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ABSTRACT Photovoltaic (PV) systems are subject to failures during their operation due to the aging

effects and external/environmental conditions. These faults may affect the different system components

such as PV modules, connection lines, converters/inverters, which can lead to a decrease in the efficiency,

performance, and further system collapse. Thus, a key factor to be taken into consideration in high-efficiency

grid-connected PV systems is the fault detection and diagnosis (FDD). The performance of the FDD method

depends mainly on the quality of the extracted features including real-time changes, phase changes, trend

changes, and faulty modes. Thus, the data representation learning is the core stage of intelligent FDD

techniques. Recently, due to the enhancement of computing capabilities, the increase of the big data use,

and the development of effective algorithms, the deep learning (DL) tool has witnessed a great success in

data science. Therefore, this paper proposes an extensive review on deep learning based FDD methods for

PV systems. After a brief description of the DL-based strategies, techniques for diagnosing PV systems

proposed in recent literature are overviewed and analyzed to point out their differences, advantages and

limits. Future research directions towards the improvement of the performance of the DL-based FDD

techniques are also discussed. This review paper aims to systematically present the development of DL-

based FDD for PV systems and provide guidelines for future research in the field.

INDEX TERMS Fault Diagnosis, Deep Learning, Photovoltaic Systems.

I. INTRODUCTION

Photovoltaic (PV)-based electrical power generation has

been a growing research area in the academia and indus-

try fields [1], [2], where the grid-connected PV systems

have witnessed the highest growth rate. Therefore, the high-

performance/reliability operation of PV systems has become

a top priority. PV systems’ faults can be divided, according

to their time characteristics, into three major categories:

intermittent, abrupt, or incipient faults. Temporary or inter-

mittent faults refer to faults that clear or change over time

such as partial shading or environmental stress (e.g., dust or

contamination). Permanent or abrupt faults refer to faults that

occur instantaneously often as a result of a damage to the

PV array such as line-to-line or line-to-ground short circuits,

junction box faults, connector disconnection, open-circuit

faults, and hot spots. Incipient faults are considered as the

most challenging failures due to their small amplitudes and

slow dynamics. If not detected at an early stage, they can

result in gradual damage to the PV cells leading to serious

faults. Incipient faults can occur in both DC and AC sides.

Examples of DC-side (PV modules and DC/DC converter)

incipient faults are PV module defects such as yellowing and

browning of the solar cells, delamination, bubbles, cracks,

gaps, and defects in the anti-reflective coating. The AC-

side (inverter and grid side) faults include Insulated Gate

Bipolar Transistor (IGBT) faults, wiring degradation, aging,

islanding, and overheating.

Therefore, it is essential to develop enhanced FDD algo-

rithms aiming at increasing the reliability and efficiency of

PV systems [3]. With the rapid development of information
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and automation technologies, the demand and requirements

for FDD algorithms are increasing, and data-driven process

control methods are also being continuously developed and

improved. Thanks to the powerful representation learning

ability of DL algorithms, intelligent FDD become more

automated and effective in the context of big data. However,

PV systems are complex [4], generally including nonlinear

[5], [6], uncertain [7], time-correlated [8], multimodal [9],

multi-period [10], large-scale [11], or intermittent charac-

teristics [12], resulting in the following problems with the

collected data: (1) The characteristic dimension of samples

under multi-sensor measurement is relatively high and has

high relevance (the data relevance in both decision-making

and decision-taking has exponentially increased); (2) Differ-

ent sampling rates or random loss of data lead to missing

observations of some sensors at a specific point in time; (3)

Unbalanced data types, such as a limited number of faulty

samples under extreme conditions; (4) The data distribution

is not uniform: the information from different data sources

may be inconsistent. In addition, the PV systems are uncer-

tain with the influence of external disturbances, and the mea-

surements collected are not represented with single values.

These problems result in uncertain characteristics of the data

and diagnosis spaces and severely limit the representation

learning ability of DL algorithms. To improve the safe and

stable operation of PV systems, the use of a DL framework

for FDD still needs improvement. Generally, the main steps

of DL-based FDD are the following: data preprocessing, deep

network design, and decision-making. Data preprocessing

problem includes (a) the small sample problem. In practical

applications, due to problems such as difficulty in data col-

lection and the high cost of sample labeling, the size of the

training sample is not large or the amount of data is large

but the effective information is insufficient resulting in the

problem of small samples in the field of learning. Methods

such as transfer learning and generative adversarial networks

can be used to solve design problems of deep network-based

diagnosis approaches in the case of small samples. (b) Big

data storage and analysis: The basis of big data analysis is

to extract useful values, suggest conclusions and/or support

decision making, and focus on solving problems that cannot

be handled within a limited time with existing methods. The

priority can be established by several factors such as data

preprocessing, fast response speeds, effective reduction of

data size, data regularization, relative principal component

analysis, etc. In addition, the performance of any diagnosis

method depends on the quality of the available process data

[13]. Practical measurements usually contain high levels of

noise/auto-correlation and are infected with errors that mask

the important features in the data and limit the effectiveness

of any process monitoring techniques [14].

Regarding the deep network design, although DL tools

have greatly promoted developments in the field of FDD,

integrating professional knowledge will help the DL model.

Thus, the representation learning of discriminative features

can help in reducing the structure of the DL model, and the

data regularization processing for specific tasks can help to

improve the performance of the FDD. The application of rea-

sonable professional knowledge and prior information helps

to reduce the complexity of the monitoring model and im-

prove the diagnosis performance. Besides, the performance

of the DL-based FDD relies mainly on the historical data. The

rapidity and accuracy of the analysis and effective simplifi-

cation of the online data to achieve incremental learning of

complex dynamic system models and parameter adaptation

is a challenging and difficult point. In addition, several issues

may have an impact on the diagnosis performance of the

DL-based approaches. In general, they are built using default

parameters and it is yet to investigate the way the parameter

variations affect these approaches. Consequently, DL based

on the selection of optimal parameters for FDD must enhance

the diagnosis performance.

Faults can be divided into two types depending on their

evolution: significant faults and minor faults. The design of a

multi-level diagnosis framework in the deep network model

will help achieving the real-time monitoring of significant

faults and effectively improve the diagnosis of random faults.

In addition, significant faults affect the system performance

differently, and small faults are also very likely to cause con-

siderable damage. Thus, it is important to develop DL-based

algorithms that consider the fusion of faults from different

manufacturing environments with different characteristics.

Moreover, classical DL algorithms are generally utilized to

model the dynamic nature of multivariable PV systems in

both the offline training and online updating phases using the

updated measurements. Instead, using online extensions of

DL models for diagnosis in the first place may reduce the

training and update time. In addition, complex PV systems

often have problems such as uncertainty, multiple fault oc-

currence, and fault levels changing with time. If only a single

FDD technology is used, the accuracy and generalization

will be low. Thus, combining multivariate statistical analysis

(such as: PCA [15]–[17], kernel PCA [18]–[20]), signal pro-

cessing (such as: Fourier transform, multiscale representation

[13], [21], interval-valued data representation [22], [23]), and

other tools with DL models could improve the performance

of the FDD and more specifically decision-making accuracy.

It could also reduce the impact of noise, outliers [24], and

uncertainties and estimate the severity of the fault location.

The DL-based FDD is mainly divided into three kinds

of techniques [25]–[28]: (i) Data preprocessing (DP) →
Features Extraction and Selection (FES) → Faults classi-

fication (FC) based on DL (FC-DL): This type of method

utilizes traditional statistical analysis, signal analysis and

other methods for data preprocessing and FES, and then

applies the DL tool for FC. This allows to reduce the model

complexity and improve the diagnosis rate. (ii) DP → FES-

DL → FC-DL: In this technique, the DL tool is used for

FES, and the FDD is performed based on the extracted high-

level features [29], [30], where multi-hidden-layer networks

for unsupervised extraction of high-level abstract features

are used. It does not require manual intervention or rely
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FIGURE 1. Simplified flowchart of fault diagnosis based on deep learning

techniques.

on prior knowledge. Combined with multivariate statistical

analysis techniques, it is able to provide an efficient diagnosis

performance [31]. (iii) DP → (FES and FC)-DL: In this

method, the DL tool makes a direct use of the raw-data to

perform the FDD. This method belongs to the "End-to End"

family, which directly computes the output from the input

[32]. The parameters for FES and FC in multi-hidden-layer

networks can be optimized collaboratively, and the feature

self-learning strategy is adopted to automatically extract the

effective features from the large data set to perform the FDD.

This paper mainly discusses the different DL-based FDD

techniques for PV systems from the perspective of method-

ology and five basic architectures: stacked auto encoder

network, deep belief network, convolutional neural network,

recurrent neural network and deep transfer learning (see

Figure 1). The network structure not only determines the

effectiveness of feature extraction and selection, but also

relates to the complexity of the solution. This paper will

explore the research status of these five types of methods

respectively, and study their development direction based on

the existing problems in the DL-based FDD technology.

The following section presents the most occurring failures

in PV systems.

II. COMMON FAILURES IN PV SYSTEMS

In PV systems, the produced PV power depends on various

factors such as the nominal characteristics of the components,

the power electronics interface, the weather conditions, and

failures that may occur in the different stages during the

operation (Figure 2).

A. PV MODULE FAILURES

The PV array is the main component of PV systems, where

any deficiency associated to the module has a significant

effect on the system performance. In the literature, the fol-

lowing failures have been commonly reported [33]:

1) Mismatch faults

Grouping non-homogeneous or poorly matched PV cells

(non-identical I-V characteristics) causes mismatch faults.

This mismatch leads to a reduction of the Maximum Power

Point (decreased PV power generation).

DC-DC
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Power Electronics Interface
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Load

PV Module 

Failures
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FIGURE 2. Classification of faults in PV Systems.

2) Bypass diode faults

Usually, a diode connected in anti-parallel to a group of cells

(bypass diode) is used in PV modules to prevent cells from

shading. Generally, a bypass diode fault is represented by

an impedance, short/open circuit, or inverted diode, which

causes a mismatch in the I-V characteristics of the cell.

3) Connectivity faults

Usually, the corrosion/decrease in contact adhesion between

two modules lead to a lack of connectivity in PV strings.

4) Ground faults

A ground fault (GF) in PV modules can be considered as an

accidental electrical short-circuit involving ground and one or

more current-carrying conductors [40]. The GF may generate

DC arcs (and even fire hazards) at the fault point, which raises

serious safety concerns.

5) Partial shading faults

The operation of PV modules is highly susceptible to partial

shading failures, where multiple peaks appear on the P-V

characteristics due to the use of a bypass diode.

B. POWER ELECTRONICS INTERFACE FAILURES

Usually, the operation of PV systems is accompanied with

failures at different stages. As one of the most important

components in PV systems is the power electronics interface,

it has been shown that most of the failures are due to the

power semiconductor failures.

Many factors may lead to the fatigue of the power electron-

ics components (transistors, diodes). The component fatigue

affects mainly the time response and therefore may lead

to additional switching losses. Besides, switching of power

semiconductors might cause different types of faults.

The three most common power semiconductor failures are

the wear-out, open-circuit, and short-circuit faults
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FIGURE 3. Architecture of Convolutional Neural Networks (CNN).

C. GRID SIDE FAILURES

Islanding is one of the most important failures to ad-

dress/detect in grid-connected PV systems. Islanding occurs

when a portion of the utility system remains energized while

isolated from the grid. This phenomenon can cause safety

problems to utility service personnel or related equipment

[34].

III. RESEARCH STATUS OF FAULT DIAGNOSIS

TECHNOLOGY BASED ON DEEP LEARNING

The DL-based FDD performance is based on the math-

ematical tool and process models of the plant [35]. The

development of deep networks helps to extract high-level and

abstract features from the data. When the effective feature

representation in the data is relatively extracted, whether it is

used for fault classification or regression, better results can

be obtained.

A. CONVOLUTIONAL NEURAL NETWORK BASED

FAULT DIAGNOSIS

Convolutional Neural Networks (CNN) are built using three

types of layers: convolutional layer (CL), pooling layer (PL),

and fully connected layer (FCL) [36], [37] (see Figure 3). The

CL combines multiple convolution kernels to extract features

from the input data or upper layer features, adds matrix

element multiplication to the input features in the perceptual

field, and adds the deviation [38]. The size of the convolution

kernel in the CL controls the extraction of local spatial corre-

lation features in the input information, which can enhance

certain features of the original signal while reducing the

impact of noise [36]. The PL is responsible for reducing the

spatial size of the Convolved feature. It aims to decrease

the computational power required to process the data using

dimensionality reduction schemes [39]. Furthermore, it is

useful for extracting relevant features that are rotationally and

positionally invariant, thus maintaining the process of effec-

tively training the model [39]. Adding an FCL is an effective

way of learning nonlinear combinations of the high-level

features, as represented by the output of the CL. The FCL

is learning a possibly nonlinear function in that space [40].

CNN-based FDD has the following advantages: (i) Industrial

system data has multi-source heterogeneity [41]–[44]. The

input of CNN can be time series [45]–[47], spectrogram

[48], [49], and images [50]–[52], which is suitable for multi-

source information processing [41], [53]; (ii) Complex PV

systems are often accompanied by random strong magnetic

interference, high temperatures. The features extracted by

CNN have translation invariance [54], [55], which increases

the robustness of the diagnosis algorithm and improves the

generalization ability of CNN; (iii) The data that can charac-

terize the faults in PV systems is often submerged in massive

real-time data. The generated countermeasure networks can

generate samples based on the learning of the probability

distribution of real data [56], which is suitable for small

sample sizes. The authors in [57]–[60] presented a vector

matrix containing statistical characteristics such as the root

mean square of the frequency domain signal, the standard

deviation, skewness, and kurtosis of the time domain signal

as the input to CNN for classification purposes. In addition, in

[61], [62], the authors used a Morlet wavelet decomposition

tool to obtain the wavelet scale map of the signal, which was

used as the input of the CNN for the classification phase. In

the developed method, the Rectified Linear Unit (ReLU) was

applied as an activation function and used to introduce non-

linearity into the network. The work in [63] introduced an

adaptive learning rate to construct a hierarchical framework

consisting of two CNNs. Therefore, the size of the mode and

the adjustment of the adaptive learning rate could promote

the algorithm to accelerate the convergence in addition to

the prevention of the gradient from disappearing. In addition,

given that the traditional linear model cannot capture the

complex relationship between sensor data and remaining

effective life, the authors in [40], [64] used the time series of

multi-channel sensor data. Evidently, one-dimensional (1D)

time series can be also used directly as the input of the

CNN. For this purpose, the authors in [65] developed a 1D

kernel filter to convolve the signal. The proposed method

aims to extract high-resolution features for fault detection.

The work in [66] used 1D CNN to detect faults by merging

feature extraction and post-processing of the raw signal. The

authors in [67] presented a comparative study of CNN-based

feature learning. The features include raw data, spectrum, and

time-frequency data. In [68], a novel full closed-loop -based

CNN method for power quality disturbances detection and

classification was proposed. The developed approach was

able to capture multiscale features and reduce overfitting. To

address the problem of small samples, the authors in [69]

used prior knowledge to convert normal data into coarse

fault data combined with an improved generative adversarial

networks (GAN). The proposed technique aims to refine

the coarse fault data into data more similar to real faults.

The authors in [70] applied a GAN to generate samples

with similar distribution to the original signal and utilized

a stacked denoising auto-encoder (SDAE) method to pre-

train the network, extract fault features, and identify the

authenticity of the samples. The developed approach was

robust to noise and showed a good anti-noise capability in

the case of small samples. The work in [71] used a GAN

for oversampling the fault operation data to obtain missing

fault data. The developed method was proposed to achieve

high-precision classification of induction motor faults under

different conditions. To repair the “fuzzy” range of the inter-

mediate probability value and enhance the credibility of the

reasoning for the fault overlapping area, the authors in [72]
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FIGURE 4. Architecture of Recurrent Neural Networks (RNNs).

applied a GAN to the seismic image in which the feature ex-

traction network was used to extract local and global features

from the high-quality image. The reconstruction network

then built a high-sensitivity image with a denser sampling

rate while retaining the original data and frequency domain

information.

B. RECURRENT NEURAL NETWORK BASED FAULT

DIAGNOSIS

Recurrent Neural Networks (RNN) are network structures for

which the inputs are time-series data and all the nodes are

connected in a chain [73]. Unlike multi-layer perceptrons,

the RNN have a sense of time and memory of earlier network

states allowing them to learn sequences that vary over time

[74] (see Figure 4). At present, the most commonly used

RNNs are Long Short-Term Memory networks (LSTM) and

Gated Recurrent Unit (GRU) networks. By introducing gates,

each recurrent unit can adaptively capture the dependence

of different time scales to avoid long-term dependence [75].

However, due to gradient exploding and vanishing, there is a

length limitation when applying the RNN [76]. Subsequently,

RNN variants such as LSTM [76] and GRU [76] neural

networks have been developed to deal with long sequence

prediction problems. The RNN-based FDD has the following

advantages: (1) The inputs of the RNN are time-series data

and the depth depends on the length of the input sequence,

which is suitable for dynamic PV systems monitoring and

prediction; (2) RNN are Turing complete, the chain connec-

tion mode is conducive to the extraction and representation

of the dynamic nonlinear characteristics of PV systems; (3)

The RNN is stable when the length of the learning and

testing sequence are different (PV system control is often

of variable length and the sampling is irregular). For the

time-series signals of PV systems, the authors in [77]–[79]

used monotonicity and correlation values to select features

as the RNN network inputs, and verified experimentally the

performance of the proposed RNN-based method. The work

in [80] proposed an LSTM-based encoder-decoder archi-

tecture. The encoder structure converts the input sequence

to a fixed-length vector and the decoder structure uses the

vector to generate the target sequence and calculate the

reconstruction error to use it later for decision making. In

the case of multiple faults and large noise, the authors in [81]

developed three RNN-based models (vanilla RNN, LSTM,

FIGURE 5. Architecture of Stacked Auto Encoder (SAE) network.

and GRU) for FDD and showed that the LSTM and GRU

models outperformed the vanilla RNN. The authors in [82]

used GRU in the RNN model as it reduces the parameters

by controlling the gate mechanism to alleviate the problem

of gradient explosion or disappearance. The authors in [83]

proposed sequential FDD based on an LSTM neural network.

The developed method can directly classify the raw process

data without specific feature extraction and classifier design.

It can also adaptively learn the dynamic information in raw

data. In [84], the proposed method applies LSTM networks

for feature extraction and the selected features are fed into a

softmax regression classifier for fault diagnosis. PV system

data are characterized by the time relevance in addition to the

spatial dependence in the measurement space. For this pur-

pose, the authors in [85] developed a multiscale RNN model

for learning both hierarchical and temporal representation.

The authors in [86] combined the benefits of both CNN and

LSTM to establish a convolutional bidirectional LSTM. In

the developed approach , the CNN was used to extract the

local features from the original data. Then, a bidirectional

LSTM [87] was applied to extract temporal correlation and

finally stack a fully connected layer and linear regression

layer for predicting the remaining life.

C. STACKED AUTO ENCODER BASED FAULT

DIAGNOSIS

Stacked Auto Encoder (SAE) networks are multi-hidden

neural networks formed by stacking multiple autoencoder

networks [88]. The output of one layer of the auto-encoder

network is used as the input of the next layer [89]. Each

auto-encoder network consists of two parts: an encoder and a

decoder (refer to Figure 5). The encoder converts the network

input into the hidden layer representation while the decoder

returns the hidden layer representation to the original input

[90].

In general, faults tend to occur in high-frequency informa-

tion corresponding to the higher-order moments of random

processes. From the perspective of Taylor expansion, the

value of a function in the neighborhood of a point can be

represented by infinite series composed of the value of the

function at that point and the derivative values of each order.

Although the coefficient of the higher-order term is small, it
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is different from the background details. In these cases, the

features are difficult to characterize using traditional meth-

ods. The characterization of this information directly affects

the performance of the FDD algorithms, especially for small

faults that are difficult to detect. As a multi-level network

structure model, an SAE network computes higher-order

feature representations through multiple nonlinear mappings

and expresses more effectively a larger set of functions

than shallow networks [91]. FDD based on SAE networks

has the following benefits: (i) Most of the data collected

from PV systems are 1D signals, and the SAE network

structure is simple and suitable for this kind of signal; (ii)

In PV applications, data often has unlabeled characteristics

and SAE networks are self-learning mechanisms suitable for

unsupervised training; (iii) As PV system data contains com-

plex information, the layer-by-layer training method of SAE

networks helps to extract the high-order nonlinear features

from the data samples and prevents dispersion of the deep

network.

Traditional FDD methods are mainly based on the time-

frequency analysis of the collected signals [92]. The work in

[93] summarizes the traditional feature extraction methods

based on frequency domain features. In the auto-encoder

network, the depth features obtained using the frequency-

domain features, such as low-level inputs, are more suit-

able for diagnosis systems using Support Vector Machines

(SVM) as classifiers. The authors in [94] showed that the

features extracted by the stacked denoising auto-encoder

network are robust. The performance of the developed tech-

nique was assessed by evaluating the impact of the size

of the input, the depth of the structure, and the constraint

parameters such as sparsity and denoising. Considering that

the frequency spectrum reflects the frequency distribution

of the data, the authors in [95] introduced the time series

frequency spectrum as the input to the SAE network. In [96],

a novel SAE-based multiple FDD approach was developed.

The proposed technique uses the signal analysis to construct

hybrid features and obtain more distinguishing information

to overcome the non-stationarity caused by multiple cracks.

Finally, the final features are fed as inputs into the SAE

network for multiple fault classification. Considering that

fault information is mainly reflected in high-frequency mode,

the parameters extracted from the previous four modes are

used as the network input, which effectively improves the

diagnosis performance while simplifying the computation

[97]. Given the inadequacy of traditional auto-encoder net-

works for processing the original input signal, local features,

and shifting features, the authors in [98] proposed a local

connection network based on a regular sparse auto-encoder.

The paper [99] proposed a weight regularization technique

to learn weight-invariant facial representations using sparse-

stacked denoising autoencoders and deep Boltzmann ma-

chines. Due to the limited training data and to prevent data

from overfitting, the authors in [100] introduced the "discard"

technique in the hidden layer of the auto-encoder network.

The authors in [101] developed a classification tool using

an auto-encoder network. The developed approach applies a

prior distribution to the latent space and then uses the mutual

information between the sample and predicted distributions

for unsupervised clustering. The proposed solution is char-

acterized by its robustness and cross-cutting of the extracted

features in a noisy environment. For cross-machine FDD, the

work in [102] proposed an approach that holds the potential

to largely reduce the expensive labor in data collection for

model establishment. Given the process faults under PV

multi-modal operation, the authors in [103], [104] introduced

the Maximum Square Difference (MSD) to estimate the non-

parametric distance between two distributions and proposed

a migration learning FDD framework based on sparse auto-

encoder networks. The approach developed provided good

results, more specifically when the distribution of the testing

data was different from that of the training data. The authors

in [105] proposed using a time series as the network input

to improve the application of time-related information in

dynamic PV systems. The work in [106] used a sparse

SAE network to limit hidden layer information redundancy,

which significantly improves the detection performance of

minor faults. The authors in [106] conducted a statistical

analysis on the hidden layer features extracted from the

SAE network and achieved multi-level FDD based on high-

order correlation. The direct use of normal data effectively

avoids the imbalance between data categories. To address

this issue, the authors in [107] considered the importance of

online data diagnosis in the dynamic process and proposed

a threshold based on an SAE network. Threshold-adaptive

process monitoring technology performs well in diagnosis

and reduces the cost and complexity of process modeling.

D. DEEP BELIEF NETWORK BASED FAULT DIAGNOSIS

A Restricted Boltzmann Machine (RBM) is a two-layer neu-

ral network composed of a visible layer and a hidden layer. It

describes the high-order interaction between variables based

on an energy function. The term ’Restricted’ means that each

edge in the bipartite graph must be connected to one visible

unit and one hidden unit [108]. The RBM assumes that when

the input data is given, the activation conditions of each hid-

den unit are independent. Conversely, when the hidden unit

state is given, the activation conditions of the visible layer

units are independent [109]. The RBM can be a sub-block

of a Deep Belief Network (DBN) and a Deep Boltzmann

Machine (DBM) (refer to Figure 6). DBN is a multi-hidden-

layer probability generation model composed of multiple

RBMs and an output layer (usually a classification layer).

The joint distribution between observation data and labels is

established through layer-by-layer training [110]. In contrary

to the directed/unidirectional connection of the hidden layer

in DBN, the DBM is a Boltzmann network with multiple

hidden layers. The hidden layer transmits the information

and conducts feedback adjustment from top to bottom [110].

Roux and Bengio proved theoretically that as long as the

number of hidden units is large enough, the RBM can fit any

discrete distribution [109]. FDD based on DBN/DBM has the

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3110947, IEEE Access

FIGURE 6. Architecture of Deep Belief Network (DBN).

following advantages: (i) The sample distribution does not

necessarily obey restrictive assumptions. RBM uses genera-

tive learning to predict the probability distribution of input

samples without restrictive assumptions (the PV system has

random uncertainty). (ii) RBM expresses data as a probability

model through unsupervised learning, which is suitable for

sample generative expansion in the case of small samples

in PV systems; (iii) The DBN creates activation value sets

through feature grouping sequences, which is suitable for

simulating and controlling multivariable nonlinear systems

(as the PV system control is mostly an unstructured system).

The authors in [111], [112] proposed a DBM-based approach

considering different characteristics of multi-modal features.

The developed approach aims to use the representation learn-

ing on time, frequency, and time-frequency domain features,

and perform fusion diagnosis in the decision-making phase.

In [113], the authors developed an improved convolutional

DBN for FDD. First, they used an auto-encoder to compress

data and reduce the dimension. Then, the deep model was

built with Gaussian visible units to learn the representative

features. The presented results showed that the developed

strategy provided better accuracy compared to classical DL

models. To improve the modeling, [114] added hidden units

to the activation function of the sparse SAE network to build

a DBN model and to extract the most representative features

of the data. In addition, in [115], the authors presented a dual-

tree complex wavelet packet method to design the original

feature set and constructed an adaptive DBN to improve the

network convergence speed and enhance the accuracy of the

diagnosis. Paper [116] proposed an improved RBM with a

new regularization term to automatically generate features

that are suitable for predicting remaining useful life. In [117],

the authors proposed a Teager-Kaiser energy operator to

estimate the envelope of the instantaneous signal and extract

the statistical feature of the data, and then propose Gaussian-

Bernoulli RBM (GRBM) to construct a DBN for real-valued

classification [118].

The work in [119] proposed an improved FDD method

based on DBN. The so-called DBN developed with a global

back-reconstruction (GBR) approach was applied for early

crack diagnosis of turbine blades using three-dimensional

blade-tip clearance. The authors in [120] proposed a real-

time online FDD method that can improve the accuracy of

detection, classification, and prediction, while being effective

for incipient faults that cannot be detected using statistical

tools. A stacked sparse auto-encoder was applied to learn

the deep models of fault data and minimize the loss of infor-

mation. Conversely, [121] merged the benefits of fuzzy Petri

nets (FPN) and DBNs to present an adaptive arc generation

scheme that presents the label-weight based on confidence-

weight to mark the occurrence of a fault. In [122], the authors

developed an effective DBN-based approach for detection

and diagnosis. An effective DBN model was implemented

with an effective distribution of features at each layer of

the network to improve the accuracy of the diagnosis at

each instant. The authors in [123] proposed an enhanced

DBN-based FDD approach that combines the information

from multiple sources and enhances the robustness of fault

diagnosis.

E. DEEP TRANSFER LEARNING BASED FAULT

DIAGNOSIS

The performance of DL-based FDD is closely related to

the amount of collected data. To achieve high performance,

it is required to generate a large number of samples from

the same domain to train the models [124]–[127]. Thereby,

when using a large amount of data, DL-based FDD models

with complex structures outperform other diagnosis models.

Conversely, when a small number of training datasets is

generated, the accuracy and reliability of these approaches

inevitably decrease [128]. In addition, deep models with a

large number of hidden layers can affect the performance of

the FDD [129]. Moreover, the training and testing datasets,

applied for deep models, have the same feature space and

the same distribution [105]. Most statistical models must be

rebuilt from scratch using the newly generated training data

as the distribution changes. In PV systems, the cost required

to collect data again and rebuild the models is very high

[130]. Deep transfer learning (DTL) is a promising technique

to address these problems [131]. The DTL is a new DL

technique that applies existing knowledge to tackle problems

in different but related fields, which eases the requirements

for data features [132]. The DTL tools can reduce the training

time and enhance the classification accuracy by using data

in different operating conditions where there is only a small

amount of target data [133]–[135]. Recently, it has been

widely used for FDD as it can provide accurate results in

complex situations where the transfer strategy can help to

design a universal diagnostic model [132]. Its main goal is

to apply knowledge and skills learned from a data-rich source

domain followed by the application to a related target domain

with only a small amount of data [133], [136], [137]. The dif-

ference between DL and DTL-based FDD is shown in Figure

7. DL-based FDD aims to split the normal and faulty data into

training and testing datasets. Training datasets are applied to

train the model for FDD purposes, and then testing datasets

are used to measure the performance of the model. The faulty

dataset is smaller than that of the normal dataset, which can
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FIGURE 7. Flowchart of deep learning and transfer learning based fault

diagnosis

lead to poor classification performance [128]. In DTL-based

FDD, there are two groups of data from different domains:

the source and target domains. The source domain is applied

to extract knowledge and the target domain uses the extracted

knowledge for FDD purposes. In this case, the faulty data in

the source field is relatively larger than the one of the target

field, which will be exploited for FDD in the target field. The

DTL can extract relevant features and perform knowledge

transfer between the target and source domains. According

to the knowledge transfer, transfer learning techniques can be

classified into four categories [133], [138]–[141]: Instances-

based DTL [142]–[144], Feature-based DTL [46], [145],

[146], Network-based DTL [147]–[149] and Adversarial-

based DTL [150]–[153]. Instance-based DTL consists in

re-weighting samples from the source field for target field

tasks. The Feature-based DTL aims to find the common

feature space between the target and source fields. Network-

based DTL is based on the assumption that some model

parameters can be shared by the source and target fields.

Adversarial-based DTL consists in determining the relation-

ship between the samples in the target domain and source

domain. Adversarial-based DTL has been proven to provide

good results in finding a common latent space between

the target and source domains. Thus, it has attracted more

attention in the field of transfer learning. DTL has attracted

more and more attention in the recent years [154]–[156] and

approaches have been applied to several applications such as

image recognition [157], text recognition [158], and software

defect-recognition [159], as well as FDD. For instance, the

authors in [160] developed an adaptive FDD method under

different operating conditions to improve the classification

accuracy. In [161], the authors developed an automatic DTL

based FDD technique for PV systems. The experiments con-

firmed the very good diagnostic accuracy of the proposed

diagnostic method under different simulation conditions. A

transfer component analysis approach in [162] was also

proposed for FDD. Despite DTL having been successfully

applied for FDD, it still suffers from some limitations. For

example, the data used for DTL are all from the same source

domain, the knowledge is transferred from just one operating

condition to another. However, when multiple related source

domains are available, it is difficult to effectively explore

general knowledge from those fields and use the information

learned in a new related field. Moreover, these methods

are not verified with practical data, and the generalization

abilities of these methods have not been confirmed. Some

previous studies extracted features before applying DTL,

which suggests greater requirements for scholars’ engineer-

ing experience and professional knowledge.

As presented in Table 1, different enhancements were

developed in recent years. The table shows improved DL-

based FDD techniques and discusses their performance. The

proposed techniques focus on the enhancements of basic per-

formance, including reducing the computational complexity,

strengthening the robustness of uncertainty and increasing

precision. However, in cases of multivariate, uncertain, large

and noisy data, it is important to more enhance effectiveness,

such as the diagnosis capability, the intelligence level of fault

diagnosis, the speed and cost of large data processing, and

the integration of statistical and multivariate fault features.

Therefore, fault detection and diagnosis more adaptive to the

characteristics of data has become a very important topic of

research.

IV. EXISTING PROBLEMS AND FUTURE RESEARCH

DIRECTIONS

After reviewing the recent literature related to the field of

fault detection and diagnosis in PV systems, the following

procedure will be adopted.

1) Enhance Data Preprocessing in Deep Learning

In PV systems, the data distribution across the dif-

ferent categories is extremely imbalanced. To address

the problem of FDD in the case of imbalanced sam-

ples, different solutions can be developed, including

focal loss function, under-sampling and over-sampling

methods at data level, cost-sensitive learning, imbal-

anced learning, and other models for preprocessing at

model level, and then applied as inputs into existing

DL-based approaches. Moreover, the larger the size of

the training data set is, the lower the effectiveness of

the diagnosis is in terms of computation time. This

issue limits the implementation of DL methods in

practical applications with massive data. To overcome

this limitation, improved techniques based on data

size reduction frameworks (such as Kmeans metric,

Hierarchical K-Means Clustering, Euclidean distance)

will be proposed to select the more effective features

that can be used as inputs for the DL models for

faults classification. In addition, the performance of

any diagnosis method depends on the quality of the

available process data. The PV measurements usually

contain high levels of noise and autocorrelation and are

infected with errors that mask the important features

in the data and limit the effectiveness of any process

monitoring techniques. Therefore, multiscale data rep-

resentation is a forceful data analysis tool that de-

composes the original process samples into multiscale

components to provide an effective separation of the
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deterministic and stochastic features from the data. The

data is decomposed at multiple scales using low-pass

and high-pass filters and the noise is separated from the

important characteristics. Thus, the implementation of

diagnosis frameworks that unify DL methods and mul-

tiscale representation schemes may improve the perfor-

mance of classical FDD using DL approaches. There-

fore, multiscale DL methods combining the advantages

of the former with those of multiscale representation

should improve the diagnosis results. The developed

techniques will provide the grid operators and power

system designers with significant information to design

an optimal solar PV plant, as well as to manage power

supply and demand. This task aims to develop various

data preprocessing methods in terms of characteristics

and performance. The developed techniques will be

used due to their ability to solve non-linear, dynamic,

and multivariate data structures of PV systems.

• Enhance Data Preprocessing using Multiscale

Representation

Data preprocessing approaches are completely

based on the process data. Therefore, the quality

of the data plays an important role in the ac-

curacy of the derived features. It is known that

the measured process data are contaminated with

noise that degrades their usefulness in the diag-

nosis. Therefore, the measurement noise needs to

be filtered to enhance the quality of the extracted

features. Multiscale data representation is a pow-

erful data analysis tool that has been effectively

used to enhance the quality of various process data

preprocessing methods [163]–[165]. In addition,

multiscale filtering can also be used to further en-

hance the data preprocessing accuracy by develop-

ing multiscale data preprocessing techniques. The

developed techniques will be utilized to enhance

the monitoring and diagnosis taking into account

the measurement noise and the dynamics of the PV

systems. Multiscale filtering is an effective data fil-

tering method. However, pre-filtering the data be-

fore constructing the models may not provide the

desired advantages of multiscale filtering. This is

due to the fact that the data pre-filtering may elim-

inate some features in the data that are important

to the model [166]. Therefore, data preprocessing

and multiscale filtering need to be integrated to

achieve the desired model accuracy. One way to

do that is to filter the data using multiscale filtering

at different decomposition depths, construct data

preprocessing methods using the filtered data from

each decomposition depth, and then select the

model that provides the optimum prediction accu-

racy. The proposed multiscale data preprocessing

technique will combine the advantages of both

multiscale estimation and data preprocessing.

• Develop Data Preprocessing Methods for Un-

certain PV Systems using Interval-Valued Data

Representation and Dimensionality Reduction

New interval data preprocessing approaches can

be developed to deal with uncertainties in PV

systems. In fact, real PV systems are often affected

by different types of uncertainties, mainly due

to the measurement errors and noise, as well as

current and voltage variability. The uncertainty

in the model may be addressed by considering

the interval-valued data. The developed techniques

will enhance the above-proposed data preprocess-

ing approaches by taking into account the irradi-

ance, current, voltage, and temperature uncertain-

ties.

Neither measurements nor estimations are 100 %
accurate, so in reality the actual value x∗

j (k) of a

variable can deviate from the measured one xc
j(k).

The measurement errors are defined as δxj(k) =
xc
j(k)−x∗

j (k). Usually, the sensors manufacturers

provide an upper bound δxj(k) on the measure-

ment error. Hence, once a measurement xc
j(k) is

available, one should know that the actual (un-

known) value x∗

j (k) of the measured variable be-

longs to the interval x∗

j (k) = [x−

j (k) x+

j (k)],

where x−

j (k) = xc
j(k) − δxj(k) and x+

j (k) =
xc
j(k) + δxj(k).

An interval valued data [x(k)] refers to a set of

numbers enclosed in an interval on the real line,

usually expressed as [x] = [x−(k) x+(k)], where

x−(k), x+(k) ∈ R and x−(k) ≤ x+(k).
We will start by describing the properties of the

interval-valued variables [167]. An interval-valued

variable [Xj ] ⊂ R is represented by a series of sets

of values delimited by ordered couples of bounds

referred as minimum and maximum: [Xj ] =
{[xj(1)], [xj(2)], ..., [xj(n)]}, where [xj(k)] ≡
[x−

j(k), x
+

j (k)] ∀ k ∈ {1, ..., n} and x−

j (k) ≤

x+

j (k). The generic interval [xj(k)] can be also

expressed by a couple {xc
j(k), x

r
j(k)} and that this

is a bi-univocal relationship, where :

xc
j(k) =

1

2
(x+

j (k) + x−

j (k)), (1)

and

xr
j(k) =

1

2
(x+

j (k)− x−

j (k)). (2)

The interval-valued data matrix [X] is an n × m

data matrix, given by,

[X] =









[

x−

1 (1), x
+

1 (1)
]

. . [x−

m(1), x+
m(1)]

. . .

. . .
[

x−

1 (n), x
+

1 (n)
]

. . [x−

m(n), x+
m(n)]









,

(3)
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where x−

j (k) ≤ x+

j (k) for all k = 1, 2, ..., n and

j = 1, 2, ...,m.

Two Euclidean Distance (ED)-based interval-

valued data can be developed to remove the ir-

relevant and redundant samples during the data

preprocessing task.

The use of interval-valued data is motivated by

the need of size reduction of massive datasets

in some applications. An interval-valued variable

[xj,k], can be determined using a lower and upper

bound [168], such as [xj(k)] = [xj,k, xj,k], where

k ∈ {1, ..., N}, xj,k ≤ xj,k, and N is the number

of samples.

Given an N ×m classical training data matrix X ,

where m is the number of variables and N is the

number of samples, the interval data matrix [X]
can be constructed as per:

[X] =









[

x1,1, x1,1

]

. .
[

x1,m, x1,m

]

. . .

. . .

[xN1, xN,1] . .
[

xN,m, xN,m

]









(4)

where, the lower XL and upper XU bound matri-

ces are respectively defined by:

XL =









x1,1 . . x1,m

. . .

. . .

xN,1 . . xN,m







 (5)

XU =









x1,1 . . x1,m

. . .

. . .

xN,1 . . xN,m







 (6)

The interval-valued variable [xj,k] can be also

expressed by a couple {xc
j,k, x

r
j,k)}.

The center xc
j,k of the interval is given by:

xc
j,k =

1

2
(xj,k + xj,k) (7)

and the range xr
j(k) of the interval is defined by:

xr
j(k) =

1

2
(xj,k − xj,k) (8)

In this case, the center and range matrices are

respectively defined by:

Xc = 1

2









x11 + x1,1 . . x1m + x1,m

. . .

. . .

xN,1 + xN,1 . . xN,m + xN,m









(9)

Xr = 1

2









x11 − x1,1 . . x1,m − x1,m

. . .

. . .

xN,1 − xN,1 . . xN,m − xN,m









(10)

By the concatenation of the center and range ma-

trices, the new data matrix XCR can expressed by:

Xcr = [Xc
X

r] (11)

2) Enhance Deep Network Design in Deep Learning

The representation learning of features can help in re-

ducing the structure of the DL model, and the data reg-

ularization processing for specific tasks can improve

the performance of FDD. The application of reasonable

professional knowledge and prior information helps to

reduce the complexity of the process monitoring model

and improve the diagnosis performance. Moreover, the

performance of DL-based FDD mainly relies on the

historical data. Although historical data contains the

operating mechanism of complex systems, PV sys-

tems are dynamic production processes and the latest

changes in the current operating state also include the

cumulative relevance of the production process. The

rapid/accurate analysis and effective simplification of

the online data to achieve the incremental learning

of complex dynamic system models and parameter

adaptation is in fact a challenging and difficult task.

In addition, several challenges may have an impact

on the FDD results using DL-based approaches. In

general, the DL approaches based FDD are built using

default parameters and it is yet to investigate how the

parameter variations affect these approaches. Conse-

quently, the DL based on optimal parameter selection

for diagnosing faults can be developed. The parameters

to be optimized include the number of hidden layer

nodes and the activation function for extracting fea-

tures and reconstructing inputs. This task reduces the

requirements for research experience during parameter

tuning and avoids the need for tedious manual tuning.

Moreover, the optimized DL model can achieve im-

proved diagnosis performance. The optimization tools

including Orca Optimization Algorithm (OOA), Par-

ticle Swarm Optimization (PSO), Genetic Algorithms

(GA), and Multi-Objective Optimization (MOO) will

be employed to optimize the DL parameters.

3) Enhance Decision Making in Deep Learning

In PV systems, the significant faults affect considerably

the system performance. However, small faults are

also very likely to cause a considerable damage. Thus,

DL-based algorithms, merging faults with different

characteristics, can be developed. Moreover, classical

DL algorithms are generally utilized to model the

dynamic nature of multivariable PV systems in both the

offline training and online updating phases using the
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newly arrived measurements. Instead, using the online

extensions of DL models for diagnosis may reduce the

training and update time. In addition, complex PV sys-

tems often have problems such as uncertainty and mul-

tiple fault concurrency. If only a single FDD technique

is used, the accuracy and generalization will be low.

Thus, combining multivariate statistical analyses (such

as PCA and kernel PCA), signal processing (such as

Fourier transform, multiscale representation, interval-

valued data representation), and other tools with DL

models could improve the performance of FDD and

more specifically the decision-making accuracy. It

could also reduce the impact of noise, outliers, and un-

certainties, and estimate the severity of the fault loca-

tion. It has been shown in [169] that the introduction of

selected features using PCA in the DL classifiers (i.e.

NN and RNN) enhances the classification accuracy

compared to conventional raw data-based classifiers.

However, in the analysis, we assumed that the features

were extracted and selected using a linear PCA, and the

PV faults were classified using classical DL classifiers.

There are different ways to enhance the performance

of the techniques developed in [27]. To solve the main

problem of the linear characteristics of the PCA in

high-dimensional spaces, the kernel PCA (KPCA) will

be applied to extract high-order statistical information

in the DL parameter space. Although KPCA can ex-

tract nonlinear features in high-dimensional spaces, it

increases the space and time complexity compared to

PCA. To improve the use of KPCA, reduced extensions

will be proposed. The reduced KPCA (RKPCA) uses

different dimension reduction metrics (such as Kmeans

metric, Hierarchical K-Means Clustering, Euclidean

distance) so that only the effective samples are selected

and applied to build the KPCA model. To address the

problem of uncertainties in the PV systems, interval

RKPCA models will be also proposed.

4) Develop Enhanced Multiple Deep Learners

The last task in FDD is to build a learner model. For

this purpose, an enhanced DL technique can be devel-

oped. The developed technique that merges different

learners should improve the diagnosis performance.

In this task, a novel design optimization technique

based on multiple deep learners, which includes the

above improvements (Tasks 1-3), can be developed. In

this technique, a hybrid method incorporating multiple

deep learners that fits high-level information will be

deployed. However, the diagnosis accuracy is based on

the weighting factors linking the deep learners. Thus,

an optimal selection procedure of the weighting factors

is required to further improve the FDD performance

of the deep learner. The optimization problem is ad-

dressed so that the miss-classification and execution

time are jointly minimized. Therefore, an enhanced

multiple deep learner method will be proposed to

obtain better diagnosis ability compared to classical

standalone deep learners. The developed technique will

contribute to the reduction of the the overall diagnosis

error and will have the ability to combine various mod-

els. To do that, multivariate and dynamic features will

be considered in designing multiple learning models.

Classical multiple models ignore the time-dependence

of PV measurements. However, the PV system data are

frequently time-correlated. Accordingly, the dynamic

and multivariate nature of the measurements will be

considered when designing the prediction models by

using multivariate and dynamic techniques (such as

PCA, kernel PCA, and Dynamic kernel PCA).

V. CONCLUSIONS

Data-based fault detection and diagnosis (FDD) is an effec-

tive solution towards high performance and reliability PV

systems. The most well-known data-driven methods are deep

learning (DL) approaches. Therefore, this paper discussed the

DL-based FDD in PV systems. In the present review paper,

the DL-based FDD have been classified into five categories:

FDD based on convolutional neural network (CNN), FDD

based on recurrent neural network (RNN), FDD based on

stacked auto encoder network (SAEN), FDD based on deep

belief network (DBN) and FDD based on deep transfer learn-

ing (DTL), where their main advantages and drawbacks were

indicated. Finally, the topic has been studied at three lev-

els including data preprocessing, deep network design, and

decision-making module. Furthermore, other FDD solutions

have been proposed by considering uncertainties, complexity,

multivariate and dynamic natures of industrial systems. The

biggest advantage of the DL-based FDD algorithms is their

capability to learn high-level features from data in a high-

order, non-linear, and adaptive manners. Because of this pow-

erful feature representation learning effectiveness, intelligent

FDD techniques become more effective. Although DL-based

FDD has greatly promoted the development of the diagnosis

research field, it is relatively considered as a new concept and

further in-depth investigations are required.
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Deep Learning 

Technology 
General Features FDD Technique Technique Description Advantages Reference 
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• Suitable for

multisource

information

processing

• Robust diagnosis

algorithm and

improved

generalization ability

• Suitable for small

sample sizes

Vector matrix (input) + CNN 

(classifier) 

• The input vector (feature 

representations), formed

by the RMS values,

standard deviation,

skewness, kurtosis, …,
is fed to the CNN for

classification purposes.

• Good FDD performance

in terms of root-mean-

square error (RMSE).
[56]

Morlet wavelet decomposition (input) 

+ CNN (classification)

• The Rectified Linear

Unit (ReLU) was

applied as an activation

function and used to

introduce non-linearity

into the network

• Capture discriminative

information from

diverse sets of wavelet

coefficients for fault

diagnosis.

• Effective classification

performances evaluated

in terms of Sensitivity,

Specificity, False alarm

rate, Precision and F

score.

[61] 

Adaptive learning rate 

• Construct a hierarchical

framework consisting of

two CNNs

• Accelerate the

convergence of the

algorithm

• Prevention of the

gradient from

disappearing.

• Performance evaluated

in terms of both fault-

pattern recognition and

fault-size evaluation.

[63] 

Time series of multi-channel sensor 

data 

• Capture the complex

relationship between

sensor data and

remaining effective life.

• FDD performances

evaluated in terms of

Precision, Recall, F

score Accuracy.

[64]
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1D kernel filter 

• Convolve the signal • Extract high-resolution 
features for FDD.

• Performances assessed 
in terms of average F 
score.

[65] 

1D CNN 

• Merge feature extraction

and post-processing of

the raw signal

• Avoid any form of 
conversion

• Damage performances 
evaluated in terms

of “Probability of 
Damage” (PoD).

[66] 

Prior knowledge combined with an 

improved generative 

adversarial networks (GAN) 

• Use the prior knowledge

to convert normal data

into coarse fault data

• Address the problem of 
small samples

• Refine the coarse fault 
data into data more 
similar to real faults

• The average accuracy is 
used to evaluated the 
performance.

[67] 

Full closed-loop based CNN 

• Capture multiscale 
features and reduce 
overfitting.

• Effectiveness evaluated 
in terms of confusion 
matrix i.e of Sensitivity, 
Specificity, Precision 
and Accuracy.

[68] 

GAN + Stacked Denoising Auto-

Encoder (SDAE) 

• Apply the GAN to

generate samples with

similar distribution to

the original signal

• Apply the SDAE to pre-

train the network,

extract fault features,

and identify the

authenticity of the

samples

• Robust to noise

• Good anti-noise 
capability in the case of 
small samples.

• Performances evaluated 
in terms of Loss, 
Accuracy and execution 
time.

[69]
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• The inputs of the

RNN are time-series

data and the depth

depends on the length

of the input sequence

• RNNs have a sense

of time and memory

of earlier network

states allowing them

to learn sequences

that vary over time

• The RNN is stable

when the length of

the learning and

L
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(L
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M
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Gated Recurrent Unit 

(GRU) networks 

• By introducing gates,

each recurrent unit can

adaptively capture the

dependence of different

time scales to avoid

long-term dependence

• Deal with long sequence 
prediction problems.

• It reduces the parameters 

by controlling the gate 
mechanism to alleviate 
the problem of gradient 
explosion or 
disappearance

• Avoid long-term 
dependence

• Performances evaluated 
in terms of prediction 
accuracy and 
generalization ability.

[75]

testing sequence are

different

LSTM-based encoder-

decoder architecture 

• The encoder structure

converts the input

sequence to a fixed

length vector and the

decoder structure uses

the vector to generate

the target sequence and

calculate the

reconstruction error to

use it later for decision

making

• Deal with long sequence 
prediction problems.

• Performances evaluated 
in terms of Sensitivity, 
Specificity, Precision, 
Accuracy and F score.

[80]Re
cu

rre
nt

 N
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l N
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w

or
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Sequential FDD based on an 

LSTM neural network 

• Deal with long sequence 
prediction problems.

• Can directly classify the 
raw process data without 
specific feature 
extraction and classifier 
design.

• It can also adaptively 
learn the dynamic 
information in raw data

• Effectiveness evaluated 
in terms of confusion 
matrix i.e of Sensitivity, 
Specificity, Precision 
and Accuracy. ROC 
plots are also used for 
assessment.

[83] 

Convolutional bidirectional 

LSTM 

• The CNN is used to

extract the local features

from the original data

and a bidirectional

LSTM is applied to

extract temporal

correlation and finally

stack a fully connected

layer and linear

regression layer for

predicting the remaining

life

• Deal with long sequence 
prediction problems.

• Combine the benefits of 
both CNN and LSTM

• Comparison among 
different CPU

and GPU platforms.

• Performance evaluation 
in terms of diagnosis 
accuracy i.e confusion 
matrix.

[86] 

Vanilla RNN 

• Single layer network

(with feedback)

• Deal with long sequence 
prediction problems.

• Comparison evaluated in 

terms of mean absolute 
error (MAE) and mean 
squared error (MSE).

[81] 

Multiscale RNN model [85]
• Learning both 

hierarchical and 
temporal representation.

• Evaluation in terms of 
log-likelihood averaged 
over the test sequences

https://www.sciencedirect.com/topics/engineering/graphics-processing-unit
https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/mean-squared-error
https://www.sciencedirect.com/topics/engineering/mean-squared-error
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• Multi-hidden neural

networks formed by

stacking multiple

autoencoder

networks

• The output of one

layer is used as the

input of the next

layer

• Each auto-encoder

network consists of

an encoder and a

decoder.

Stacked denoising auto-encoder 

network 

• An extension of the

basic autoencoder

(stochastic version).

• Attempt to address

identity-function risk by

randomly corrupting

input (introducing noise)

that the autoencoder

must then reconstruct

(denoise).

• Robust extracted 
features

• The performance is 
assessed by evaluating 
the impact of the size of 
the input, the depth of 
the structure, and the 
constraint parameters 
such as sparsity and 
denoising.

[94] 

Local connection network 

• The network is

constructed based on a

regular sparse auto-

encoder

• Adequacy for processing 
the original input signal, 
local features, and 
shifting features

• Diagnosis performances 
evaluated in terms of 
accuracy.

[98] 

Sparse stacked denoising autoencoders 

+ deep Boltzmann machines

• A weight regularization

using sparse stacked

denoising autoencoders

and deep Boltzmann

machines.

• Learn weight-invariant 
representations.

• Performances evaluated 
in terms of identification 
accuracies

[99] 

Maximum Square Difference (MSD) + 
migration learning FDD framework 

• The MSD is proposed to

estimate the non-

parametric distance

between two

distributions

• The migration learning

FDD framework is

based on sparse

autoencoder networks

• Good results when the 
distribution of the 
testing data is different 
from that of the training 
data.

• Improved classification 
accuracy i.e confusion 
marix.

[103]-[104] 

Sparse SAE network 
• The proposal conducted

a statistical analysis on

the hidden layer features

[106]

St
ac

ke
d 

A
ut

o 
En

co
de

r (
SA

E)
 

extracted from the SAE

network and achieved

multi-level FDD based

on high-order

correlation.

• Limit hidden layer 
information redundancy, 
which significantly 
improves the detection 
performance of minor 
faults

• Testing accuracy of the 
SAE with different 
sparsity parameter.

• Visualization of features 
mined by the proposed 
method
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• The DBN is a multi-

hidden layer

probability

generation model

composed of multiple

Restricted Boltzmann

Machines (RBMs)

and an output layer

(usually a

classification layer).

• The RBM can be a

sub-block of a DBN

and a Deep

Boltzmann Machine

(DBM).

• The joint distribution

between observation

data and labels is

established through

layer-by-layer

training

DBM-based approach 

• Use the representation

learning on time,

frequency, and time-

frequency domain

features, and perform

fusion diagnosis in the

decision-making phase

• Consider different 
characteristics of multi-

modal features

• Performances evaluated 
in terms of classification 
accuracies

[111]-[112] 

Improved convolutional DBN 

• Use an auto-encoder to

compress data and

reduce the dimension

• The deep model is built

with Gaussian visible

units to learn the

representative features

• Better accuracy 
compared to classical 
DL models

• Diagnosis effectiveness 
evaluated in terms of 
average testing 
accuracy, standard 
deviation, feature 
visualization and 
reconstruction error 
curves.

[113] 

Enhanced RBM with a new 

regularization term 

• The new regularization

term is added to

automatically generate

features that are suitable

for prediction

• Maximize the 
trendability of the output 
features, which 
potentially better 
represents the 
degradation pattern of 
the system.

• Performances assessed in 

terms of prediction 
accuracy and feature 
visualization.

[116]
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Teager-Kaiser energy operator + 

Gaussian-Bernoulli RBM (GRBM) 

• The Teager–Kaiser

energy operation is

proposed to estimate the

amplitude envelopes

• RBM with Bernoulli

hidden units and

Gaussian visible units is

considered to deal with

real-valued signals.

• Reveals the fault 
patterns contained in the 
signal (involving 
transient impacts and 
noise)

• Accurately diagnosing 
the faults

• High reliability

• Diagnosis performances 
evaluated in terms of 
classification accuracy, 
mean, standard 
deviation, and feature 
visualization.

[117] 

DBN + Global Back-Reconstruction 

(GBR) mechanism 

• The GBR mechanism is

realized between the

input layer and hidden

layers of the DBN by

“shortcut connection”,
and the layer to learn

more discriminant

features can be

determined

automatically without

prior knowledge

• Optimize the feature 
learning ability

• High diagnostic 
accuracy

• Accuracy  and F-score 
are used to evaluate the 
experimental results.

[119] 

Enhanced DBN 

• Combines the

information from

multiple sources and

enhances the robustness

of fault diagnosis

• Fault diagnosis rate

(FDR), false positive rate 

(FPR) and accurate 
classification rate (ACR) 

are used for performance 
evaluation.

[123] 

• Using data from

different domains:

the source and target

domains

• The source domain is

applied to extract

knowledge and the

Instance-based DTL 

• Applies existing

knowledge to

tackle problems

in different but

related fields,

which eases the

requirements for

data features.

• Transfer diagnosis cases 
of fault severities and 
compound faults are 
used for verification.

[142]
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target domain uses 

the extracted 

knowledge for FDD 

purposes 

• The faulty data in the

source field is

relatively larger than

the one of the target

field

• Can extract relevant

features and perform

knowledge transfer

between the target

and source domains

• Re-weighting samples

from the source field for

target field tasks
• Boosting the quality of 

deep learning models

• Good diagnosis 
accuracies in terms of 
confusion matrix, 
validation loss and 
feature visualization.

[144] 

Feature-based DTL 

• Learns features from

source data and adjusts

the parameters of neural

networks accordingly.

Some parameters are

transferred from source

task to target task. Small

amount of target data is

considered.

• Performances evaluated 
in terms of classification 
accuracy and training 
time.

[145] 

• In feature extraction,

sparse filtering with

HKL divergence is

proposed to learn

sharing and

discriminative features

of the source and target

domains. In feature

classification, HKL

divergence is introduced

into softmax regression

to link the domain

adaptation with health

conditions.

• Good diagnosis 
accuracies in terms of 
average accuracy and 
confusion matrix.

[146] 

Network-based DTL 

• Combines convolutional

neural network and

multiple domain

adaptation techniques.

• Diagnosis performances 
evaluated in terms of 
diagnosis accuracy and

[147]-[149] 
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• Uses computer

simulations to overcome

data scarcity in process

fault diagnosis.

• Uses domain adaptation

to reduce the mismatch

between the simulation

and physical domains.

associated standard 

deviation 

Adversarial-based DTL 

• It includes three training

phases: regular training,

maximum discrepancy

training and minimum

discrepancy training.

These three phases are

adversarial to each other

to adjust the model to be

more adaptive.

• Provides good results in

finding a common latent

space between the target

and source domains.

• Diagnosis effectiveness

assessed in terms of

prediction accuracy.

[150]-[153] 

TABLE 1: Summary of DL-based methods for fault diagnosis of PV systems.
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