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Abstract

It is well-known that numerical weather prediction (NWP) models require considerable computer power to solve complex 

mathematical equations to obtain a forecast based on current weather conditions. In this article, we propose a novel light-

weight data-driven weather forecasting model by exploring temporal modelling approaches of long short-term memory 

(LSTM) and temporal convolutional networks (TCN) and compare its performance with the existing classical machine 

learning approaches, statistical forecasting approaches, and a dynamic ensemble method, as well as the well-established 

weather research and forecasting (WRF) NWP model. More specifically Standard Regression (SR), Support Vector Regres-

sion (SVR), and Random Forest (RF) are implemented as the classical machine learning approaches, and Autoregressive 

Integrated Moving Average (ARIMA), Vector Auto Regression (VAR), and Vector Error Correction Model (VECM) are 

implemented as the statistical forecasting approaches. Furthermore, Arbitrage of Forecasting Expert (AFE) is implemented 

as the dynamic ensemble method in this article. Weather information is captured by time-series data and thus, we explore 

the state-of-art LSTM and TCN models, which is a specialised form of neural network for weather prediction. The proposed 

deep model consists of a number of layers that use surface weather parameters over a given period of time for weather 

forecasting. The proposed deep learning networks with LSTM and TCN layers are assessed in two different regressions, 

namely multi-input multi-output and multi-input single-output. Our experiment shows that the proposed lightweight model 

produces better results compared to the well-known and complex WRF model, demonstrating its potential for efficient and 

accurate weather forecasting up to 12 h.

Keywords Long short-term memory · Temporal convolutional networks · Weather prediction · WRF · Neural network · 

Time-series data analysis

1 Introduction

Weather forecasting refers to the scientific process of pre-

dicting the state of the atmosphere based on specific time 

frames and locations [1]. Numerical weather prediction 

(NWP) utilises computer algorithms to provide a forecast 

based on current weather conditions by solving a large sys-

tem of nonlinear mathematical equations, which are based 

on specific mathematical models. More specifically, these 

models define a coordinate system, which divides the earth 

into a 3-dimensional grid. The weather parameters such as 

winds, solar radiation, the phase change of water, heat trans-

fer, relative humidity, and surface hydrology are measured 

within each grid and their interaction with neighbouring 

grids to predict atmospheric properties for the future [2].

Meteorology adopted a more quantitative approach with 

the advancement of technology and computer science, and 

forecast models became more accessible to researchers, fore-

casters, and other stakeholders. Many NWP systems were 

developed in recent years, such as Weather Research and 

Forecasting (WRF) model, where increasing high-perfor-

mance computing power has facilitated the enhancement and 

the introduction of regional or limited area models [3]. As 

a consequence, the WRF model became the world’s most-

used atmospheric NWP model due to its higher resolution 

rate, accuracy, open-source nature, community support, and 

a wide variety of usability within different domains [4, 5].

According to [1], data-driven computer modelling sys-

tems can be utilised to reduce the computational power of 

NWPs. In particular, artificial neural network (ANN) can 

be used for this purpose due to their adaptive nature and 
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learning capabilities based on prior knowledge. This feature 

makes the ANN techniques very appealing in application 

domains for solving highly nonlinear phenomena. Deep 

models for multivariate time-series forecasting often use 

Recurrent Neural Networks (RNN) and Temporal Convolu-

tional Networks (TCN). Recently, a variant of RNN called 

Long Short-Term Memory (LSTM) has attached consider-

able attention due to its superior performance. Such models 

have attracted considerable attention due to their superior 

performance [6–8]. Deep networks often use stacked neural 

networks and include several layers as part of the overall 

composition known as nodes. The computation takes place 

at the node level since it allows the combination of data 

input through a set of coefficients. Subsequently, the activa-

tion function gets established on the basis of input-weight 

products while signal progresses through the network [9]. 

Regression technique is often employed to develop and eval-

uate neural network models for accurate weather prediction 

as the weather information is captured by time-series data 

consisting of real numbers [10].

This article presents developing and evaluating a light-

weight and novel weather forecasting system using mod-

ern neural networks. Figure 1 depicts a general overview 

of the research discussed in this article. More specifically, 

a suitable machine learning model is proposed by explor-

ing temporal modelling approaches of LSTM and TCN, and 

compare its performance with classical machine learning 

approaches, statistical forecasting models, and a dynamic 

ensemble method. Secondly, we use the proposed model 

for short-term weather prediction and compare the model 

accuracy with the well-established WRF model. Finally, we 

reform the model for long-term weather forecasting, and 

analyse the model accuracy and compared the performance 

to the state-of-art WRF model.

In this study, we investigate LSTM and TCN over RNN 

since there is an inherent issue of the vanishing gradient 

problem with the RNN [6]. The LSTM and TCN can over-

come this vanishing gradient issue, but it can easily use up 

the high capacity of memory [8, 11]. The rest of the arti-

cle is organised as follows: Sect. 2 focuses on related work, 

and Sect. 3 discusses the research aims and objectives. In 

Sect. 4, we present the WRF model and its challenges, and 

Sect. 5 discusses the sequence modelling and prediction. 

In Sects. 6 and 7, we discuss the methodology and results. 

Finally, Sect. 8 concludes the article.

2  Related work

Numerical weather prediction (NWP) concept was proposed 

by Lewis Fry Richardson in 1922, and practical use of NWP 

began in 1955 after the development of programmable com-

puters [1]. Neural networks-based weather forecasting has 

been evolved significantly in the last three decades. Before 

the year 2000, the model output statistics (MOS) was the 

most widely used approach to improve the numerical mod-

els’ ability to forecast by relating model outputs to obser-

vational data [12–14]. A mixed statistical or dynamic tech-

nique for the weather forecasting was introduced by [15] in 

1983. The work in [16] added a new perception to dynamic 

modelling in 1991. These approaches have limitations and 

challenges such as massive computational requirements, lack 

of design methodologies for selecting the model architecture 

and parameters, and time-consuming to prediction resulting 

less reliability as the difference between the current time and 

the forecast time increases [13, 16, 17].

Artificial neural network-based minimum temperature 

prediction system was introduced in 1991 using the back-

propagation algorithms [18, 19]. This concept considerably 

reduced the computational requirements of MOS directing 

an effective forecast [16]. A snowfall and rainfall forecasting 

model was introduced in 1995 from weather radar images 

with ANN [20]. The results show that the ANN is more 

effective than the traditional cross-correlation method, and 

the persistence prediction method is producing a substantial 

reduction in prediction error. In 1998, Oishi et al. devel-

oped a severe rainfall prediction method using AI [21]. The 

development method was unique as it is introduced infer-

ence (i.e. knowledge-based) rather than using numerical 

simulations. A multi-polynomial high order neural network 

Fig. 1  Overview of the research
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(M-PHONN)-based rainfall prediction model was developed 

by Hui Qi and Ming Zhang in 2001 [22]. This new model 

has features such as increasing the speed, accuracy, and the 

robustness of the rainfall estimate. Therefore, this model 

could be used to complement the already established auto-

estimator algorithms.

A multilayer perceptron network was trained with the 

backpropagation algorithm with momentum for temperature 

forecasting in 2002 [23]. The results were very encouraging 

and clearly demonstrated the potential for future weather 

forecasting applications. In the same year, a comparative was 

carried out analysing different neural network models for 

daily maximum and minimum temperature, and wind speed 

[24]. The results show that the radial basis function network 

(RBFN) produced the most accurate forecast compared to 

the Elman recurrent neural network (ELNN) and multi-

layered perceptron (MLP) networks. In 2005, a rough set 

of fuzzy neural network was introduced to forecast weather 

parameters; dew temperature, wind speed, temperature, and 

visibility [25]. This model has several fuzzy rules, and their 

initial weights were estimated with a deeper network for 

weather forecasting. Moreover, Hayati and Mohebi pro-

posed a successful model for temperature forecasting based 

on MLP.

A feature-based neural network model was introduced 

in 2008 to predict maximum temperature, minimum tem-

perature, and relative humidity [26]. Neural network fea-

tures are extracted over different periods as well as from the 

time-series weather parameter itself. In particular, feedfor-

ward ANN is utilised in this approach with backpropagation 

for supervised learning. The prediction results have a high 

degree of accuracy, and this modelling is recommended as 

an alternative to traditional meteorological approaches by 

[27–29]. In 2012, a backpropagation neural network (BPN) 

was implemented for temperature forecasting [27, 30]. This 

network has successfully identified the nonlinear structural 

relationship between various input weather parameters. Fur-

thermore, a new hybrid model was introduced in 2014 to 

forecast the temperature which is based on an ensemble of 

neural networks (ENN) [31], and the results suggested that 

including image data would improve the prediction results. 

In the same year, a deep neural network-based feature rep-

resentation for weather perdition model was developed for 

the temperature and dew point prediction [32].

In 2015, eight different novel regression tree struc-

tures were applied to short-term wind speed prediction 

[33]. The author also compared the best regression tree 

approach against other AI approaches such as support vec-

tor regression (SVR), MLP, extreme learning machines, 

and multi-linear regression approach. The best regression 

tree yields the best results for wind speed prediction. In 

the same year, a deep neural network was introduced for 

ultra-short-term wind forecasting with success [34]. Deep 

learning with LSTM layers has been introduced to pre-

cipitation nowcasting by Shi et al. [11]. The experimen-

tal results show that the LSTM network has the ability 

to capture spatiotemporal correlations and can be used to 

precipitation nowcasting. In the same year, a model was 

developed to predict the temperate in Nevada using a deep 

neural network with stacked denoising auto-encoders with 

higher accuracy of 97.97% compared to traditional neu-

ral networks (94.92%) [35]. In 2016, the multi-stacked 

deep learning LSTM approach was utilised to forecasting 

weather parameters temperature, humidity, and wind speed 

[36]. The author suggested that the model could be used to 

predict other weather parameters based on the effective-

ness and accuracy of the results.

Traditional machine learning methods were analysed for 

radiation forecasting in 2017 [37]. The author concluded 

that the SVR, regression trees, and forests have produced 

a promising outcome for radiation forecasting. In 2018, 

the backpropagation neural (BPN) network’s performance 

compared with linear regression and regression tree for 

temperature forecasting [38]. As a result, a significant bet-

ter temperature yields the BPN. In 2018, a short-term local 

rain and temperature forecasting model was developed 

using deep neural network [39]. The author concluded that 

the deep neural networks yield the highest accuracy for 

rain prediction among several machine learning methods. 

In the same year, the neural network approach is utilised 

to create models to predict sea surface temperature and 

soil moisture [40, 41].

The selected state-of-the-art deep learning approaches 

for weather forecasting and their contributions and dif-

ferences with the previous approaches are discussed in 

Table 1.

The above existing weather forecasting models are able to 

predict up to maximum three weather parameters. Besides, 

weather forecasting is an entirely nonlinear process, and each 

parameter often depends upon one more other parameters 

[13, 42, 43]. These larger numbers of interrelated parameters 

work together, aiming for an accurate weather forecast in a 

more reliable NWP such as met office and WRF models [4, 

44]. A maximum of up to four input weather parameters is 

considered in the existing AI-based forecasting models.

Based on the related work, it is evident that:

• There is no identified attempt to compare an AI-based 

weather prediction with a well-established and existing 

weather forecasting model such as WRF;

• There has been little or no attempt to compare traditional 

machine learning approaches with cutting-edge deep 

learning technologies for weather forecasting;

• Most of the existing approaches use less than four interre-

lated input parameters for neural network-based weather 

forecasting model;
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• A complete AI-based weather forecasting model with 

up to 10 input/output weather parameters is yet to be 

explored.

3  Research aim and objectives

The work presented in this article aimed to develop a 

weather forecasting model to address the above-mentioned 

drawbacks using state-of-the-art deep models by establish-

ing the following objectives.

1. To propose an efficient neural network-based weather 

forecasting model by exploring temporal modelling 

approaches of LSTM and TCN, and compare its perfor-

mance with the existing approaches;

2. Use the proposed neural network model for short-term 

weather prediction and compare the results with WRF 

model prediction;

3. Fine-tune the proposed model for long-term weather 

forecasting;

4. Compare the model performances for long-term fore-

casting with the WRF model prediction.

Our approach is targeted to develop deep neural networks 

to solve the regression problem of weather forecasting. We 

propose two different regression models to assess proposed 

deep learning models, namely multi-input multi-output 

(MIMO) and multi-input single-output (MISO). In this 

article, we addressed the above objectives in detail in vari-

ous sections. Objective 1, an effective neural network-based 

weather forecasting model is proposed and compared its per-

formance with existing approaches in Sect. 7.1. Objective 

2, the proposed model is used to short-term weather fore-

casting and compared its performance with the WRF model 

predictions in Sect. 7.2. For Objective 3 and Objective 4, 

the proposed model is fine-tuned for long-term forecasting 

and compared the results with the WRF model predictions 

in Sect. 7.3.

4  Weather research and forecasting (WRF) 
model

The WRF model was developed by Norwegian physicist Vil-

helm Bjerknes in the latter part of the 1990s as part of a col-

laborative partnership with many environmental and meteor-

ology organisations. The model involves solving of various 

thermodynamic equations so that numerical weather-based 

predictions can be made mainly through different vertical 

levels [45, 46]. The primary role of the WRF is to carry out 

analysis focusing on climate time scale via linking physics 

data between land, atmosphere and ocean. The WRF model 

is currently the world’s most-used atmospheric model since 

its initial public release in the year 2000 [5].

In order to investigate the model for real cases, it is nec-

essary to install and configure WPS (WRF pre-processing 

system), WRF ARW (advanced research WRF model), and 

Table 1  Existing deep learning approaches and their contributions

Deep learning approach for weather forecasting Contribution and difference with the previous approaches

Deep neural networks for ultra-short-term wind forecasting [34] Results show that carefully selection of deep neural networks outper-

forms shallow ones. The model accepts a single input parameter and 

predicts a single parameter, and the model is limited to very short-

term forecasting (less than an hour)

Weather forecasting using deep learning techniques [61] Recurrent neural network is used for prediction of the rainfall with 

adequate accuracy level. The model uses a single input single output 

and is used for short-term forecasting

Short-term local weather forecast using dense weather station by deep 

neural network [39]

Deep neural network is used to predict rain and temperature. The 

researches use four input parameters and predict one parameter at a 

given time. This model is able to predict data accurately up to an hour

Convolutional LSTM network: a machine learning approach for pre-

cipitation nowcasting [11]

Formulated precipitation nowcasting as a spatiotemporal sequence fore-

casting problem. The proposed model is a Single-input single-output 

and able to produce a state-of-the-art performance for up to 6 h

Forecasting the weather of Nevada: a deep learning approach [35] This model accepts four input parameters and predicts one output as 

temperature. Results indicated that stacked denoising auto-encoder 

deep learning model predicts accurate long-term temperature

Sequence to sequence weather forecasting with long short-term 

memory recurrent neural networks [36]

Multi-stacked LSTMs are used to map sequences of weather values of 

the same length. Use three input parameters and predict one parameter 

at a time

A deep learning methodology based on bidirectional gated recurrent 

unit for wind power prediction [62]

Contributed the bidirectional gated recurrent network for wind power 

forecasting. The model used wind direction and wind speed as inputs 

and predicted the results more accurately up to 6 h
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post-processing software. The WRF post-processing is not 

described in this article, as the main objective is to collect 

historical weather data for prediction and analyses. Inter-

ested researchers can refer to [47] for further details. The 

WRF ARW and the WPS share common routines, like WRF 

I/O API. Therefore, the successful compilation of the WPS 

depends upon the successful compilation of the WRF ARW 

model [4].

The WRF model needs to run in two different modes 

to extract time-series data. Firstly, historical weather data 

are collected and subsequently, predicted weather data is 

identified for evaluation purposes. For each instance, the 

model runs in a single domain mode and utilises different 

“namelist.wps” and “namelist.input” files to configure the 

WPS and WRF-ARW components [17]. GRIdded binary or 

general regularly distributed information in binary, often use 

as GRIB data, which is a concise data format commonly 

used in meteorology to store historical and forecast weather 

data [17, 48]. According to [49], Global Forecast System 

(GFS) GRIB data provides 0.25 degrees resolution and 

available to download every 3 h freely. Therefore, the GFS 

3-hourly data are selected for this project, with a horizontal 

resolution set to 10 km.

One of the primary challenges in the WRF is its require-

ment for massive computational power to solve the equations 

that describe the atmosphere. Furthermore, atmospheric pro-

cesses are associated with highly chaotic dynamical systems, 

which cause a limited model’s accuracy. As a consequence, 

the model forecast capabilities are less reliable as the differ-

ence between the current time and the forecast time increases 

[1, 50]. In addition, the WRF is a large and complex model 

with different versions and applications, which lead to the 

need for greater understanding of the model, its implemen-

tation and the different option associated with its execution 

[5]. The GFS 0.25 degrees dataset is the freely available 

highest resolution dataset for the WRF model. This allows 

the user to forecast weather data at a horizontal resolution 

about 27 km [48, 49]. This implies that the user can predict 

data with increased accuracy up to 27 km. The model cal-

culates the lesser resolution data based on results obtained. 

Thus, the model obtains better results for long-range forecast 

and not for a selected geographical region, such as a farm, 

school, places of interest, and so on [5, 17, 51].

Based on the above discussion, we propose a novel light-

weight weather prediction model that could run on a stan-

dalone PC for accurate weather prediction and could easily 

be deployed in a selected geographical region.

5  Sequence modelling and prediction

The modelling task has been highlighted before defining a 

network structure which involves time-series weather data 

sequence x0,… , x
T
 and wish to predict some correspond-

ing outputs y0,… , yT at each time. As presented in Table 2, 

there are 10 different weather parameters in data at a given 

time t, xt =

[

p1,… , p10

]

 . The aim is to predict the value yt 

at time t  , which is constrained to only previously observed 

inputs: x0,… , x
t−1 . Therefore, the sequence modelling net-

work can be defined as a function F ∶ X
T+1

→ Y
T+1 that 

produces the mapping ŷ0,… , ŷT = F
(

x0,… , xT

)

 , if it satis-

fies the causal constraints, i.e. yt only depends on x0,… , x
t
 

and not on any future inputs x
t+1,… , x

T
 . The main idea of 

learning in the sequence modelling is to find a network F  

which minimises the loss ( �) between the actual outputs 

and the predictions, �
(

y0,… , yT , F
(

x0,… , xT

))

 in which 

the sequences and predictions are drawn according to some 

distribution.

The WRF model with GFS-GRIB data can produce a 

large amount of historical weather data. Recurrent neural 

networks (RNN), LSTM, and TCN are extremely expres-

sive models which are appropriate in such a scenario. 

These networks have attracted considerable attention due 

to their superior performance based on ability to learn 

highly complex vector-to-vector mapping [52, 53]. The 

LSTM is a specialised form of RNN that is designed for 

sequence modelling [52, 54]. Highly dimensional hidden 

states H are the basic building blocks of RNN which are 

updated with nonlinear activation function F  . At a given 

time t  , the hidden state H
t
 is updated by H

t
= F

(

H
t−1, x

t

)

 . 

The structure of H works as the memory of the network.

The state of the hidden layer at a given time is con-

ditioned on its previous state. The RNN is extremely 

Table 2  Surface weather parameters (10 identified parameters used 

by our model)

Variable Description Measuring unit

TSK Skin temperature or surface temperature °K

PSFC Surface pressure Pa

U10 X component of wind at 10 m m/s

V10 Y component of wind at 10 m m/s

Q2 2-m specific humidity Kg/Kg

Rainc Convective rain (accumulated precipita-

tion)

mm

Rainnc Non-convective rain mm

Snow Snow water equivalent Kg/m2

TSLB Soil temperature °K

SMOIS Soil moisture m3/m3



348 Pattern Analysis and Applications (2021) 24:343–366

1 3

deep as they are maintained a vector activation through 

time at each timestep. This will result in high training 

time-consuming due to the exploding and the vanish-

ing gradient problems [6]. The development of LSTM 

and TCN architectures have been addressed the gradient 

vanishing issue with RNN [55]. Therefore, we use state-

of-art LSTM and TCN architecture to minimise the loss 

�(y0,… , yT , F
(

x0,… , xT )
)

 for effective modelling and pre-

diction of time-series weather data.

5.1  Proposed deep model with long short‑term 
memory (LSTM) layers

The proposed model is based on LSTM networks and uses 

temporal weather data to identify the patterns and produces 

weather predictions. As discussed in Sect. 5, we experiment 

with the state-of-the-art LSTM, which is a specialised form 

of RNN, and it is widely applied to handle temporal data. The 

key concepts of the LSTM have the ability to learn long-term 

dependencies by incorporating memory units. These memory 

units allow the network to learn, forget previously hidden 

states, and update hidden states [6, 9, 56]. Figure 2a shows 

the deep learning model consisting of stacked LSTM layers for 

weather forecasting using surface weather parameters. Table 2 

describes the surface weather parameters, which are used as 

the input parameters. The model provides outputs, which are 

the predicted weather parameters.

Figure 2b shows the LSTM memory architecture used in 

our model. More specifically, the proposed model has the 

input vector Xt =

[

p1, p2,… , p9, p10

]

 at a given time step t , 

which consists of 10 different 
(

p
1
… p

10

)

 weather parameters. 

In a given time t , the model updates the memory cells for 

long-term C
t−1

 and short-term H
t−1

 recall from the previous 

timestep t − 1 via:

The notations of Eq. (1) are: w
∗
—weight matrices, b

∗

—biases, ⊙—element-wise vector product, I
t
—input gate 

and J
t
—input moderation gate contributing to memory, F

t

—forget gate, and O
t
—output gate as a multiplier between 

memory gates. To allow the LSTM to make complex deci-

sions over a short period of time, there are two types of 

hidden states, namely C
t
 and H

t
 [6, 57]. The LSTM has the 

ability to selectively consider its current inputs or forgets its 

previous memory by switching the gates I
t
 and F

t
 . Similarly, 

the output gate O
t
 learns how much memory cell C

t
 needs 

to be transferred to the hidden state H
t
 . Compared to the 

RNN, these additional memory cells give the ability to learn 

enormously complex and long-term temporal dynamics with 

the LSTM.

In this work, we propose two types of deep models to 

solve the regression problem involving weather forecasting, 

I
t
= tanh

(

w
xi

X
t
+ w

hi
H

t−1
+ b

i

)

Jt = sigm
(

wxjXt + whiHt−1 + bj

)

Ft = sigm
(

wxf Xt + whf Ht−1 + bf

)

O
t
= tanh

(

w
xo

X
t
+ w

ho
H

t−1
+ b

o

)

C
t
= C

t−1
⊙ F

t
+ I

t
⊙ J

t

(1)H
t
= tanh

(

C
t

)

⊙ O
t

Fig. 2  a Proposed layered LSTM and b LSTM memory cell used for this research
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namely multi-input multi-output (MIMO) and multi-input 

single-output (MISO).

5.1.1  MIMO-LSTM

In the MIMO, all the weather parameters (i.e. 10 surface 

weather parameters in this study) are fed into the network, 

which is expected to predict the same number of parameters 

(i.e. 10 parameters in this study) as the output. Therefore, 

only one model is required for weather forecasting. Figure 3a 

depicts the basic arrangement of the MIMO.

5.1.2  MISO-LSTM

In MISO approach, all of the weather parameters (i.e. 10 

surface weather parameters in this study) are fed into the 

network, which is expected to predict a single parameter. 10 

different models are required as each of them is trained to 

predict a particular weather parameter. Figure 3b depicts the 

basic arrangement of the MIMO and the MISO.

5.2  Proposed deep model with temporal 
convolutional network (TCN) layers

The main characteristic of the TCN is that the network can 

take a sequence of any length as inputs and map it to an 

output sequence of the same length, just similar to the RNN 

categories. These networks involve causal convolutions and 

initially developed to examine long-range patterns using a 

hierarchy of temporal convolutional filters [8, 58, 59]. TCN 

architecture is quite simple and is informed by recent generic 

convolutional architectures for sequential data. This archi-

tecture has no skip connections across layers, conditioning, 

context stacking or gated activations, and autoregressive 

prediction and a very long memory.

The TCNs use dilated convolutions that enable an expo-

nentially large receptive field, allowing very deep networks 

and very long effective history [60]. For instance, the dila-

tion convolution operation F for a 1-D sequence of a given 

weather parameter p
1 , i.e. p =

(

p1

0
,… , p1

t

)

 and a filter 

f ∶ {0,… , k − 1} , on element s = p1

t̂
 (where t̂ = 0,… , t ) of 

the sequence is defined as:

(2)F(s) =
(

p ∗d f
)

(s) =

k−1
∑

i=0

f (i).ps−d.i

Fig. 3  The proposed MIMO and MISO deep architecture for weather forecasting

Fig. 4  Architectural elements in a TCN with causal convolution and different dilation factors. The input to the TCN is x
t
 and output yt . The x

t
 

contains 10-dimensional weather parameter
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The notations of Eq. (2) are: d—dilation factor, k—filter 

size, and s − d.i accounts for the direction of the past. The 

TCN consists of stacked units of one dimensional convo-

lution with activation functions [7]. The architectural ele-

ments in a TCN with configurations dilations dilation factors 

d = 1, 2, and 4 are shown in Fig. 4. The main purpose of 

the dilation to introduce a fixed step between every adjacent 

filter taps, and larger dilations and larger filter sizes k enable 

effectively expanding the receptive filed [8, 59]. The incre-

ment of d exponentially increase the depth of the network 

in these convolutions and this guarantees that there is some 

filters that hits each input within the effective history [59].

5.2.1  MIMO-TCN and MISO-TCN

Similar to LSTM in Sects. 5.1.1 and 5.1.2, we also use the 

TCN in our proposed MIMO and MISO models.

5.3  Proposed model for weather forecasting

As discussed in Sects. 5.1 and 5.2, the LSTM and TCN deep 

learning approaches are proposed for weather forecasting. 

The MIMO and MISO are the two types of deep models to 

solve the regression problem. Therefore, proposed models 

for weather forecasting are MIMO-LSTM, MISO-LSTM, 

MIMO-TCN, and MISO-TCN. Deep learning models are 

discussed in [11, 34, 39, 61, 62] are single input single out-

put models. The MISO are experimented in [35, 36] and a 

MIMO is discussed in [63]. All these models can be accepted 

up to four input parameters at a given time. Increased num-

ber of input parameters will increase the forecasting accu-

racy of an NWP model by distinguishing interrelationships 

among parameters [17, 47]. Our proposed model uses ten 

input parameters which has not been explored in the past for 

neural network-based weather forecasting. Subsequently, the 

research discusses in this article is explored for both MIMO 

and MISO.

Moreover, [62] uses the bidirectional recurrent network 

with weather-related input parameters successfully to predict 

the wind power up to 6 h. Therefore, bidirectional LSTM 

experiments in long-term forecasting and compare with the 

proposed model. Most of the researches discussed in Table 1 

are attempted to forecasting a single or few parameters for a 

specific purpose rather developing a complete weather fore-

casting model. Our proposed model explores to complete 

AI-based fine-grained weather forecasting model.

We use Keras as a tool to implement both LSTM and 

TCN deep learning networks [56, 64–66].

6  Methodology

This is an empirical-based study and is focused on analysing 

the quantitative temporal weather data. There are 10 surface 

weather parameters utilised in this research for weather pre-

diction. These weather parameters are identified by consid-

ering their usefulness in precision farming. Moreover, these 

surface parameters can be captured at a chosen location 

using various sensors using a local weather station.

6.1  Surface weather parameters

The surface weather parameters are observed and reported in 

for monitoring and forecasting purposes [67]. In our previ-

ous study, we defined 10 surface weather parameters for the 

forecasting, which can be extruded from GRIB data using 

the WRF model [66]. Those 10 surface parameters, as shown 

in Table 2.

The surface parameters of wind direction and wind speed 

can be calculated from the WRF surface variables U
10

 and 

V
10

 [4]. Table 2 shows the surface weather parameters which 

are utilised in this research. The XLAT—reference latitude 

and XLONG—reference longitude parameters are used with 

each data point for the location identification.

6.2  Data collection and preparation

As described in Sect. 4, the GRIB data is used to run the 

WRF model. A total of 12 weather parameters is extracted 

from the period of January 2018 to May 2018. This is used 

as the training dataset to train the proposed models. Simi-

larly, the parameters in June 2018 data are used to test the 

network. This is to test different trained deep models to 

identify the best model for forecasting. The parameters in 

July 2018 are considered as the validation dataset, which 

is used as the ground truth to compare perdition from the 

best model. The WRF model is being run in forecast mode 

using the same format GRIB data for the month of July 2018 

Table 3  Different LSTM layer configurations for MIMO-LSTM and 

MISO-LSTM

Configuration Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Config 1 128 512 512 256

Config 2 256 2048 2048 1024 256

Config 3 256 512 1024 512 256

Config 4 256 1024 1024 512

Config 5 64 256 512 128

Config 6 128 512 256
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to evaluate the overall prediction performance of the WRF 

model.

The training data set has been normalised to keep each 

value in between − 1 and 1, and the same maximum and 

minimum variable values are used to normalise the testing 

and the evaluation data set. We apply a sliding window of 

7 days temporal resolution on each dataset as input to the 

model and the temporal resolution of next 3 h data as the 

model’s output. By using this sliding window method, the 

size of our training dataset is ~ 6.5 GB with a sample size of 

675,924, and the testing dataset is ~ 1.19 GB with a sample 

size of 114,450.

6.3  Model details

As shown in Table 3, six different configurations are con-

sidered for both MIMO-LSTM and MISO-LSTM models. 

Figure 2a depicts the general architecture of the proposed 

model. Each configuration has a different number of layers, 

and each layer consists of a different number of nodes. Each 

configuration is experimented with:

• Fixed learning rate (LR) and adaptive learning rate [68]. 

In the fixed learning rate, we set LR = 0.01. In the adap-

tive learning rate method, the LR (initial LR = 0.1) is 

reduced to half of the current LR in every 20 epochs to 

find the optimal model with best LR.

• Adam [69] and SGD [70] optimizers to minimise a given 

cost function [56, 64].

The MIMO-TCN and MISO-TCN approaches have exper-

imented with different configurations and controls, such as;

• Filter sizes: 32, 64, 128, 256, and 512

• Stacked TCN layers: 1, 2, 3, and 4 and

• With different activation functions such as ‘linear’ and 

‘tanh’

According to [8, 59, 71], the following controls are kept 

constant within these experiments as these do not impact on 

final results significantly in the regression model for time-

series data; kernel size: 2, dilations: 7, where dilation values 

are: 1, 2, 4, 8, 16, 32, 64, batch size-64, and dropout rate-0, 

learning rate-0.01.

6.4  Evaluation metric

The proposed deep regression models are evaluated using 

the most common metrics of mean squared error (MSE), 

which is calculated as:

where y
a
 is the actual expected output, y

b
 is the model’s 

prediction, and n is number of samples.

6.5  Baseline approaches

Performances of the proposed LSTM and TCN models 

are compared with the following three types of baseline 

approaches. These approaches do not consider the temporal 

information rather count as another dimension in multivari-

ate weather data.

• Classic machine learning approaches

Standard regression (SR), support vector regression 

(SVR), and random forest (RF).

• Statistical machine learning approaches

Autoregressive integrated moving average (ARIMA), 

vector auto regression (VAR), and vector error correction 

model (VECM).

(3)MSE =

1

n

n
∑

i=1

(

y
a
− y

b

)2

Table 4  Comparison of machine learning approaches for MISO

Lower MSE is better and is shown in bold

Parameter SR SVR ARIMA VAR VECM AFE RF LSTM TCN

TSK 0.002401549 0.002254852 0.002284599 0.002276563 0.002121585 0.002117985 0.002095814 0.002041361 0.001738656

PSFC 9.359E − 05 8.90012E − 05 9.2467E − 05 9.08745E − 05 8.8452E − 05 8.79532E − 05 8.76859E − 05 8.16E − 05 8.74041E − 05

U10 0.005820971 0.005620015 0.00568859 0.005689786 0.005425125 0.005325658 0.00486305 0.002748407 0.004384032

V10 0.009827752 0.008465238 0.00920003 0.008902459 0.008625459 0.008612125 0.007865233 0.003732091 0.007427616

Q2 0.00698015 0.006901244 0.006976667 0.006885608 0.006841126 0.006827854 0.006795488 0.006379222 0.006752483

Rainc 0.004125379 0.003956207 0.004072365 0.004006562 0.003756566 0.003654545 0.003465855 0.002799961 0.003260107

Rainnc 0.021597916 0.019257844 0.016020204 0.015784525 0.013299866 0.013198986 0.009548721 0.000502061 0.001895714

Snow 1.65547E − 06 9.87E − 07 1.18746E − 06 9.98926E − 07 5.98926E − 07 5.13656E − 07 3.72155E − 07 1.74E − 07 1.34E − 07

TSLB 0.000934762 0.000847989 0.000904632 0.000869562 0.000853657 0.000796566 0.000762486 0.000724035 0.000376134

SMOIS 0.000359895 0.000285655 0.000327851 0.000302515 0.000273252 0.000271652 0.000249451 0.00024636 9.98907E − 05
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• A dynamic ensemble method

Arbitrage of forecasting expert (AFE).

We use both linear and RBF (radial basis function) ker-

nels for SVR in our experiments and use the grid search 

algorithm technique to optimise both C and γ parameters. 

In linear kernel, the parameter C is selected among the 

range [0.01–10,000] with multiples of 10. In RGB kernel, 

the parameters C is selected as above but γ is selected 

among the range [0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.6, 

0.9]. For RF [71], we select number of trees as [100, 250, 

500]. For ARIMA model, we use the parameters p = 2, 

Fig. 5  MISO analysis of different approaches to predicting different 

weather parameters (SR standard regression, ARIMA autoregressive 

integrated moving average, VAR vector autoregression, SVR support 

vector regression, VECM vector error correction model, AFE arbi-

trage of forecasting experts, RF random forest, LSTM long short-term 

memory, TCN temporal convolutional network)
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d = 0, and q = 1 [72]. For VAR and VECM, the auto option 

is selected for weather forecasting [73, 74]. The given soft-

ware package is used for the AFE [75].

The baseline performances are compared with the 

proposed LSTM and TCN networks. These models are 

evaluated using the testing dataset to select the optimal 

model or a model with the least MSE, which can be used 

as a tool for future forecasting. The selected optimal is 

used to forecast the weather parameters for the validation 

dataset (model prediction), and the model predicted values 

are evaluated with respect to the ground truth. Similarly, 

the WRF model has been run in forecast mode using the 

same format GRIB data for the month of July 2018 (WRF 

Prediction). These WRF predicted values are evaluated 

with respect to the ground truth. Then, we compare the 

model prediction and WRF perdition to determine the pos-

sibility to use the proposed model for short-term weather 

forecasting (i.e. 3-h prediction). Then, the optimal model 

is re-tuned for long-term weather forecasting, such as 6, 

9, 12, 24, and 48 h. Similar to the short-term forecasting, 

we compare the model predictions and WRF predictions 

to determine up to what extent the proposed model can be 

used for weather forecasting.

7  Results and discussion

There are three types of results, namely: (1) a comparison 

of various machine learning techniques, statistical forecast-

ing approaches, and a dynamic ensemble method with the 

proposed approach for weather forecasting, (2) performance 

of short-term weather forecasting, and (3) performance of 

long-term weather forecasting using the proposed model. 

More specifically, the short-term weather forecasting refers 

to 3-h weather prediction, and long-term weather forecasting 

refers to 6-h, 9-h, 12-h, 24-h, and 48-h weather predictions.

7.1  Comparison of machine learning techniques 
for short‑term weather forecasting

As described in Sect. 6.5, we examine the classic machine 

learning approaches (i.e. SR, SVR, RF), statistical fore-

casting approaches (i.e. ARIMA, VAR, and VECM), and 

a dynamic ensemble method (i.e. AFE). Finally, we com-

pare these performances with the proposed deep models 

(i.e. MISO-LSTM, MISO-TCN, MIMO-LSTM, MIMO-

TCN) consisting of cutting-edge networks such as LSTM 

and TCN layers. As described in Sects. 5.1 and 5.2, these 

models are evaluated using two different regression types, 

namely MISO and MIMO.

We evaluate the MISO models to determine the MISO-

optimal with the least MSE for weather prediction. Table 4 

and Fig. 5 represent the comparison of machine learning 

approaches for MISO. As per Table 4 and Fig. 5, the MISO-

LSTM provides better performance with the least MSE for 

6 parameters out of 10. Thus, the LSTM combined model 

with 10 parameters (i.e. MISO-LSTM) has been selected as 

the MISO proposed model.

Similarly, we evaluate the MIMO models to determine 

the MIMO-optimal with the least MSE for weather predic-

tion. Table 5 and Fig. 6 represent the comparison of machine 

learning approaches for MISO. We do not consider the 

approaches ARIMA, VAR, VECM, and AFE in MIMO. 

Therefore, we compare SR, multi-output SVR [76], and RF 

with the proposed deep models MIMO-LSTM and MIMO-

TCN. The results are subsequently evaluated via the mean 

squared error. This is used to assess the best model (i.e. least 

MSE) after comparing the performance of all models.

As per Table 5 and Fig. 6, the MIMO-LSTM provides 

high accuracy output with least MSE for 6 parameters out 

Table 5  Comparison of 

machine learning approaches 

for MIMO

Lower MSE is better and is shown in bold

Parameter SR SVR RF LSTM TCN

TSK 0.003701561 0.003652545 0.003612458 0.003271054 0.003578392

PSFC 0.005358824 0.00325658 0.002720456 0.002112675 0.000279068

U10 0.008420962 0.006994518 0.006890641 0.005394089 0.00632667

V10 0.015627757 0.012985601 0.012056545 0.006311009 0.010195208

Q2 0.009980163 0.009979542 0.009929825 0.009881492 0.006578324

Rainc 0.006125415 0.005231452 0.005095621 0.002878811 0.004785024

Rainnc 0.021599896 0.016958456 0.016332367 0.003070845 0.015204848

Snow 1.65518E − 05 9.72462E − 06 7.27815E − 06 2.39E − 06 1.60078E − 06

TSLB 0.004349349 0.003756588 0.003665241 0.003427306 0.000485899

SMOIS 0.000979024 0.000782515 0.000771265 0.000648767 0.000756974
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of 10. Therefore, the MIMO-LSTM has been selected as the 

proposed model (i.e. MIMO-optimal).

In both MIMO and MISO, the LSTM and the TCN pro-

duce high performance with smaller errors compared to the 

classic machine learning approaches and statistical forecast-

ing approaches as presented in Figs. 5 and 6. The reason 

is that the selected parameters do not follow a linear path 

within selected sequential timeslots [77, 78] and there is a 

nonlinear interrelationship among parameters [6, 53, 79]. 

Besides, the sequential information is not encoded by the 

classic machine learning approaches and statistical forecast-

ing models. The LSTM and TCN encode both multivari-

ate and sequential information by taking them into another 

dimension in the input data [6, 59, 80].

Fig. 6  MIMO analysis of different approaches to predicting different weather parameters (SR standard regression, SVR support vector regression, 

RM random forest, LSTM long short-term memory, and TCN temporal convolutional network)
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7.2  Proposed models for short‑term weather 
prediction

The least MSE for the MIMO is identified in the configura-

tion with three LSTM layers, with 128, 512, and 256 num-

ber of nodes, respectively (i.e. MIMO-optimal model). We 

use the SGD optimiser with a fixed learning rate of 0.01 to 

optimise the MSE regression loss function. The model is 

trained for 230 epochs. In MISO, all these 10 models have 

different configurations with a different number of LSTM 

layers and nodes, activation functions, and optimisers (i.e. 

MISO-optimal). Table 6 and Fig. 7 graphically represent 

the comparison of MSE in each variable for both MIMO-

optimal and MISO-optimal.

Table 6 shows the comparison of MSE in each variable 

for both MIMO and MISO. Figure 7 graphically represents 

these values to get an idea of whether to use the MIMO 

model or the MISO combined model to use as the best model 

for future predictions.

According to Fig. 7, there is no major gap between MSE 

values for each variable when compare the MIMO-optimal 

and MISO-optimal. These differences are less than 0.04 for 

each variable. These error figures are significantly smaller. 

Moreover, the MISO-optimal requires 10 different models 

for the prediction of 10 different weather parameters. There-

fore, we consider the MIMO-optimal (i.e. MIMO-LSTM) 

model as a tool for future forecasting since it is easier to han-

dle and less time and power consumption (only one model 

to run) than running 10 different models of MISO-optimal.

As described in Sect. 6.5, the validation dataset is uti-

lised to get weather prediction using the proposed model. 

Similarly, the WRF model is run in forecast mode using the 

July 2018 data to compare results. Both WRF and model 

predicted values are compared with respect to the ground 

truth and calculated the MSE. Table 7 and Fig. 8 represent 

the MSE comparison values for each variable.

When comparing Table 7 and Fig. 8, the proposed deep 

model (i.e. MIMO-LSTM) provides comparatively best 

results (bolded in the table) on eight occasions out of 10. 

The WRF model provides the best results for the snow and 

soil moisture (SMOIS) variables. On both occasions, these 

error figures are quite small. For example, MSE for the vari-

able snow is 0.0168574 kg/m2. This is quite a small and 

therefore, negligible. Similarly, the SMOIS has got a mini-

mal and negligible error value. Figure 8k shows an overall 

comparison of both models.

As there are 125,373 samples in the July 2018 evaluation 

data, the proposed deep model and the WRF model will 

produce a similar number of samples as the predicted data. 

It is difficult to visualise all of these predictions because of 

the large sample size and therefore, a random sample of the 

100 samples has been taken from the test set to compare with 

the respective ground truth. Figure 9 shows a comparison 

of the proposed deep model’s predictions verses the WRF 

model predictions. For each graph, the ground truth, WRF 

prediction, and the proposed deep model’s predictions are 

represented by each line with blue, green, and red colours, 

respectively.

Table 6  MSE comparison

Parameter MIMO-optimal MISO-optimal

TSK 3.27E − 03 2.04E − 03

PSFC 2.11E − 03 8.16E − 05

U10 5.39E − 03 2.75E − 03

V10 6.31E − 03 3.73E − 03

Q2 9.88E − 03 6.38E − 03

Rainc 2.87E − 03 2.79E − 03

Rainnc 3.07E − 03 5.02E − 04

Snow 2.39E − 06 1.74E − 07

TSLB 3.42E − 03 7.24E − 04

SMOIS 6.48E − 04 2.46E − 04

Fig. 7  Comparison of MIMO and MISO

Table 7  Comparison of the proposed deep model with the WRF fore-

casting model for 3-h prediction

Parameter Mean squared Error

WRF model Proposed model 

(MIMO-LSTM)

TSK 4.0209727 2.7882845

PSFC 227869.02 123881.22

U10 10.540705 5.327054

V10 12.0824 4.6248293

Q2 1.1117266e−6
7.716598e

−7

Rainc 15.942339 0.11341145

Rainnc 18.627722 0.83847433

Snow 0.0 0.016857434

TSLB 8.140333 2.6088953

SMOIS 8.523197e
−5 0.000024246839
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As per Fig. 9, the red line-chart (deep model predic-

tion) follows closely to the blue line-chart (ground truth) 

compared to the green-chart (WRF prediction). The WRF 

prediction is widely diverted in the parameters Rainc and 

Rainnc compared to the actual values. The deep model pre-

diction is diverted in the parameter snow compared to the 

actual values. According to Fig. 7h, the highest snow predic-

tion is 0.24 kg/m2. This is quite a small figure and can be 

negligible. Overall, the deep learning model provides a bet-

ter short-term (up to 3 h) prediction compared to the WRF 

model.

7.3  Proposed model for long‑term weather 
forecasting

As described in Sect. 7.2, the proposed model (i.e. MIMO-

LSTM) can be utilised for short-term weather forecasting, 

and it yields more accurate results compare to the well-

known WRF model. In this section, our study is focused 

on exploring long-term weather prediction using the same 

historical weather data with 10 surface weather parameters.

Fig. 8  Analysis of weather prediction of the WRF model and proposed deep learning LSTM model
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Fig. 9  Comparison of WRF prediction versus the MIMO-LSTM model prediction for 100 random data samples with respect to the ground truth 

(colour figure online)
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7.3.1  Selection of an appropriate technique

As discussed in Sect. 7.1, the proposed model provides bet-

ter performance compared to other machine learning tech-

niques. Therefore, we use the same deep learning model 

with the LSTM layers for the long-term weather forecasting 

with the following variations. All these three variants use 

the same configuration and controls, which are comparable 

to the proposed MIMO-LSTM model.

(a) Load the MIMO-LSTM optimal model weights (3-h) 

and fine-tune models for the long-term forecasting 

(shortened form: LSTM LW)

(b) Train models for each time frame without loading the 

optimal model weights (shortened form: LSTM WL). 

That is train the model at the beginning of the training 

dataset and new labels.

(c) We have also experimented with Bidirectional LSTM 

(Bi-LSTM). Compared to the LSTM, the Bi-LSTM has 

used two layers; one layer performs the operations fol-

lowing the forward direction (time-series data) of the 

data sequence, and the other layer applies its operations 

on in the reverse direction of the data sequence [81].

The following Table 8 shows the comparison of these 

three variations for each timeslot. As shown in Table 8, 

the Bi-LSTM provides slightly better results compared to 

the LSTM LW except for the timeslot 3-h. The LSTM WL 

produces weaker results compared to the both LSTM LW. 

The reason is that the LSTM LW used its optimal weight, 

which is already configured to re-train and yield a predic-

tion. Moreover, this is re-tune the model which is matched 

to the new dataset [55]. The Bi-LSTM is also trained the 

model at the beginning similar to the LSTM WL. How-

ever, the Bi-LSTM provides more accurate results due 

to the ability to preserve the past and future values [81].

The only drawback of the Bi-LSTM is that time taken 

to training, testing, and predicting data [82]. This is less 

efficient compared to the LSTM LW. Moreover, as can 

be observed in Table 8, there is a slight gap in the overall 

figures of MSE in both LSTM LW and Bi-LSTM. There-

fore, we have selected the LSTM LW method for long-

term forecasting for an effective and efficient outcome.

7.3.2  Long-term weather forecasting

The proposed model (i.e. MIMO-LSTM) consists of 

three LSTM layers with other controls. As described in 

Sect. 7.3.1 the LSTM with loading the optimal weight 

method is used for the long-term weather prediction. 

Therefore, the optimal model is re-tuned (i.e. load optimal 

model weight and re-train models) for timeslots 3-h, 6-h, 

9-h, 12-h, 24-h, and 48-h. While re-tuning, the optimal 

Table 8  Comparison of LSTM LW, LSTM WL, and Bi-LSTM

Only included the results for 3, 9, 24, and 48 h. The other tables are 

included in the supplementary section

Parameter LSTM LW LSTM WL Bi-LSTM

(a) 3 h

 TSK N/A 0.003271054 0.002371392

 PSFC N/A 0.002112675 0.001007641

 U10 N/A 0.005394089 0.008889356

 V10 N/A 0.006311009 0.010825

 Q2 N/A 0.009881492 0.00885295

 Rainc N/A 0.002878811 0.004197211

 Rainnc N/A 0.003070845 0.025307791

 Snow N/A 2.39E − 06 1.06E − 06

 TSLB N/A 0.003427306 0.001056143

 SMOIS N/A 0.000648767 0.000677912

 Overall N/A 0.003699844 0.006318646

(b) 9 h

 TSK 0.004679656 0.003785324 0.002954833

 PSFC 0.00337704 0.005435103 0.002543765

 U10 0.016287696 0.01789222 0.015199178

 V10 0.022693845 0.032980144 0.026619522

 Q2 0.016228491 0.017330563 0.014454748

 Rainc 0.007961646 0.007261488 0.006792006

 Rainnc 0.08320849 0.087723635 0.0691833

 Snow 2.13871E − 06 1.39469E − 05 1.86E − 06

 TSLB 0.002113115 0.002125454 0.002216928

 SMOIS 0.001027248 0.001156121 0.00075886

 Overall 0.015757935 0.017570399 0.014072499

(c) 24 h

 TSK 0.003225559 0.003989982 0.003520491

 PSFC 0.012482793 0.010315491 0.007714262

 U10 0.026440082 0.026202237 0.024926782

 V10 0.03660787 0.042136274 0.036013693

 Q2 0.026067492 0.030222168 0.02755576

 Rainc 0.08263268 0.07865509 0.078575564

 Rainnc 0.15932418 0.16492906 0.158401

 Snow 4.65178E − 07 0.000137658 0.000442552

 TSLB 0.004401047 0.004503616 0.005910429

 SMOIS 0.001600785 0.001434334 0.001202147

 Overall 0.035278295 0.03625259 0.034456268

(d) 48 h

 TSK 0.004480547 0.005869389 0.003708232

 PSFC 0.018504778 0.013365718 0.016115312

 U10 0.045134 0.037737582 0.03475978

 V10 0.04253545 0.04715329 0.042574175

 Q2 0.050479617 0.04151997 0.038551033

 Rainc 0.061815947 0.068089165 0.059418406

 Rainnc 0.16204703 0.16313162 0.15197921

 Snow 3.72323E − 06 0.000231712 6.40E − 05

 TSLB 0.007845704 0.012153346 0.005880864

 SMOIS 0.00158867 0.001342647 0.001104945

 Overall 0.039443548 0.038059445 0.03541559
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models are found in different epochs such as 80, 10, 10, 

10, and 10 for timeslots 6, 9, 12, 24, and 48 h, respectively.

Similar to the short-term weather forecasting, the opti-

mal model for each timeslot is used to forecast the weather 

parameters for the July 2018 data (model prediction), and 

the model predicted values are evaluated with respect to 

the ground truth. The WRF model has been run in forecast 

mode using the same format GRIB data for the month of 

July 2018 (WRF prediction) based on the same conditions as 

model prediction (i.e. input 7 days data and predict weather 

parameters for timeslot 6, 9, 12, 24 and 48). The WRF pre-

dicted values are evaluated with respect to the ground truth. 

Finally, compare the model prediction and WRF prediction 

to determine what extent the deep learning model can be 

used for weather forecasting. Figure 10 shows a comparison 

of MSE values related to the proposed model and the WRF 

model for each time slot.

According to the results presented in Fig. 10, it is obvious 

that the WRF model produces better forecasting results for 

the very long-term compared to the deep learning model. 

The reason is that the WRF model is combined with many 

other climate models [4, 83, 84] and data is coming to the 

system globally [4, 49]. The deep learning model has pre-

dicted these outputs based on 5 months of training data. We 

could receive better results if we increase the size of the 

training dataset [56]. The Rainc and Rainnc parameters show 

Fig. 10  Compare proposed MIMO-LSTM model prediction with WRF prediction for long-term forecasting. The MSE values are calculated with 

respect to the ground truth in both WRF and LSTM models
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much better results in the deep learning model compared to 

the WRF model for long-term forecasting. The experiments 

of [39] already proved that the deep learning neural net-

works yield the highest accuracy for rain prediction.

Contrarily, the SMOIS and snow parameters show weak 

results in deep learning compared to the WRF model at all 

timeslots. Simply, these error patterns are rather low (maxi-

mum error: Snow—0.016 kg/m2, SMOIS—0.00035  m3/m3) 

and can be negligible. This could be resolved by increasing 

the size of the sample data. All other occasions, the deep 

learning model provide more accurate prediction compared 

to the WRF model up to some extent, than the WRF model 

produces better prediction compared to the deep learning 

model. Figure 11 shows the comparison of overall error val-

ues of the WRF model and proposed deep learning model.

As indicated in Fig. 11, the deep learning model produces 

better predictions compared to the WRF model prediction 

up to 12 h overall. Therefore, we can use deep learning with 

LSTM model up to 12 h of weather forecasting much accu-

rately compared to the well-recognised WRF model. The 

comparison of WRF prediction versus the LSTM model 

prediction for 50 random data samples with respect to the 

ground truth is shown in Fig. 12. For each graph, the ground 

truth, WRF prediction, and the proposed deep model’s pre-

dictions are represented by each line with blue, green, and 

red colours, respectively.

As per Fig. 12, the red line-chart (deep model predic-

tion) followed closely to the blue line-chart (ground truth) 

up to some extent and diverted when time increases in 

many parameters. The green line-chart (WRF model pre-

diction) also diverted from the blue line-chart when time 

increased, but this diversion is relatively small compared 

with the red line-chart. As shown in Fig. 12vi, vii, the 

rainc and rainnc values are accurate in the deep learn-

ing model compared to the WRF model for up to 48 h. 

As discussed earlier, the WRF model produces a better 

prediction for the Snow and SMOIS parameters. As shown 

in Fig. 12x, the difference is negligible for the parameter 

SMOIS. As shown in Fig. 12viii, the maximum snow val-

ues are shown in the 3 h line-chart. This value is equal to 

0.24 kg/m2, and this is a relatively negligible figure. Over-

all, the deep learning model delivers a better forecasting 

prediction compared to the WRF model for up to 12 h.

7.4  Applicability of the new model

As described in Sect. 7.3, the proposed model can be used 

for weather prediction. Even, this model generates more 

accurate predictions compared to the well-recognised WRF 

model for up to 12 h. We use historical weather data to eval-

uate and validate these models. The only issue is we still use 

the WRF model to extract GRIB data to use as input for the 

new model (we use GFS GRIB data). On the other hand, it 

requires a minimum of 3 h of access GFS data after taking 

the atmospheric measurements. This includes the time taken 

to upload data to the website [4, 85]. In addition, the WRF 

model also taken the time to extract the GFS data depends 

on the computer system. Hence, the input data which are 

used in the new model are not the current atmospheric meas-

urement data (i.e. older more than 3 h). Therefore, it is not 

practicable to use WRF data with the new model, and it will 

be highly beneficial to consider the use of local weather sta-

tion data for weather forecasting.

8  Conclusion and future work

In this article, we demonstrate that the proposed lightweight 

deep model can be utilised for weather forecasting up to 12 h 

for 10 surface weather parameters. The model outperformed 

the state-of-the-art WRF model for up to 12 h. The proposed 

model could run on a standalone computer, and it could easily 

Fig. 11  Comparison of overall 

MSE for each timeslot
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Fig. 12  Comparison of WRF 

prediction versus the LSTM 

model prediction for 50 random 

data samples with respect to 

the ground truth (colour figure 

online)
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be deployed in a selected geographical region for fine-grained 

short to medium-term weather prediction. Furthermore, the 

proposed model is able to overcome some challenges within 

the WRF model, such as the understanding of the model 

and its installation, as well as its execution and portability. 

In particular, the deep model is portable and can be easily 

installed into a Python environment for effective results [17, 

56]. This process is highly efficient compared to the WRF 

model.

Fig. 12  (continued)
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This research is carried out using ten different surface 

weather parameters, and an increased number of inputs 

would probably lead to enhanced results. For example, there 

are 36 different pressure levels defined in the WRF model 

[17]. Only the pressure at two meters is considered within 

this research. There is a possibility to increase the accuracy 

of the results if we introduce all 36 possible pressure levels 

to the proposed model. However, it will increase the model 

complexity requiring a large number of parameters to esti-

mate. Furthermore, January to May weather data is utilised 

Fig. 12  (continued)
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for training the deep model, and the increase in the size of 

training dataset could help towards improved results in a 

deep learning network [56, 86].

Besides, we used the MIMO approach within this research 

to predict weather data. Table 5 and Fig. 7 show that the 

MISO approach produces better MSE values compared to the 

MIMO. Therefore, there is a huge potential that the MIMO 

approach will increase the accuracy of the results; even this 

method is less efficient compared to the MIMO. Besides, the 

Bi-LSTM yields high accuracy long-term prediction com-

pared to the LSTM, as presented in Table 7. Therefore, we 

could get more accurate results if we use Bi-LSTM; even this 

method is not efficient due to high time-consumption.

These experiments show that we can apply the neural 

network approach for weather prediction. Based on the 

geographical appearance of location (such as the top of a 

mountain, land covered by several mountains, the slope of 

the land, etc.) the regional weather forecasting may not be 

accurate. As a solution, we could develop a lightweight (neu-

ral network-based) short-term weather forecasting system for 

the community of users utilising weather station data. These 

are our future experimentation.
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