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Long short-term memory (LSTM) networks are state of the art technique for time-series 
sequence learning. They are less commonly applied to the hydrological engineering area 
especially for river water level time-series data for flood warning and forecasting systems. 
This paper examines an LSTM network for forecasting the river water level in Klang river 
basin, Malaysia. The river water level contains of two features dimension and one time-
series observed data, in this study, prediction responses for river water level data using a 
trained recurrent neural network and update the network state function is applied. The radial 
basis function neural network (RBFNN) in order to get comparison of the generalization 
solving problem also performed. The performance indicates with the root mean square error, 
RMSE 0.0253 and coefficient of determination value, R2 0.9815 are closely accurate when 
updating the network state compared with the RBFNN results. These results verified that 
the LSTM network with specified training set options is a promising alternative technique 
to the solution of flood modelling and forecasting problems. 
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1. INTRODUCTION

Urban floods are considered one of the wide-scale 

devastating natural disasters affected globally, and improved 

flood forecasting model is essential for better flood warning 

and management system. It has become an issue of great 

importance recently due to extensive damage to human life, 

properties, and lead to significant socioeconomic problems 

caused by floods. Flood forecasting system plays a crucial role 

in planning and regulating the disaster risk reduction and 

management (DRRM). The Sendai frameworks 2015-2030, 

highlighted ‘investing in disaster risk reduction for resilience’ 
and ‘enhancing disaster risk preparedness for effective 
response’ are respectively for priority number three and four 
regarding the DRRM [1]. 

Research on flood forecasting models has a long tradition in 

the hydrological engineering area. However, the determination 

of improved flood modelling and forecasting is technically 

challenging. As reported in numerous published studies, river 

water level forecasting for flood management is a difficult task 

and highly dynamic to model. Recently, researchers have 

shown an increased interest in river flood prediction and 

modelling, namely, data-driven methods. The types of models 

use the generalized relationship between input and output 

variable datasets without requiring the physical mechanism 

behind the process of the model. In which, the model is 

constructed based on historical data. 

Neural network models, especially as data-driven 

approaches, are developed through training the network to 

demonstrate the relationships and processes that are inherent 

within the data. Research on flood water level forecasting has 

been successfully taken by the authors [2, 3]. The works are 

growing advance in exploring more suitable flood forecasting 

model. Reviewing some published research works, by using 

the Artificial Neural Networks (ANNs) model, Elsafi [4] has 

demonstrated real-time flood forecasting in the case of River 

Nile at Dongola Station. Reference [5] explored the 

applicability of a deep learning approach for predicting hourly 

air temperature using real sensor data of Northwestern Nevada 

region. The results indicate that stacked de-noising auto-

encoder (SDAE) as deep learning approach performs better 

rather than standard neural networks model. Moreover, as a 

part of machine learning methods, ANNs is the most popular 

Artificial Intelligent (AI)-based technique in flood forecasting 

[6]. 

The continued advancement of AI methods, in recent years 

has seen a growing trend towards deep learning techniques and 

their application in time-series prediction. Deep learning is 

being studied in many types of problems such as image 

processing, speech recognition, and natural language 

processing. In the field of forecasting, a recent experiment has 

been reported the successful use of deep learning in various 

fields, respectively for power load and probability density 

forecasting [7], traffic flow forecasting [8], and rainfall 

forecasting [9]. As it developed that deep learning can be quite 

promising, reported better results than the traditional ANN 

model [10]. Two of the most growing research points in deep 

learning are enhancing computer vision using convolutional 
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neural networks (CNN) and modelling time-series or 

sequential data through a recurrent neural network (RNN) [11]. 

More modern RNN architectures were proposed since the 

late in the 1990s, and one of the successful networks is the 

long short-term memory (LSTM) [11, 12]. Although studies 

have recognized LSTM in solving time-series prediction [13], 

to date, few published research works have explored the use of 

LSTM as deep learning approach in hydrological engineering 

problems, especially for flood forecasting. Thus, it is a chance 

to employs LSTM network to predict river water levels for 

flood forecasting and warning system. This study is to build 

real-time data-driven models that enable to simulate and 

predict river water level from historical data using LSTM 

network. The long short-term memory network is a type of 

recurrent neural network used in deep learning due to large 

architecture can be successfully trained. 

This paper organized as follows; in Section 2, the proposed 

LSTM network model, RBFNN model, a case study as flood 

forecasting point (FFP), and set of datasets are presented. 

Including performance evaluation formula to measure the 

forecasted model performance. Result and discussion of the 

application of deep learning LSTM network for time-series 

flood forecasting problems is described in Section 3. Followed 

by section 4, summarizes of the conclusion of this work. 

Finally, research challenges and future work direction also 

addressed in this paper. 

 

 

2. METHODOLOGY 

 

2.1 Deep learning long short-term memory network 
 

A simple and effective model for flood forecasting is 
designed in this study. The river water level collected from the 
Klang River at Sulaiman Bridge, Malaysia, is used as input 
dataset. The total available data was used to train and test using 
the LSTM model. The main feature of the LSTM network is 
the hidden layer called memory cells. LSTM networks consist 
of an input layer, one or more memory cells, and an output 
layer. The number of neurons in the input layer is equal to the 
number of explicative variables [11, 12]. Each of the memory 
cells has three gates maintaining and adjusting its cell state St: 
a forget gate (ft), an input gate (it), and output gate (Ot), Figure 
1 shows the LSTM architecture memory cell.   

The state of the layer consists of the hidden state (also 
known as the output state) and the cell state. The hidden state 
at time step 𝑡 contains the output of the LSTM layer for this 
step. The cell state contains information learned from the 
previous time steps. At each time step, the layer adds 
information to or remove information from the cell state. The 
layer controls these updates using gates. At every time-step t, 
each of the three gates is presented with the input xt (one 
element of the input sequence) as well as the output ht-1 of the 
memory cells at the previous time-step t-1. According to the 
references [11, 12] and [14], hereby, the gates act as filters, 
each different fulfilling purposes: 
• The forget gate defines what information is removed 

from the cell state 
• The input gate specifies what information is added to the 

cell state 
• The output gate specifies what information from the cell 

state is used, 
and the sequential update formulas can be referred to Hu et al. 

[11]. The specified topology of the proposed LSTM networks 

is according to the neural network deep learning toolbox 

provided by MATLAB® function can be seen in Table 1, to 

predict time steps one at a time and update the network state 

at each prediction. 

In order to train the LSTM model with the water level 

element data, the typical working mechanism of the LSTM can 

be seen in Figure 1, according to Fischer and Krauss [14]. The 

Klang river water level data measured every fifteen minutes 

indicated as a vector xt and the multiple vectors into time series 

data. This time series water level xt setting up as input to the 

LSTM network and the output of the network is prediction 

results. The fully connected layers are connected to the LSTM 

network. The number of features and response are respectively 

indicated the number of inputs and output. 

 

 
 

Figure 1. The LSTM network architecture memory cell 
according to Fischer and Krauss [14] 

 

Table 1. Parameters setting used in LSTM network 
 

Variables Value 

Number of features / responses 2 / 1 

Time step 1 

LSTM layer hidden units 100 

Network type Fully connected 

Training dataset 10000 

Validation test 2000 

Training epochs 100 

Gradient Threshold 1 

Initial learn rate 0.01 

Learn rate drop period 125 

Learn rate drop factor 0.2 

State and Gate activation function tanh and sigmoid 

 

Firstly, removed information from its previous cell states 𝑆𝑡−1  would determines by the LSTM layer. Therefore, the 
activation values ft of the forget gates at timestep t are 
computed based on the current input and output, xt and ht-1 of 
the memory cells at the previous timestep, t-1, and the bias 
terms of the forget gates, bf. The sigmoid function then scales 
all activation values into the range of 0 and 1, respectively as 
completely forgot and completely remembered. 

In the second step, the LSTM layer determines the 
information would be added to the network’s cell states, St. 
Computes the candidate values 𝑆�̃�  and then the activation 
values of the input gates.  

In the third step, the new cell states St are calculated based 
on the results of the previous two steps with denoting the 
elementwise product. Finally, the output ht of the memory 
cells unit is obtained [11, 14]. 
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Figure 2. Architecture of RBFNN used in this study 

 

2.2 Radial basis function neural network 

 

The RBF architecture and their input used in this study as 

shown in Figure 2. The network consists of three layers: an 

input layer, a hidden layer, and an output layer. Here, R 

denotes the number of inputs. In which, two upstream-rivers 

water level and one flood water level at FFP. While Q the 

number of output, predicted water level of the Klang River at 

time n+T, and 𝑇 is 0 hour as known as real-time evaluation. 
Eq. (1) is used to calculate the output of the RBFNN. For Q=1, 

the output of the RBFNN in Figure 2 is: 
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In which 𝑥 ∈  ℛ𝑅𝑥1  is an input vector, ∅ (. )  is a basis 

function, || . ||2 denotes the Euclidean norm, w1k are the 

weights in the output layer, S1 is the number of neurons (and 

centers) in the hidden layer and 𝐶𝑘 ∈  ℛ𝑅𝑥1  are the RBF 

centers in the input vector space. 

The basis function Ck is set equal to input vector from 

training data sets, 2. Then 10 number of spreads is used in the 

training process. A large spread implies a lot of neurons 

required to fit a fast-changing function, where a small spread 

is means less neuron to fit smooth function and the network 

may not generalized well. 

 

2.3 Data set size 

 

The usefulness of the approached method is evaluated using 

a case study for the Klang River, Kuala Lumpur, Malaysia. 

The location of the selected station is shown in Figure 3 with 

the red triangle detection. The Klang River was chosen as a 

flood forecasting point based on the department of irrigation 

water level at Sulaiman Bridge. The total catchment area up to 

the station is approximately 466 km2 [15]. The Klang river has 

total stream length of about 1200 km2 at the mount of Port 

Klang, Selangor. The main river has headwaters in the 

mountain area to the north-east of Kuala Lumpur, where the 

maximum elevation rises to the above of 1400 m [16]. About 

76K with fifteen minutes basis time-series observations 

dataset provided by department of irrigation and drainage 

(DID) system Malaysia recorded in November 2011-

December 2013. And measured data from January – May 2013 

were used as historical input to the LSTM network. The five 

months data recorded about 10000 datasets examined as 

training and 2000 data used as validation test, respectively. 

 

 
 

Figure 3. Selected study area, Klang River basin at Sulaiman Bridge, Kuala Lumpur, as flood forecasting point 
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In order to demonstrate the efficiency of the LSTM network 

model, in this study, performance is assessed by using the root 

mean square error, RMSE. It is formulated in Eq. (2). While R2 

in Eq. (3) is the coefficient of determination, value describes 

the proportion of the variance in the observed dataset that can 

be explained by the model. 

 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑|y − 𝑦′|2𝑛
𝑖=1  (2) 

 𝑅2 = ∑ ( 𝑦′ − y̅)2𝑛𝑖=1∑ ( y − y̅)2𝑛𝑖=1  (3) 

 

in which, n is the number of data points, y’ represents the 

forecasted value of river water level, y is the observed river 

water level at the time i, and �̅� is the average value of the 

actual or observed records. In this study, Matlab and its 

environment were used to be the platform for programming 

and simulation tool in establishing the developed model. 

 

 

3. RESULT AND DISCUSSION 
 

The simulated model is done using neural network deep 
learning MATLAB® function to train an LSTM network for 
deep learning. For a better fit and to prevent the training from 
diverging, standardized the training data is applied to have 
zero mean and unit of variance as it applied in previous study 
[2]. The normalized data obtained from the difference between 
training data and the mean of training data divided by the 
standard deviation value of training data.  At prediction time, 
the normalized test data using the same parameters as the 
training data. The normalized water level data can be 

illustrated in Figure 4. In this study, the network state was 
initialized at first using 10000 training data set and then 
simulated the next prediction of 2000 validation test data using 
the last time step of the training response, continued by 
looping over the remaining predictions and input the previous 
prediction to the LSTM network. 

The experiment result of 2000 validation data sets can be 
referred in Figure 5 with the red line distribution values. 
Quantitatively, with forecasted and observed values both are 
unstandardized to their original scale. From Figure 5, it 
showed that the forecasted red line distribution value quite 
follows the validated pattern from the actual value after it’s 
unstandardized. The result was shown in original stage river 
water level. The result shown in Figure 6 seems that the LSTM 
network provides a considerable accurate in terms of 
coefficient determination value. Although LSTM has 
difficulties in explaining the detailed peak values, the network 
is adequate to follow the dominant trends which is very 
important for flood warning analysis [17]. The RMSE and the 
coefficient of determination, 𝑅2  were calculated to evaluate 
model performance. These two evaluated performances were 
calculated from the unstandardized prediction results. The 
results showed that the RMSE and 𝑅2 respectively of 0.0253 
and 0.9815 for LSTM model, and 0.06 and 0.9155 for RBFNN, 
which showed quit precision. In this case, the LSTM model 
outperformed the RBFNN [18]. 

The LSTM network generally reflected observed river 
water level. Despite the fact that the LSTM networks has 
complexity and highly non-linear model, the RBFNN is 
capable of providing good prediction with the network 
configuration promises simply model and smaller than LSTM 
[19]. In addition, comparing with the peak water level 
simulation, the RBFNN result have accurately predicted as 
shown in Table 2. 

  
 

 

 

Figure 4. Hourly River Klang water level standardized data 

 

Table 2. Klang river water level indicator for flood warning system 

 
Normal Level 

(Green) 

Alert Level 

(Yellow) 

Warning Level 

(Orange) 

Danger Level 

(Red) 

Highest Level Average Level 

Actual LSTM RBFNN Actual LSTM RBFNN 

23.00 M 27.00 M 28.25 M 29.50 M 26.46 M 26.25 M 26.45 M 22.80 M 22.78 M 22.78 M 
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Figure 5. Hourly River Klang water level forecasting and observed data after unstandardized 

 

 
 

Figure 6. Scatter-gram distribution of the observed and 

forecasted river water level of RBFNN and LSTM 

 
After the quantitative analysis of both LSTM and RBFNN 

models, the observed and simulated water level distribution 
value also scattered. The LSTM model has a high value 
indicating that the model could well reflect the relationship 
between observed and simulated results. From Figure 6, the 
data is scattered relatively closer to the LSTM model. It is 
clearly shown that LSTM model is a good correlation with the 
observed water level data. 

 
3.1 Flood forecasting and warning system 

 
In connection with disaster risk management and flood 

warning system, according to DID [20, 21] for river water 
level data-above mean sea level, it can be classified as three 
main categories, including “alert level”, “warning level”, and 
“danger level”. The alert level for Klang River, in Sulaiman 
Bridge is 27.00 meters, while for warning level is 28.25 meters, 
and danger level is 29.50 meters – above mean sea levels [22]. 

According to DID, the maximum value is about 27.314 meters 
categorized as “alert level” at that time. 

It indicates when the river water level more than the 
maximum observed value, can be assumed flood will occur in 
that particular area since it could be reached at a danger level. 
As an early warning system this flood forecasting model using 
deep learning technique could be more effective tools to detect 
flood water level at the certain levels.  
 
 
4. CONCLUSION 

 

This paper set out to develop a simulated model for river 

water levels using the LSTM and RBFNN network. The study 

has examined the concept of RNN as deep learning LSTM cell. 

The LSTM model not only takes full advantage of the current 

data characteristics but also uses its gate structure to decide 

whether to remember or forget the previous feature. With the 

progress of AI techniques, the deep learning method of long 

short-term memory network model could be better used in the 

hydrological engineering problems, due to the LSTM is very 

effective in modelling large time-series data. In this paper, the 

input data set was considered from two upstream to forecast 

the river water level of the next hours for flood warning system. 

The result verified that the LSTM network with specified 

training set options is a promising alternative technique to the 

solution of flood modeling and forecasting problems. The 

overall performance indicates with the root mean square error, 

RMSE 0.0253 and 𝑅2 value 0.9815 are closely accurate when 

updating the network state compared with kind of ANN model, 

which is RBFNN. Nevertheless, both LSTM and RBFNN 

networks performed adequately to forecast the river water 

level in order to meet flood warning levels. 

For further research study, employing more input variables 

including weather forecast, rainfall data, and streamflow data 

can be addressed in order to get the relationship impact of the 

improved flood forecasting performance. Furthermore, the 

enhancement of machine learning algorithm in advance AI-

based methods will be more challenging to develop robustness 

of such time series forecasting problems. 
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