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Abstract. In recent years, there has been a great interest in computer-
aided diagnosis of Alzheimer’s Disease (AD) and its prodromal stage,
Mild Cognitive Impairment (MCI). Unlike the previous methods that
consider simple low-level features such as gray matter tissue volumes
from MRI, mean signal intensities from PET, in this paper, we propose a
deep learning-based feature representation with a stacked auto-encoder.
We believe that there exist latent complicated patterns, e.g., non-linear
relations, inherent in the low-level features. Combining latent informa-
tion with the original low-level features helps build a robust model for
AD/MCI classification with high diagnostic accuracy. Using the ADNI
dataset, we conducted experiments showing that the proposed method
is 95.9%, 85.0%, and 75.8% accurate for AD, MCI, and MCI-converter
diagnosis, respectively.

1 Introduction

Alzheimer’s Disease (AD), characterized by progressive impairment of cognitive
and memory functions, and its prodromal stage, Mild Cognitive Impairment
(MCI), are the most prevalent neurodegenerative brain diseases in the elderly
subjects. A recent research by Alzheimer’s Association reports that AD is the
sixth-leading cause of death in the United States, rising significantly every year
in terms of the proportion of cause of death [1]. Researchers in many scientific
fields have devoted their efforts to understand the underlying mechanism that
causes these diseases and to identify pathological biomarkers for diagnosis or
prognosis of AD/MCI by analyzing different types of imaging modalities, such as
Magnetic Resonance Imaging (MRI) [3], Positron Emission Tomography (PET)
[11], functional MRI (fMRI) [5], etc.

Recent research has shown that it’s beneficial to fuse complementary informa-
tion from different modalities in discriminating AD/MCI patients from Healthy
normal Controls (HC) [12]. For instance, Hinrichs et al. [6] and Zhang et al. [13],
independently, utilized a kernel-based machine learning technique to combine
the complementary information from multi-modal data. Furthermore, [13] pro-
posed to select features by means of sparse representation, which jointly learn
the tasks of clinical label identification and clinical scores prediction.

Although these researches presented the effectiveness of their methods in their
own experiments on multi-modal AD/MCI classification, the main limitation of
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the previous work is that they considered only simple low-level features such as
gray matter tissue volumes from MRI, mean signal intensities from PET, and
biological measures from CerebroSpinal Fluid (CSF). In this paper, we assume
that there exists hidden or latent high-level information inherent in the original
features, which can be helpful to build a more robust model.

For the past decade, a deep architecture [2] has gained a great attention in var-
ious fields due to its representational power. Motivated by the recent work [2, 8],
we exploit deep learning for a feature representation, and ultimately to enhance
classification accuracy. Specifically, a ‘Stacked Auto-Encoder ’ (SAE) is utilized to
discover a latent representation from the neuroimaging and biological low-level
features. To our best knowledge, this is the first work that considers deep learning
for feature representation in brain disease diagnosis and prognosis. Our experi-
mental results on ADNI dataset proves the effectiveness of the proposed method.

2 Materials and Preprocessing

In this work, we use the ADNI dataset publicly available on the web1. Specifi-
cally, we consider the baseline MRI, PET, and CSF data acquired from 51 AD
patients, 99 MCI patients (43 MCI patients who progressed to AD, and 56 MCI
patients who did not progress to AD in 18 months), and 52 healthy normal
controls. Along with the brain image data, two types of clinical scores, Mini-
mum Mental State Examination (MMSE) and Alzheimer’s Disease Assessment
Scale-Cognitive subscale (ADAS-Cog), are also provided for each subject.

The MRI and PET images were preprocessed by applying the typical pro-
cedures of anterior commissure-posterior commissure correction, skull-stripping,
and cerebellum removal. We segmented MRI images into gray matter, white mat-
ter, and CSF, and then parcellated them into 93 Regions Of Interests (ROIs)
based on Kabani et al.’s atlas [9]. The PET images were spatially normalized
by coregistering them to their respective MRI images. For each ROI, we used
the gray matter tissue volume from MRI and the mean intensity from PET as
features, which are most widely used in the field for AD/MCI diagnosis [3,6,13].
Therefore, we have 93 features from a MRI image and the same dimensional
features from a PET image. In addition, we have 3 CSF biomarkers of Aβ42,
t-tau, and p-tau.

3 Methods

Fig. 1 illustrates a schematic diagram of the proposed method. Given multi-
modal data along with the class-label and clinical scores, we first extract features
from MRI and PET as explained in Section 2. We then discover a latent feature
representation from the low-level features in MRI, PET, and CSF, independently,
by deep learning with SAE. A multi-task learning on the augmented feature
vectors, i.e., concatenation of the original low-level features and the SAE-learned

1 Available at http://www.loni.ucla.edu/ADNI

http://www.loni.ucla.edu/ADNI
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Fig. 1. An illustration of the proposed method for AD/MCI diagnosis

features, is applied to select features that jointly represent the class label and
the clinical scores. Finally, we fuse the selected multi-modal feature information
with a multi-kernel Support Vector Machine (SVM).

3.1 Stacked Auto-encoder

Auto-encoder is one type of artificial neural networks structurally defined by
three layers: input layer, hidden layer, and output layer. The aim of the auto-
encoder is to learn a latent or compressed representation of the input vector
x. Let DH and DI denote, respectively, the number of hidden and input units.
Given an input vector x ∈ R

DI , an auto-encoder maps it to a latent represen-
tation y through a deterministic mapping y = f(W1x+ b1), parameterized by
the weight matrix W1 ∈ R

DH×DI and the bias vector b1 ∈ R
DH . The represen-

tation y ∈ R
DH from the hidden layer is then mapped back to a vector z ∈ R

DI ,
which approximately reconstructs the input vector x by another deterministic
mapping z = W2y+b2 ≈ x, where W2 ∈ R

DI×DH and b2 ∈ R
DI . In this study,

we consider a logistic sigmoid function for f(a) = 1/ (1 + exp(−a)).
Recent studies in machine learning have shown that a deep or hierarchical

architecture is useful to find highly non-linear and complex patterns in data [2].
Motivated by the studies, in this paper, we consider SAE, in which an auto-
encoder becomes a building block, for a feature representation in neuroimaging
or biological data. Thanks to its hierarchical nature in structure, one of the
most important characteristics of the SAE is to learn or discover patterns such
as non-linear relations among input values. Utilizing its representational power,
we find a latent representation of the original low-level features extracted from
neuroimaging or biological data. Note that in order to obtain highly non-linear
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Fig. 2. A deep architecture of our stacked auto-encoder and the two-step parameter
optimization scheme

relations, we allow the hidden layers to have any number of units, even larger
than the input dimension, from which we can still find an interesting structure
by imposing a sparsity constraint on the hidden units, which is called a sparse
auto-encoder [10]. Specifically, we penalize a large average activation of a hidden
unit over the training samples. This penalization drives many of the hidden
units’ activation to be zero, resulting in sparse connections between layers.

With regard to training a SAE hierarchical network, the conventional gradient-
based optimization starting from random initialization suffers from falling into
a poor local optimum. Recently, Hinton et al., introduced a greedy layer-wise
unsupervised learning algorithm and showed its success to learn a deep belief
network [7]. The key concept in a greedy layer-wise learning is to train one layer
at a time. That is, we first train the 1st hidden layer with the training data as
input, and then train the 2nd hidden layer with the outputs from the 1st hidden
layer as input, and so on. That is, the representation of the l-th hidden layer
is used as input for the (l + 1)-th hidden layer. This greedy layer-wise learning
is called ‘pre-training’ (Fig. 2(a)). It is worth noting that the pre-training is
performed in an unsupervised manner.

To improve diagnostic performance in AD/MCI identification, we further op-
timize the deep network in a supervised manner. Accordingly, we stack another
output layer on top of the SAE. This top output layer is used to represent the
class label of an input data. We set the number of units in the output layer
to be equal to the number of classes of interest. This extended network can be
considered as a traditional multi-layer neural network and, in this paper, we call
it SAE-classifier. Therefore, it is straightforward to optimize the deep network
by back-propagation with gradient descent, having parameters, except for the
last classification network, initialized by the pre-trained ones. This supervised
optimization step is called ‘fine-tuning’ (Fig. 2(b)). From an optimization point
of view, it is known that the parameters obtained from the pre-training step
helps the fine-tuning optimization to reduce the risk of falling into a poor local
optimum [7]. This makes the deep learning distinguished from the conventional
multi-layer neural network.
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Besides the fine-tuning, we also utilize the top output layer to determine the
optimal SAE structure, for which the solution is combinatorial. In this paper,
we apply a grid search and choose a network structure that produces the best
classification accuracy. Once we determine the SAE structure, we consider the
outputs from the last hidden layer as our latent feature representation. By con-
catenating the SAE-learned feature representation with the original low-level
features, we construct an augmented feature vector that is then fed into the
multi-task learning as explained below.

3.2 Multi-task and Multi-kernel SVM Learning

Following Zhang and Shen’s work [13], we consider the multi-task learning for
feature selection. Let m ∈ {1, · · · ,M} denote a modality index, s ∈ {1, · · · , S}

denote a task index2, t
(m)
s denote a target response vector, and F(m) ∈ R

N×D

denote a set of the augmented feature vectors, where N and D are, respectively,
the number of samples and the dimension of the augmented feature vectors. In

the multi-task learning, we focus on finding optimal weight coefficients a
(m)
s to

regress the target response vector with a combination of the features in F(m)

with a group sparsity constraint as follows:

J
(

A(m)
)

= min
A(m)

1

2

S
∑

s=1

∥

∥

∥
t(m)
s − F(m)a(m)

s

∥

∥

∥

2

2
+ λ

∥

∥

∥
A(m)

∥

∥

∥

2,1
(1)

where A(m) =
[

a
(m)
1 · · · a

(m)
s · · · a

(m)
S

]

and λ is a sparsity control parameter. In

Eq. (1),
∥

∥A(m)
∥

∥

2,1
=

∑D

d=1 ‖A
(m)[d]‖2, where A(m)[d] denotes the d-th row of

the matrix A(m). This l2,1-norm imposes to select features that are jointly used

to regress the target response vector {t
(m)
s }Ss=1 across tasks3. We select features

whose absolute weight coefficient is larger than zero for SVM learning.

Given the feature-selected training samples X̃(m) = {x̃
(m)
i }Ni=1 and the test

sample of x̃(m) from modalities m ∈ {1, · · · ,M}, the decision function of the
multi-kernel SVM is defined as follows:

f
(

x̃(1), · · · , x̃(M)
)

= sign

{

N
∑

i=1

ζiαi

M
∑

m=1

βmk(m)
(

x̃
(m)
i , x̃(m)

)

+ b

}

(2)

where ζi is the class-label of the i-th sample, αi and b are, respectively, a La-

grangian multiplier and a bias, k(m)
(

x̃
(m)
i , x̃(m)

)

= φ(m)
(

x̃
(m)
i

)T

φ(m)
(

x̃(m)
)

is

a kernel function of the m-th modality, φ(m) is a kernel-induced mapping func-
tion, and βm ≥ 0 is a weight coefficient of the m-th modality with the constraint
of

∑

m βm = 1. Refer to [4, 13] for a detailed explanation.

2 In our case, the tasks are to predict class-label, MMSE, and ADAS-Cog scores.
3 In this work, t

(1)
s = · · · = t

(m)
s = · · · = t

(M)
s .
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4 Experimental Results and Discussions

We consider three binary classification problems: AD vs. HC, MCI vs. HC, and
MCI Converter (MCI-C) vs. MCI Non-Converter (MCI-NC). In the experiment
of the MCI vs. HC classification, both MCI-C and MCI-NC data were used
for the MCI class. For each classification problem, we applied a 10-fold cross
validation. Specifically, we randomly partitioned the dataset into 10 subsets and
then used 9 out of 10 subsets for training and the remaining one for test. In order
to determine the hyper-parameters of λ in Eq. (1) and β in Eq. (2), another round
of cross-validation was performed within the training data. We repeated these
whole process 10 times for unbiased evaluation. We used a linear kernel in SVM.

In order to show the validity of the SAE-learned Feature representation
(SAEF), we compared the results of the proposed method with those from the
original Low-Level Features (LLF) using the same strategies of feature selec-
tion and classifier learning. We should note that, for fair comparison, we used
the same training and test data across the experiments for all the competing
methods.

With regard to the SAE structure, we considered three hidden layers for MRI,
PET, and CONCAT, and two hidden layers for CSF, which were determined
based on our preliminary experiments. Here, CONCAT represents the concate-
nation of the MRI, PET, and CSF features into a single vector. As explained in
Section 3.1, we determined the number of hidden units based on the classification
results with a SAE-classifier. The classification accuracies and the optimal struc-
ture of the SAE-classifier are shown in Table 1. We used a DeepLearnToolbox4

to train the SAE, and a SLEP toolbox5 for the multi-task learning, respectively.
Table 2 presents the mean classification accuracies of the competing meth-

ods. The method of multi-kernel SVM with LLF corresponds to Zhang and
Shen’s method [13]. Although the approach based on the augmented feature
vector (LLF+SAEF) with a single-modality was outperformed for some cases
by the LLF-based one, the proposed method with a Multi-Kernel SVM (MK-
SVM) produced the best performances for AD vs. HC, MCI vs. HC, and MCI-C
vs. MCI-NC classification problems, with the accuracies of 95.9%, 85.0%, and
75.8%, respectively. It should be noted that the performance improvement by
the proposed method was 4.0% for MCI-C vs. MCI-NC classification, which is
the most important for early diagnosis and treatment.

In order to further validate the effectiveness of the proposed method, we also
computed a statistical significance of the results with paired t-test: AD vs. HC
(0.0127), MCI vs. HC (0.0568), and MCI-C vs. MCI-NC (0.0096). The test was
performed with the results obtained from Zhang and Shen’s method [13] (LLF
with MK-SVM) and the proposed method (LLF+SAEF with MK-SVM). The
proposed method statistically outperformed Zhang and Shen’s method, espe-
cially for AD vs. HC (0.0127) and MCI-C vs. MCI-NC (0.0096).

4 Available at ‘https://github.com/rasmusbergpalm/DeepLearnToolbox ’
5 Available at ‘http://www.public.asu.edu/~jye02/Software/SLEP/index.htm’

https://github.com/rasmusbergpalm/DeepLearnToolbox
http://www.public.asu.edu/~jye02/Software/SLEP/index.htm
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Table 1. Performance of the SAE-classifier (mean±standard deviation). ‘# units’ de-
notes the number of hidden units (bottom-to-top layer) that produced the correspond-
ing performance.

MRI PET CSF CONCAT

AD vs. HC
Accuracy 0.857±0.018 0.859±0.021 0.831±0.016 0.899±0.014
# units 500-50-10 1000-50-30 50-3 500-100-20

MCI vs. HC
Accuracy 0.706±0.021 0.670±0.018 0.683±0.020 0.737±0.025
# units 100-100-20 300-50-10 10-3 100-50-20

MCI-C vs. MCI-NC
Accuracy 0.549±0.037 0.595±0.044 0.589±0.026 0.602±0.031
# units 100-100-10 100-100-10 30-2 500-50-20

Table 2. Performance comparison of the competing methods. The method of LLF
with MK-SVM corresponds to Zhang and Shen’s work [13]. (SK: Single-Kernel, MK:
Multi-Kernel).

Features
LLF SAEF LLF+SAEF

AD vs. HC
SK-SVM

MRI 0.817±0.018 0.802±0.033 0.823±0.025
PET 0.821±0.017 0.834±0.016 0.838±0.021
CSF 0.720±0.017 0.763±0.055 0.799±0.015

CONCAT 0.893±0.019 0.832±0.027 0.853±0.032
MK-SVM 0.945±0.008 0.939±0.018 0.959±0.011

MCI vs. HC
SK-SVM

MRI 0.732±0.018 0.673±0.015 0.740±0.021
PET 0.702±0.032 0.673±0.031 0.682±0.033
CSF 0.640±0.021 0.660±0.020 0.680±0.012

CONCAT 0.737±0.017 0.701±0.028 0.769±0.023
MK-SVM 0.840±0.011 0.792±0.024 0.850±0.012

MCI-C vs. MCI-NC
SK-SVM

MRI 0.568±0.026 0.542±0.034 0.550±0.027
PET 0.626±0.036 0.606±0.034 0.592±0.034
CSF 0.527±0.026 0.581±0.029 0.574±0.015

CONCAT 0.616±0.043 0.584±0.041 0.603±0.023
MK-SVM 0.718±0.026 0.735±0.024 0.758±0.020

We should mention that the data fusion in deep learning was considered
through the concatenation of the features from multiple modalities. But, it is
limited as a shallow model to discover the non-linear relations among modali-
ties. We believe that although the proposed SAE-based method is successful to
find latent information, resulting in performance enhancement, there is still a
room to design a multi-modal deep network for the shared representation among
modailities. It is also an important issue how to efficiently interpret or visualize
the trained weights of the deep network in brain research.

5 Conclusion

We propose a deep learning-based feature representation for AD/MCI diagno-
sis. Unlike the previous methods that consider only simple low-level features
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extracted directly from neuroimages, the proposed method can successfully dis-
cover latent feature representation such as non-linear correlations among features
that improve diagnosis accuracy. Using the ADNI dataset, we evaluated the per-
formance of the proposed method and compared against the state-of-the-art
method [13]. The proposed method outperformed the competing method and
presented the accuracies of 95.9%, 85.0%, and 75.8% for AD, MCI, and MCI-C
diagnosis, respectively.
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