6) &e communication
among the CM and CH-CM is enabled through V2V. (7)
Each vehicle’s position is estimated through the Kalman
filter that intimates the RSU about the range of vehicles and
ensures noninterruptible communication with smooth
transitions among the RSU. (8) &e network over time
evolves into several dynamic clusters; the maximum hops
between the cluster head and its CM are maxing hop. (9)
Packet data of size 64 bits is taken.

2.2. RSU Deployment. To overcome the shortcomings of
overhead delay and fewer storage facilities, the vehicles need
an auxiliary facility like Road-Side Units (RSUs) to improve
network performance. &ere is always a trade-off between
the areas’ total coverage with a sufficient number of RSUs
with minimum installation and maintenance cost. &is leads
to the search for optimal locations where the RSU can
maintain an efficient communication channel at a low price.
&e location affects communication as any void area will
cause a drop of packets transferred among the vehicle and
RSU. In this deployment, the lane coordinates are obtained
from the SUMO simulation. Each RSU is assumed with a
fixed circular transmission range RSUL−IDtran . &ere are placed
on either of the roadsides.&is ensures no interference in the
coverage range of RSU and each lane as sufficient coverage

without any void area [23]. &e deployment coordinates are
calculated using the particular direction of the lane through
the geometric methodology. At the beginning of any lane, an
RSU is placed to get the next location lane curvature cos(∅)
which is used. Let the location of any point on the lane be
expressed as [x, y]. &e next location is calculated as

xnext � xold + RSU
L−ID
tran ∗ cos(∅),

ynext � yold + RSU
L−ID
tran ∗ sin(∅).

(1)

&at takes into consideration the RSU transmission
range. With the introduction of the angle factor, the cross-
lane will not suffice to formulate such conditions. &ere are
few checkpoints designed that could ensure that cross-lane
will be utilized to place the RSU continuously. &e de-
ployment of the RSU is shown in Figure 3.

2.3. Location Prediction. After optimally placing the RSU on
the desired area map, the next task is to reduce the drop rate
in the communication between the RSU and CH. &is will
ensure better overall network performance and increase the
reliability of the VANET. To make this possible, the RSU
must be aware of the vehicle’s next stamp position be-
forehand. In this work, the authors have utilized the work
proposed by Kalman [24, 25] that predicts the vehicle’s
location with geographical routing. &e prediction of the
vehicle’s location depends on the direction and the velocity.
Also, it has been observed that the vehicle’s angle plays a
crucial role in predicting the position as it varies over time.
&e prediction is made using the Kalman filter. Each vehicle
runs a Kalman filter prediction, which predicts the vehicles’
position, velocity, and direction. &e position vector at the
moment t is x(t) � [x(t), y(t), Vvehi(t),ϕ(t)]̂ T and the
predicted values for each parameter at the next instant are

(a)

CH CH

RSU RSU

CM

CM
CM

CM

CM

CM

CM

CM

(b)

Figure 2: &e proposed analogy for VANET clustering: (a) flat structure and (b) cluster concept with CH and RSU.
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�x(t) � x̂(t), ŷ(t), V̂vehi(t), ϕ̂(t)
∣∣∣∣ ∣∣∣∣̂ T,

x̂(t + 1) � x̂(t) + V̂vehi(t) × cos(∅
^

(t)) × ΔT
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,
ŷ(t + 1) � ŷ(t) + V̂vehi(t) × sin(∅̂ (t)) × ΔT|.

∣∣∣∣∣
(2)

&e individual RSU scans for vehicles in its range; then
using the following judgment equation, new predicted po-
sitions are derived. &e difference between the past and the
predicted position is used to get the new update value with
the information on the angle suspended by the lane.

3. Dynamic Weighted Cluster Head
Stability Algorithm

&e designed clustering model has been broadly classified
into two parts: (1) cluster formation and (2) CH selection.
In the cluster formation, the vehicles are segregated into
small groups and then based on a weighted approach, a
weighted formulation of four metric befit factor (BF),
community neighborhood (CN), eccentricity (Ecc), and
trust (T) is designed to select the cluster head, and also
these parameters ensure the stability of the cluster head
over the time. All of these metrics are normalized to avoid
the overriding effect.

3.1. Cluster Formation. &e RSU guides the cluster for-
mation. Algorithm 1 encapsulates the cluster formation
where each vehicle enters the lane for the first timestamp
broadcast and communicates with all the RSU in its
communication range. To form a stable cluster, two con-
ditions are observed for that timestamp, the distanceD and
relative change in the vehicle’s speed Vvehi in that time-
stamp. A distance between the RSU and that car is cal-
culated. If this distance is less than a threshold ΔDthr, the
vehicle is attached to that RSU temporarily. &is process is
carried out for all the vehicles present in the vicinity and
moving in the same direction. In the real-time scenario,

each vehicle’s speed level may be different, and this vari-
ation can seriously affect the cluster formation. For stable
cluster formation, the change in relative speed is also
observed if it is less than a threshold ΔVthr and then that
vehicle gets permission to get permanently attached to that
RSU. Now, the RSU stores the ID of that vehicle and be-
comes a cluster member (CM).

3.2. Cluster Head Selection. &e next step is selecting the
cluster head, and it is a node in VANET that coordinates or
heads the cluster. It takes the responsibility of broadcasting,
discovery, and maintenance of the routing path. It remains
in the contact of the RSU to sustainably maintain the intra-
and intercommunication channels. &e main motive of
designing any clustering algorithm is the stability of the
cluster head in VANET.&e vehicles’ high dynamic mobility
can lead to frequent reclustering and eventually decreases
the cluster stability. &e methodology designed in this paper
for the cluster head selection is a weighted combination of
four factors, as mentioned above. All these parameters direct
towards the search for a stable CH. All these and their
amalgamation for selecting a suitable CH are discussed in
the following.

3.2.1. Befit Factor (BF). &is parameter is defined to
maximize the stability of the cluster structure. To ensure this,
the elected CH is expected to stay connected with all the
cluster members for a longer duration. &us, the BF is
derived from the three metrics as designed in [19]

BF � w1 × Tleave + w2 × ψvehi + w3 × NHD, (3)

where w1, w2, and w3 are the corresponding weights that
vary in the range [0, 1] satisfying the condition that (w1 +
w2 + w3 � 1) and can be reformulated by the local authority
based on the road conditions and the cluster member be-
havior. &e first metric is Tleave, which is time to leave; this is
the time required for a vehicle to complete the lane’s

RSU

RSU

RSU

Figure 3: &e deployment of RSU on the lane for the circular transmission range.
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remaining segment. &is factor ensures selecting a CH with
enough time left to complete the lane that makes it head for a
longer time. It is calculated using L, the length of the lane,
and D, the distance covered by a vehicle on the road seg-
ment, and t, the time consumed by the vehicle to drive thatD
section of the lane.

Tleave �
L −D
t

. (4)

&e second metric is ψvehi defined as relative average
speed; this parameter determines how close a vehicle’s ve-
locity is to its neighbors. A reward function is conceived that
takes into account the velocity of vehicles over the long term.
Speed of each vehicle (Vvehi) is evaluated. Accordingly, their
speed is either rewarded or penalized with an absolute value
(δ); correspondingly, the relative average speed is incre-
mented or decremented, as shown in

ψvehi(t + 1) � ψvehi(t) + δ ; Vvehi − Vavg
∣∣∣∣∣ ∣∣∣∣∣ ≤ Sthr,

ψvehi(t + 1) � ψvehi(t) − δ ; Vvehi − Vavg
∣∣∣∣∣ ∣∣∣∣∣> Sthr, (5)

where Sthr is the parameter that ensures that the vehicle
moving with the velocity Vvehi is almost travelling at the
same speed as that of the neighbors. &e initial value of
ψvehi is calculated using the TraCI parameters, and δ is
taken as 0.01. &e last metric is neighborhood degree
(NHD), and it is defined as the number of the neighbors
whose speed difference with the vehicle is less than a
threshold Sthr.

3.2.2. Eccentricity (Ecc). &e next parameter is eccentricity;
in real time, communication links break more frequently
due to the vehicles’ high speed. To maintain the link, there
is a requirement for an evolving cluster model. Usually,
reclsutering will become inevitable once the CH resigns or
loses its suitability to continue as a CH. To ensure stability,
the concept of eccentricity is introduced. Here, an evolving
graph-based model is designed by using spectral cluster-
ing. A vehicular graph topology is intended to be

G(M,E, rl), whereM is the number of vehicles present in
the timestamp t, E is the ordered pair of the links among
the vehicles, and rl is the link reliability. &e affinity matrix
is constructed to represent the graph topology for di-
mensions M ×M.

A �
rij, if Di, Dj( ) ∈ E,
0, if i � j,
∞, otherwise,


A �

r11 . . . r1M

⋮ r22 ⋮
rM1 . . . rMM

 .
(6)

&e tool employed for the spectral clustering is the
Laplacian graph. &e Laplacian graph is calculated for the
affinity matrix:

GL � Dig − A, (7)

where Dig is the diagonal matrix with elements. Also,

dij �∑Aij. (8)

In spectral clustering, eigenvectors of a similarity/affinity
matrix are derived from the original dataset. &e eigende-
composition of the graph will be serving as the model for
dimensionality reduction of mobile vehicles. &e optimal
number of clusters is calculated by using the eigenvalue of
the Laplacian graph. Based on the eigenmap heuristic [26],
the eigenvalues λi; i � 1, 2, . . . ,M{ } get sorted in the as-
cending order out of which k is picked that serves as the
clusters in that timestamp.

k � argmax λi+1 − λi( ). (9)

After the number of the clusters is obtained, then k
eigenvectors are extracted in a matrix with dimensionality
M × k. In the last, K-means is applied to get the optimal
number of clusters. Ecc is the mean/average eigenscore of
each group that is calculated as in [27]

Input: Velocity Vvehi and location [x, y]; the number of the lanes in a map (no_lane); time_span
Output: Cluster (C), N no of clusters
For t� 1:time_span
For i � 1: no_lane
If any vehicle detected in RSUL−IDtran

D: RSU location [xRSU, yRSU] and vehicles location [xvehi, yvehi]
Vvehi: Speed of the vehicle
If D<ΔDthr

Vvehi <ΔVthr
RSU⟵ ID

Endif
C⟵RSU,∀ ID

Endif
End

End
N⟵∀C;C≠Null.

ALGORITHM 1: Cluster formation.

Journal of Advanced Transportation 7



Ecci �
1

Ni

∣∣∣∣ ∣∣∣∣ ∑λiεNi

λi. (10)

&e maximum value of Ecc ensures a stable cluster head
selection designed based on the evolving graph.

3.2.3. Community Neighborhood (CN). &e evolving Lap-
lacian graph also provides information about neighbors. &e
importance of neighbor ensures the CH’s stability as the
cluster member will not change for a given timestamp that
will establish a reliable link among them. &ere is designing
of the CN using the transmission factor (TRF); it represents
the reliability of the connection between two vehicles that
satisfy the following condition:

TRF rij( ) �
0, if rij <TR,

TR2 − rij
TR2

, if 0< rij ≤ 1,

 (11)

where TRF is the maximum transmission range of the ve-
hicle and rij is the distance between those two vehicles at the
timestamp t. &ere is a negative correlation between the
distance and transmission range. &is enables that if two
vehicles are closer, then a more reliable connection is bound.
&e neighbor nodes are defined as those vehicles that satisfy
the condition TRF (rij)> 0. &en, the next step is to count
neighbor connection centrality that is defined as follows:

NCC � ∑
rij∈NE

TRF rij( ). (12)

&e last step is to get CN, the weighted average of NCC
over the timestamp t [28].

CN � wi × NCC, (13)

where wi is the weighted associated at each timestamp.

3.2.4. Trust (T). &e type of vehicle also plays an essential
role in cluster stability; this is an efficient technique for
dealing with malicious and compromised nodes [29]. To
address this problem, the authors have included the notion
of spectrum sensing. Here, concepts are addressed that could
remarkably enhance the cluster head’s stability in the net-
work. &e first is the spectrum sensing technique that helps
to utilize the spectrum efficiently. Here, the spectrum
sensing is taken as a classification problem using the long
short-term memory (LSTM). &e network is trained using
various types of signal and noise data. Data can be handled
by using the latest technology called big data handling [30,
31], though this decision is made on the confidence of the
noise class. Since the method includes a recurrent neural
network, it automatically learns the energy features and
adapts to any untrained noise or signal in a real and dynamic
environment. &is enables the detection of the primary
users’ (PU), like medical vans, police vans, or any other type
of civil service, to use the spectrum as a priority if there is an
emergency. &e rest is considered the secondary users (SU).

In the following section, the formulation to address the
above-stated issues is discussed.

LSTM Model Design. &e internal structure of LSTM is
shown in Figure 4. Here, Y〈t〉 is the input to the cell
structure, and output is denoted by a〈t〉. &e previous cell
input is taken as a〈t−1〉, current and previous cell states are
represented by c〈t〉 and c〈t−1〉. σf, σu, and σ0 show the value
of three gates forget gate, update gate, and output gate,
respectively. &e Hadamard function is denoted by ⊙ , and
tanh shows the activation function with elementwise ad-
dition ⊕.
Any LSTM cell constitutes three main gates: update gate,

forget gate, and output gate. &e function of each gate is
stated as follows:

(i) Update gate (σu): decide when to update the current
cell state

(ii) Forget gate (σf): discard function of the current cell
(iii) Output gate (σ0): provided to the output through

the output gate

&e updated vector for each state is obtained through

c̃〈t〉 � tanh wc a
〈t−1〉, Y〈t〉[ ]( + bc, (14)

where bc is the bias term and tanh is the activation function.
All the three gates get updated using the individual bias and
the sigmoid function.

Γμ � σ wμ a
〈t−1〉, Y〈t〉[ ] + bμ( ),

Γf � σ wf a〈t−1〉, Y〈t〉[ ] + bf( ),
Γ0 � σ w0 a

〈t−1〉, Y〈t〉[ ] + b0( ),
σm �

1

1 + e−m,

(15)

where wμ, wf, andw0 are the weight matrices. &e bias
terms are denoted by bμ, bf, and bo. An elementwise product
is taken among the previous cell state c〈t−1〉 and forget gate
Γf and among the update gate and candidate vector
updating c̃〈t〉. &e elementwise product among the output
gate Γ0 and hyperbolic tangent vector c〈t〉 is as follows:

c〈t〉 � Γμ ⊙ c̃〈t〉 + Γf ⊙ c〈t−1〉,

a〈t〉 � Γ0 ⊙ tanh c〈t〉( ). (16)

&e architecture designed in this study has two-bit
layer with every 100 nodes and a fully connected layer
followed by a SoftMax layer as the decision is no binary
bases. &e network is trained for 500 epochs, having a
learning rate of 0.01, and the batch size of the data chunk at
a time is 500.

Data Modeling. &e data is captured through the ideal
probability of the primary user. We consider that each
vehicle takes part in the Cognitive Radio (CR) networking
to transfer the information. &e bandwidth allotted to the
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network is limited, so limited spectrum uses CR. &e free
spectrum of the PU can be utilized by secondary users,
reducing the overhead problem. In PU’s presence, the
spectrum will be released for that vehicle if it receives a
signal with an energy higher than the threshold signal
energy. &e factor trust (T) is increased if it a primary
user and belongs to that neighborhood; else, the trust
value is decremented. &e behavior of the PU is mapped
through the quantized energy vector called the sensing
report. &e actual status of the PU is estimated through
the acknowledgment signal along with the fusion of re-
liable local decision of CR. &e clean PU signal is ac-
quired, and its power is measured as σ2x. &e Gaussian
noise is added to the computed power signal of PU to
achieve signal-to-noise ratio (SNR) c and evaluate by
using the relation σ2w � σ2x/c.
Adaptive sensing at the individual vehicle level is as

follows:

H0: Y
〈t〉 � w〈t〉,

H1: Y
〈t〉 � h〈t〉X〈t〉 + w〈t〉,

(17)

where Y〈t〉 is the signal envelop received at the t-th time
instant by the sensing vehicle, the PSU signal is distorted
using w〈t〉 an Additive White Gaussian noise with zero
mean and variance σ2, X〈t〉 is the SNR signal transmitted
from the PU transmitter, and h〈t〉 is the channel gain [32].
&is hypothesis can be viewed as a classification problem
where there is a signal from the primary user or the
presence of noise. &e signal received at any instant is
represented in general form with the previous sensing event
of sample size M being fed to the current sensing event:

Y � Y〈1〉Y〈2〉, . . . , Y〈M〉 Y〈M+1〉 Y〈M+2〉, . . . , Y〈2M〉[ ]T,
(18)

where M is the sample size taking into consideration these
number of vehicles at timestamp t and the transpose of a
vector is denoted by [.]T. Here, the probability of detection
and the probability of false alarm are used to detect the
performance of the spectrum sensing algorithm, which are
defined as

Pd � Pr H1 |H1{ },
Pf � Pr H1|H0{ }. (19)

&e presence of the PU signal is denoted by H1 while
absence by H0 in that case, the only noise is detected. At a
given M sensing sample, the energy test statistic is repre-
sented by the energy that calculates test statistics T(Y) in the
time domain to compare with, which follows the Ney-
man–Pearson criteria.

T(Y) � 1

2N
∑N
i�1

Yrei + Y
im
i

∣∣∣∣∣ ∣∣∣∣∣2. (20)

&e test statistic T(Y) is the random variable with a chi-
square probability distribution function (χ2) with k degrees
of freedom. It can also be represented asQ � ∑ki�1 |zi|2. Here,
k � 2N for the complex-valued case and k � N for absolute
values. &e threshold ε can be defined using the central limit
theorem. &e detection probability can be defined as [33]

Pd(ε, t) � Q
ε

σ2u
− c − 1( )

�����
tfs
2c + 1

√ , (21)

where Q(.) is the complementary distribution function and
is Gaussian in nature; that is,

Q(x) � 1���
2π

√ ∫∞
x
exp −t

2

2
( )dt. (22)

If we take the inverse of equation (21), then the threshold
for probability detection can be calculated as

Q
−1 Pd( ) � ε

σ2u
− c − 1( )

�����
tfs
2c + 1

√
. (23)

&e false detection Pf is calculated as

Q
− 1 Pf( ) � ε

σ2u
− 1( ) ���

tfs

√
. (24)

In the Rayleigh transmission channel, the converted
carrier band signal is passed:

h(t) � ∑Np

p�1
Apδ t − tp( ), (25)

whereNp are several paths, Ap is channel gain, and tp is the
delay in p th path.&e signal moves in the line of sight (LOS)
considered by a free-space path loss propagation model and
receives power calculated as follows:

Pr �
Gl × 9

2

(4πd)2
× Pt. (26)

&e received and transmitted power are notated as Pr
and Pt with wavelength 9. &e LOS distance is denoted by d,
and the factor dependent defines field radiation of PU and
SU upon the antenna Gl. &e square of the distance between
PU and SU is inversely proportional to the received power.
&e noise variance is added to the received power and
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updates the actual power value. &e noisy channel is
modeled as the convolution of Rayleigh channel response
and noise variance where n(t) is noise variance.

g(t) � h(t)∗ n(t). (27)

&is completes the design of the spectrum sensing
structure.
In the training of LSTM, the behavior of CR users to the

changing activity of PU in the operating environment is
learned. &e sensing report is generated by the CR user and
makes a local decision based on its energy. Based on the
outcomes, the acknowledgment signal status, the report is
assigned to a sensing class. &e information of the primary
user is forwarded to the data center that decides spectrum
sensing. &e bandwidth of the transmitted signal is divided
into Ns subcarriers and transmitted in chunks. &ese sub-
carriers are frequency spaced by Δf � 1/Td where Td is time
to transmit a signal. &e signals are multiplexed using in-
verse discrete Fourier transform (IDFT) as

yb(t) � ∑Ns

k�1
Yke

j2πkΔft. (28)

Every secondary node senses the energy of the trans-
mitted signal by PU, and based on the comparison with a
threshold Q

−1 from equation (23), it decides whether it is
from the primary user and to vacate the channel.&is energy
received enables the calculation of the trust value. Figure 4
portrays the complete model for the training using the
concept of spectrum sensing and then obtaining the trust
value. Pd and Pf are evaluated in the proposed scheme
LSTM-based spectrum sensing detection. &e signals col-
lected are fed to the LSTM network one by one, and the
corresponding values of the detection and false alarm
probability are computed. &e primary signal vector of each
SNR value is processed to the LSTMnetwork.&e number of
times it correctly classified the signalH1 divided by the total
number of primary user signals fed to the network deter-
mines Pd. Similarly, the noise sequence is forwarded to the
LSTM network and calculates the false alarm probability Pf.
&e hypothesis H0 is divided by the total number of noise
sequences used in the prediction. &e complete model
designed for predicting the vehicle’s trust value using LSTM
is shown in Figure 5.
As discussed above, adaptive spectrum sensing is

implemented for forming trust based on the energy detec-
tor’s threshold. &e threshold is set to the target that is the
desired constant probability of detection.
&e limits are as obtained from equation (23). &e energy

of the vehicle received is given to the trained LSTM network.
&e network decides whether the vehicle is a primary user or
not, and in turn, the value of the trust is assigned if it suc-
cessfully vacates the spectrum.&is adaptive spectrum sensing
is done using the trained data using the LSTM. In Figure 6, the
training curve of LSTM is elucidated, where the loss function,
along with the accuracy, is plotted for 3,500 epochs. &e loss
defines the difference between the actual and predicted values
of the primary users’ signals in various data and noise signals.

&e analysis of trained LSTM is depicted in terms of the
confusion matrix, as shown in Figure 7. Here, the adaptive
spectrum sensing problem is formulated as a classification
problem illustrated in equation (17). &is prediction is
made for a total of 4,000 vehicles. &is binary classifier’s
accuracy is 89% for the correct detection of the absence of
any PU and 83.5% for any PU presence in the network.&is
designed LSTM model is efficient and can predict with
sufficient accuracy, even in various noise conditions and
mixed signals. A comparison between Pd generated from
the theoretical analysis as designed in [34] and Pd for the
trained LSTM is shown in Figure 8. Since Pd,max � 1, the
higher the probability, the better the trust score, and ac-
cordingly, the vehicle is considered trustworthy. &is
completes the design and evaluation of the trust metric.
Now, the proposed weighted CH selection is discussed in
the following in detail.
&e complete algorithm for the CH selection is explained

in Algorithm 2. All the above parameters discussed are
incorporated, and a weighted metric is formulated for
selecting a stable cluster head for a maximum period [35].
&e number of vehicles in a time instant is firstly clustered
using the RSU as discussed in Algorithm 1. &en, for all the
members (CM), the above four parameters are calculated,
and then a weighted CHscore is calculated to select the cluster
head as discussed in Algorithm 2.

3.3. Computational Complexity of the Designed Complete
Algorithm. In this section, the computational complexity of
the dynamic weighted algorithm is discussed. &e clustering
algorithm is divided into two parts, the cluster formation
and cluster head selection.&us, the total time complexity of
the algorithm can be stated as

Otot � OCF + OCHS, (29)

where OCF is the time complexity of cluster formation and
OCHS is the cluster head selection.
In cluster formation, as already discussed in Section 3.1,

the authors find only the distance between the vehicles and
the RSU.M is the maximum number of vehicles taken in the
worst-case analysis.&us, the worst-case time complexity for
this is

OCF � O (log M)2( ). (30)

In the cluster head selection, there are four parameters
taken into consideration. &e total time complexity for the
cluster head selection is

OCHS � OBF + OEcc + OCN + OT. (31)

&e complexity of BF is a linear equation, where three
things have been calculated, the time to leave, relative av-
erage speed, and the neighborhood degree. &e time to leave
and the relative average speed are only the constant values
fetched and calculated. In contrast, in the neighborhood
degree, the distance between the vehicles in the vicinity is
calculated through their coordinates. &us,
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OBF � O(1) + O(1) + O (log M)2( ). (32)
&e next is the eccentricity, calculated using the spectral

clustering methods that involve the affinity matrix and the
eigenvalue decomposition. &e complete complexity of
spectral clustering is

OEcc � O(M)
2 + O(M)3. (33)

In the community neighborhood, an affinity matrix is
generated for the near adjacent vehicles. &us, the com-
plexity for this is given as

OCN � O (log M)2( ). (34)

In the metric trust, the main role is played by the LSTM
for spectrum sensing; the theoretical time complexity of
LSTM is given as

OTH � 4IH + 4H2 + 3H +HK, (35)
where I is the number of inputs,K is the number of outputs,
and H is the number of hidden layers. In this study, as the
model is trained once and then for a given vehicles signal, the
LSTM, through its spectrum sensing, senses the vehicle
either being a primary or secondary user. &us, the time
complexity bottles down to

OT � O 4H
2( ). (36)

&us, the complete time complexity is reduced to re-
moving all the terms with less complexity than cubic and
quadratic terms.

OCH � 2O (log M)2( ) + O(M)3. (37)

&us, the total time complexity is
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Figure 8: Comparison between the probability of detection and probability of false alarm using the proposed spectrum sensing LSTM
method.

Input: Relative Speed Vvehi and Location [x, y];Number of the lane in amap(no_lane); time_span; Cluster (C), N no of clusters.
Output: CH
For t� 1:time_span
For i � 1: N
For j� 1: CM
Obtain the BF using the equation (3)
Calculate the rij; affinity matrix
Fabricate the evolving graph G for each cluster
Find the maximum eigenvalues λ ; calculate Eccj using equation (10)
Determine the neighbor and find the CNusing equation (12)
From the LSTM trained network, calculate the T
Obtain the CH_score for each CM

CHscore � w1 × BF + w2 × Ecc + w3 × CN + w4 × T
(w1 + w2 + w3 + w4 � 1)End

CH � max(CHscore)∀ j
End

End

ALGORITHM 2: CH selection.
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Otot � 3O (log M)2( ) + O(M)3. (38)

4. Simulation Results and Discussion

&is section discusses the results achieved at different stages
of the cluster head model designing. It is bifurcated into the
following sections: (1) Simulation Environment and Tool;
(2) Network Performance Evaluation; (3) Experimental
Evaluation with the existing state of the art and similar other
cases.

4.1. Simulation Environment and Tool. All the simulation
experiments are performed using MATLAB (R2020a),
with processor Intel® Core TM i3, 1.98 GHz, Simulation of
Urban Mobility [36] (SUMO 0.25.0; SUMO 0.12.0), and
the TraCI [37]. SUMO is an open-source microscopic road
traffic simulator licensed under the General Public License
(GPL). It was developed through a collaboration between
the Center for Applied Informatics Cologne (ZAIK) and
the Institute of Transportation Systems (ITS) at the
German Aerospace Center (DLR). While TraCI stands for
the Traffic Control Interface specifically designed to get
access to the traffic running on the road simulated, the
embedded feature of extracting simulated objects’ values.
&e network performance metrics like throughput, energy,
packet delay, and packet delay ratio are evaluated through
MATLAB. &e simulation area is Chengdu, the capital of
southwestern China’s Sichuan province. &e area taken for
the simulation has the latitude � 30.6598628°N and lon-
gitude � 104.0633717°E. &e area is busiest as there is a
tourist place Chairman Mao statue. &e total traffic en-
vironment summary is provided in Table 3.
&e simulated section of the original region is shown in

Figure 9; it is a vast area with a high urban and highway
mobility model. &e region also consists of the famous
tourist spot that ensures dense vehicle movement around the
peak working hours. &e authors have deployed RSU, the
additional facilities for network stability as per the proposed

algorithm discussed in Algorithm 3, given in Section 2.2.&e
map after the deployment is shown in Figure 10. It is evident
from the figure that the total area has been covered effi-
ciently. Also, enough RSU are concentrated at the cross-lane
to provide sufficient coverage without any overhead delay or
congestion problem, which can eventually lead to less drop
in the packets and affect the network’s stability.

4.2. Network Performance Evaluation. &e proposed
scheme’s importance is tested using the four network per-
formance metrics discussed in the following. &e commu-
nication between vehicles is modeled through the Nakagmi
channel, representing the obstacle medium tomatch real-life
data transmission. Here a two-hop model is taken, where the
packet transfer is initiated through any randomly selected
vehicle that acts as a source to the CH and the CH sent the
packet to the intended designation. &e delay of this packet
through the network enables the authors to calculate the
desired network parameters. &e size and data rate are as
specified in the following table.&e time taken for the packet
transfer is measured using the MATLAB internal clock.
Packet contains a random sequence of 1’s and 0’s. &e
communication network parameters are listed in Table 4.
&e evaluation parameters for the proposed VANET

stability performance assessment are as follows:

(1) Energy (E): the amount of energy consumed at each
node for communication is measured in Joules. &e
consumption of energy is directly proportional to the
distance between the hops.

E � α1 + α2 ×D + α3. (39)

(2) Packet delivery ratio (PDR): PDR is the average ratio
of successfully received packets at the destination
vehicle over the total generated packets on the source
vehicle. &e delivery ratio decreases with increasing
data rates.

PDR � ∑Ni�1 packet received ×(datarate × packet size)
packet generated at source ×(datarate × packet size).

(40)

(3) Packet delay (PD): it refers to the time taken for a
packet to be sent through the transmission media
from the source to the destination vehicle. &e delay

in packet delivery depends on network congestion,
noise, and hop travel distance.

PD � ∑Ni�1 packet transmitted ×(datarate × packet size) − packet received ×(datarate × packet size)
t

. (41)

(4) &roughput: it represents the amount of data
successfully transferred from source vehicle to
destination vehicle in a given period, typically

measured in Kilobits per second (kbps). &e higher
throughput can be achieved with less hop count and
network stability.
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Table 3: Simulation specification.

Parameter Value

Scenario Urban
Lanes 302
Average speed 12.71m/sec
Simulation time 1500 sec
RSU placement 500m
RSU transmission range 350
Vehicle transmission range 200
Vehicle length 5m and 10m
Vehicle speed 0–30m/sec
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Figure 9: &e simulated map area along with the original Chengdu, capital of southwestern China’s Sichuan province.

Input: Lane coordinates [x, y]; angle (∅); number of the lanes in a map (no_lane)
Output: Change in angle as per Crossroad
Place the RSU in each lane.
For i � 1: no_lane
If ([xold, yold]< [xnext, ynext])
Lane is in [+, +]

Elseif ([xold, yold]> [xnext, ynext])
Lane is in [+, -]

Elseif ([xold, yold]> [xnext, ynext]
∅)

Lane is in [-, +]
Change the ∅
If ∅< 90°
∅ � ∅ + 180°

Elseif ∅> 90°‖∅< 270°
∅ � ∅ + 90°

Elseif ∅> 270°‖∅< 360°
∅ � ∅ + 180°

Endif
Else
Lane is [-, -]

Endif
End

ALGORITHM 3: RSU deployment in the presence of crossroad.

14 Journal of Advanced Transportation



Throughput � ∑N
i�1 packet received ×(datarate × packet size)

t
.

(42)

(5) Cluster head stability: it represents the number of
times the same vehicle is chosen as cluster head in the
total solution’s time span.

CHS � mode ∑t
i�1
ID . (43)

4.3.ExperimentalEvaluation. &eproposed scheme is tested
with the following simulation environment settings:

(i) Different vehicles’ densities

(ii) &e vehicle position in a cluster is estimated by
Kalman filter and calculated based on its current
location

&e complete evaluation for different vehicular den-
sities is tabulated in Table 5. &is study is done to evaluate
the cluster stability in the different vehicular densities and
the dynamic scenario. Vehicles are clustered on the ground
of several RSUs. Each RSU covered area is considered as a
cluster, and vehicles under that area are cluster members.
&e RSUs with empty clusters are omitted from the
evaluation of the parameters. &e dissipation of the energy

has a similar pattern for vehicular density. &is ensures the
stability of the cluster head. Also, the clusters with more
number of cluster members or denser clusters pose a
challenge as cluster head stability frequently changes in
these conditions. &e throughput is analyzed, two two-hop
models. &e throughput will be more for denser clusters as
compared to the sparsely populated cluster. &e other two
parameters, packet delay and packet delay ratio, solemnly
depend on the density and the distance of the nodes
selected.
&e authors have compared the evaluation of the befit

factor in two ways. First, the authors have used the vehicles’
current location to calculate the befit factor as suggested in
the [19] and in the other way predicted and corrected
location of the vehicles using Kalman filter as discussed in
Section 2.3 employed. Figure 11 showcases the current
location and the vehicles’ corrected location for a single
timestamp in the total simulation. We can analyze that,
with dynamic evolving networks and frequent changing
vehicle velocity, vehicles’ exact location is trivial to know
for the stability of the VANET. Also, the estimation of the
vehicle is dependent on the direction of movement and
current velocity. It has been observed that the vehicle’s
moving angle may vary instead of being constant at some
points. &ese factors have significantly affected the befit
factor analysis for selecting the cluster head and its stability.
&is assessment can be done from Figure 12, where 1,000
vehicle densities and 11 clusters are formed. &e cluster
head’s stability is counted as the count of continuous
timestamps for which any vehicle ID is constantly served as
cluster head. Here, more stability is provided by the pre-
dicted method as we can observe that the frequency of a
single vehicle in becoming the cluster head is about 180
times for a single period evaluation.

4.4. Baseline Comparisons. &e baseline algorithms are the
algorithms designed in the literature for the individual
metric. In this analysis, three baseline algorithms are in-
cluded as mentioned and discussed in Section 3. &e
analysis is carried out for the 100 vehicular density. &e
results are shown in Figure 13 at an instant of the total
simulation time; in this, we can observe that CH selection is
highest for the proposed scheme compared to the indi-
vidual one as designed by the different arts state. All the
simulation has been conducted on the same platform and
done as described as in the literature for the comparison. As
the model is urban, the vehicle’s speed and density even-
tually lead to dynamic network changes. &e cumulative
effect of all the three metrics is evident compared to the
individual as just change in velocity, community neigh-
borhood, or eccentricity standalone cannot reflect the
changes that a weighted approach can do. &us, there is a
need for a weighted approach that can evaluate the evolving
changes in the network from time to time and make the
transition of CH less.
&e different network metrics are also tested on the 1,000

vehicular densities for the proposed scheme.&e data packet
is transmitted from a cluster member to the cluster head, and
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Figure 10: &e deployment of RSU.

Table 4: Integrated network parameters.

Parameters Value

Channel Wireless
Propagation model Propagation/Nagakami (m� 3)
MAC Mac/802_11Ext
Data rate 4, 8, 10, 12, and 14 kbps
IEEE 802.11p
transmission range

350m

Packet sending interval 0.2 sec
Packet size 64 bytes
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the CH transmits it to the destination cluster member. &e
average amount of energy consumed at each node in a
cluster for various data rates is shown in Figure 14. &e
consumption is observed to decrease or be constant for
specific clusters for each data rate; this can be as the cluster
topology has not changed, or the CH has not changed. &e
increase in energy is where the number of clusters is with

fewer members and a larger distance, which requires more
dissipation of the energy.
&e packet delay ratio and the packet delay are

demonstrated in Figures 15 and 16, respectively. &e
delay in a packet can be associated with the scant cluster
formation; the distance among the chosen nodes is far
apart, the network’s congestion due to the dense

Table 5: Comparison of various network parameters for different vehicular densities.

Network parameters
Clusters

1 2 3 4 5 6 7 8 9 10 11

Vehicular density: 200 12 17 1 5 19 40 65 10 5 8 7
Energy (J) 3.59 3.59 — 3.59 2.62 3.59 3.59 3.59 4.46 3.59 3.59
PDR 2 3 4 3 4 3 4 5 4 5 2
PD (s) 5.82 2.19 4.36 2.85 2.32 1.14 2.17 4.91 4.60 1.91 4.90
&roughput (kbps) 1.65 2.25 0.20 1.54 2.35 2.24 1.72 1.07 1.40 2.11 1.18

Vehicular density: 400 15 18 141 80 50 19 12 71 17 33 12
Energy (J) 3.59 3.59 3.59 5.36 2.62 1.15 3.59 3.59 1.77 3.59 3.59
PDR 1 3 2 5 2 1 3 4 2 3 2
PD (s) 1.51 1.36 4.89 2.31 3.09 3.76 1.82 6.64 1.24 1.36 1.69
&roughput (kbps) 2.02 1.93 8.26 4.81 2.78 2.95 1.32 1.51 1.11 1.55 1.32

Vehicular density: 600 21 19 21 30 85 100 29 212 45 10 28
Energy (J) 3.59 3.59 3.59 8.78 2.62 1.75 3.59 3.59 1.77 3.59 3.59
PDR 4.04 5.29 2.18 1.30 2.27 3.50 2.04 1.67 2.66 6.35 2.29
PD (s) 2 4 3 2 4 3 3 2 2 2 2
&roughput (kbps) 2.11 2.51 2.53 2.73 3.25 3.99 2.32 7.47 4.38 1.42 2.42

Vehicular density: 800 35 135 40 30 50 145 45 96 110 62 52
Energy (J) 3.59 3.59 3.59 4.90 2.62 6.16 3.59 3.59 6.82 3.59 3.59
PDR 3 1 2 5 4 3 1 3 3 3 3
PD (s) 8.16 2.05 2.21 3.67 2.48 2.95 1.38 2.34 7.12 6.27 1.13
&roughput (kbps) 1.05 7.59 1.82 1.25 2.00 7.07 2.19 6.13 4.45 2.33 2.34

Vehicular density: 1,000 25 45 42 45 152 22 170 145 89 170 95
Energy (J) 14.37 1.39 4.307 204.07 0.91 140.74 77.86 1.39 1.39 79.95 0.65
PDR 1 0.31 1.41 0.70 1.26 1.04 1.33 0.66 0.9 1 0
PD (s) 0.87 1.86 2.70 1.33 0.05 1.96 4.12 3.06 3.35 1.88 2.54
&roughput (kbps) 0.13 1.25 1.35 1.35 2.05 0.57 2.27 2.57 1.93 2.45 1.93

Predicted and corrected locations
3.3928

3.3926

3.3924

3.3922

3.392

3.3916

3.3918

3.3914
4.097 4.098 4.099 4.1 4.101 4.102

x (m)

Vehicle pos

Kalman predicted pos Best

Kalman corrected pos

y 
(m

)

4.103 4.104 4.10

×105

×106

Figure 11: &e corrected and the original location of the 1,000 vehicles for a single timestamp in the total simulation time.
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population. &e throughput is also analyzed, as shown in
Figure 17. &e throughput is the metric for the efficiency
of the designed network. &e high value of throughput
resembles better performance with better communication

among the cluster members. &e drop and loss of packets
eventually affect the throughput of the network. &e
clusters with only one cluster member ought to drop the
packet.
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5. Conclusion

In this paper, the authors have designed a new scheme for
selecting a stable cluster head using the weighted approach.
&is formulation is crafted by including the four different
metrics included to address all the parameters needed to
enhance the dynamic network’s stability. &e authors have
designed a practical methodology for the deployment of the
RSU working as an additional facility to enhance the net-
work based on the angle of the lane. &e clusters are formed
concerning RSU. &ese clusters are further improved to
select a stable cluster head using metrics: befit factor,

eccentricity, community neighborhood, and trust. &e befit
factor is dependent on the speed of the vehicle. VANET is a
network with high-speed vehicles and dynamic topology.
&e precision in the exact location and speed in such net-
works is trivial to combat such a situation. &e authors have
employed the Kalman filter to predict the vehicle’s location
at the next instant, which can improve the befit calculation
and, in turn, suffice for the cluster head’s stability.&e results
have demonstrated superior results as compared to the
original formulated befit factor. &e next two metrics are
designed on the evolving graph structure as they are scalable
and eliminate the need for recalculating in case of a change
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in the network’s topology.&e last is the trust value included
for the primary users for multiple reasons; the primary users
get hidden in the network. &e detection of the primary
users’ energy is resolved using an LSTM, deep learning
trained for different signals and noises. &e accuracy is
around 80%, with amisclassification rate of around 14%.&e
cluster head’s stability is measured in terms of mode, where
the number of times a vehicle is selected as cluster head is
noted. &e results show the weighted approach’s supremacy
compared to the cluster head stability achieved through a
single metric. &e designed method is tested on the real map
for the region of Chengdu, southwestern China’s Sichuan
province, for the different vehicle mobility densities. Also,
the scheme is tested for various integrated network para-
metric analyses with a two-hop structure. &e results re-
garding throughput, packet delay, energy, and packet delay
ratio have shown the proposed scheme’s domination for
different data rates.
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“Survey on software defined VANETs,” Gradus, vol. 4, no. 1,
pp. 272–283, 2017.

[2] A. Paranjothi, M. S. Khan, and S. Zeadally, “A survey on
congestion detection and control in connected vehicles,” Ad
Hoc Networks, vol. 108, Article ID 102277, 2020.

[3] M. Akhtar and S. Moridpour, “A review of traffic congestion
prediction using artificial intelligence,” Journal of Advanced
Transportation, vol. 2021, Article ID 8878011, 2021.

[4] A. Ghansiyal, M. Mittal, and A. K. Kar, “Information man-
agement challenges in autonomous vehicles,” Journal of Cases
on Information Technology, vol. 23, no. 3, pp. 58–77, 2021.
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