
Deep Learning-based Hardware Trojan Detection with Block-based
Netlist Information Extraction

Yu, S., Gu, C., Liu, W., & O'Neill, M. (2021). Deep Learning-based Hardware Trojan Detection with Block-based
Netlist Information Extraction. IEEE Transactions on Emerging Topics in Computing (TETC) .
https://doi.org/10.1109/TETC.2021.3116484

Published in:
IEEE Transactions on Emerging Topics in Computing (TETC)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021, IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:27. Sep. 2023

https://doi.org/10.1109/TETC.2021.3116484
https://pure.qub.ac.uk/en/publications/fdd2ebd3-e336-4343-b16d-b8599f853201

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 1

Deep Learning-based Hardware Trojan
Detection with Block-based Netlist Information

Extraction
Shichao Yu, Student Member, IEEE, Chongyan Gu, Member, IEEE, Weiqiang Liu, Senior Member, IEEE,

Máire O’Neill, Senior Member, IEEE

Abstract—With the globalization of the semiconductor industry, hardware Trojans (HTs) are an emergent security threat in modern
integrated circuit (IC) production. Research is now being conducted into designing more accurate and efficient methods to detect HTs.
Recently, a number of machine learning (ML)-based HT detection approaches have been proposed; however, most of them still use
knowledge-driven approaches to design features and often use engineering intuition to carefully craft the detection model to improve
accuracy. Therefore, in this work, we propose a data-driven HT detection system based on gate-level netlists. The system consists of
four main parts: 1) Information extraction from netlist block; 2) Natural language processing (NLP) for translating netlist information; 3)
Deel learning (DL)-based HT detection model; 4) HT component final voter. In the experiments, both a long short-term memory
networks (LSTM) model and convolutional neural network (CNN) model are used as our detection models. We performed the
experiments on the HT benchmarks from Trust-hub and K-fold crossing verification has been applied to evaluate different parameter
settings in the training procedure. The experimental results show that the proposed HT detection system can achieve 79.29% TPR,
99.97% TNR, 87.75% PPV and 99.94% NPV for combinational Trojan detection and 93.46% TPR, 99.99% TNR, 98.92% PPV and
99.92% NPV for sequential Trojan detection after voting-based optimization using the LEDA library-based HT benchmarks
(logic level=4, upsampling, LSTM, 5 epochs).

Index Terms—Hardware Trojan detection, Deep learning (DL), Natural language processing (NLP), Word embedding, Long short term
memory (LSTM), Convolutional neural network (CNN).

F

1 INTRODUCTION

THE globalization of the semiconductor industry means
that the production chain of integrated circuits (ICs) is

now separated and distributed worldwide. In order to re-
duce production costs and shorten the time-to-market, more
and more third-party entities are involved in the supply
chain to provide outsourcing of design services, foundry
services and off-the-shelf intellectual property (IP). How-
ever, a number of untrusted entities may also be involved
which increases the security risk from HT attacks across the
supply chain.

A HT can be a malicious circuit inserted into an IC
design or a malicious modification of the circuits in order
to change the normal behaviour of the chip or leak secret
information from the chip. Trojans can be inserted into an
IC at both the design and manufacture stages. They can be
inserted through the attackers hidden in the design team,
the design support from the untrusted third-party vendors,
hacked electronic design automatic (EDA) tools, the foundry

Manuscript received January 28, 2021. This research is supported by RISE
(ukrise.org - EP/R011494/1) and funded by the UK Engineering and Physical
Sciences Council (EPSRC) and the National Cyber Security Centre (NCSC),
and in part by the National Natural Science Foundation of China under Grant
62022041.

• S. Yu, C. Gu and M. O’Neill are with the Centre for Secure Information
Technologies, Institute of Electronics, Communications, and Information
Technology, Queen’s University Belfast, Belfast BT3 9DT, U.K. (e-mail:
syu08@qub.ac.uk; cgu01@qub.ac.uk; m.oneill@ecit.qub.ac.uk).

• W. Liu is with the College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106,
China (e-mail: liuweiqiang@nuaa.edu.cn).

team and even during the procedure of design files transfer.
According to their physical characteristics, HTs can be clas-
sified into two categories: parametric Trojans and functional
Trojans. It is easier to insert functional Trojans at a design
stage because there are more opportunities for third-party
entities to accomplish Trojan insertion. Moreover, the logic
of functional Trojans can be cleverly designed in size and
activated stealthily to achieve its malicious purpose, which
is challenging for detection approaches using traditional IC
tests and verification solutions [1], [2].

To tackle these security threats, various functional Trojan
detection techniques were proposed over the past decade
[3]. However, conventional HT detection approaches based
on simulation, side channel analysis (SCA), reverse engi-
neering and logic testing have shortcomings. Both sim-
ulation and logic testing have difficulties in generating
comprehensive test vectors. SCA approaches usually need
a ‘golden’ circuit and are sensitive to process variation.
Moreover, for both the reverse engineering and SCA attacks,
the preparation cost of test platforms or the extra overhead
of the integration of detection sensors in ICs could make the
detection very expensive.

Static HT detection techniques, which can check Trojans
without the need to run the circuit in design-time, have been
proposed to prevent HT insertion before manufacturing and
provide timely feedback to the design team. For example,
machine learning (ML)-based and neural network (NN)-
based HT detection methods have been proposed to detect
and prevent HT-insertion at design-time without involving

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 2

any extra complicated pre-processing or introducing addi-
tional overheads. In these approaches, HT related features
are directly extracted from circuit designs and fed into
ML/NN models to train HT detection models [4], [5], [6],
[7], [8], [9], [10], [11]. Existing ML/NN-based HT detection
methods have to depend on the pre-understanding of the
characteristics of a circuit netlist (called knowledge-driven)
to extract effective features for training ML/NN models.
Hence, knowledge of the circuits, including the circuit topol-
ogy, types of components, and types of HTs, is essential
for the detection and determines the accuracy of detection
results. However, it is difficult to ensure an accurate feature
extraction for different circuits that could include a variety
of HTs in practice.

In this paper, to address the knowledge-driven based
problem, we propose a HT detection system, which only
depends on the circuit netlist without requiring any pre-
knowledge of the circuits. The method, referred to as data-
driven, only utilizes the circuit netlist from which the deep
learning (DL) algorithm automatically extracts features and
then learn models by itself. Therefore, the proposed HT
detection system provides an extremely simplified detection
process without the need for any pre-processing or extra
circuit overheads and it is also effective for various types of
circuits.

In addition, for ML/NN-based detection methods, the
number and variety of Trojan samples used in experiments
will affect the accuracy of the detection. In previous research
only 26 gate-level samples using Synopsys 90nm library
from the Trust-Hub benchmark [12] are used for evaluation,
the size of which is too small to provide a comprehensive
result and analysis. This research utilizes for the first time,
the recently LEDA system released 250nm technology-based
Trojan benchmark [13], which contains 914 samples from the
Trust-Hub [12]. More specifically, the main contributions of
this paper are summarized as follows:

• A data-driven HT detection system is proposed to
effectively detect HTs without any pre-knowledge of
the circuits. Compared to other works, the proposed
system has significantly simplified the whole detec-
tion process with no additional hardware overheads.

• A Natural language processing (NLP) technique has
been utilized for feature extraction from the circuit
netlist for HT detection. To the best of the authors’
knowledge, this is the first time NLP has been ap-
plied on raw gate-level netlist data for HT detection.

• Data-driven DL models, such as LSTM and CNN,
are utilized for data training based on the extracted
features using the NLP algorithm.

• The first time that the LEDA-based Trojan bench-
mark [13] containing 914 samples from Trust-Hub
[12] is utilized for providing a comprehensive HT
detection evaluation.

• The experimental results show that both the LSTM
and CNN DL models achieve good HT detection
performance for various Trojan netlists from publicly
available HT benchmarks using our system and the
proposed netlist information extraction strategy.

The remainder of this paper is organized as follows:
Section 2 introduces HTs and previous research. Session

Original

Circuit

Original

Circuit

Payload Nets

Trigger Nets

Trigger

Circuit

Payload

Circuit Side Channel

Info. Leakage

F
u
n

ctio
n
a
l E

rro
r/

In
fo

m
a
tio

n
 L

eakage

(a)

Comb. Logic

Sn-1

S0

S1

Sn

Trig. Circuit

(b)

Sn-1

S0

S2

Sn

FFFFFFFFFFFFclk

Sequential Logic

Trig. Circuit

(c)
Fig. 1. The circuit models of HTs. (a) functional Trojans. (b) combina-
tional Trojans. (c) sequential Trojans.

3 presents an architectural overview of the proposed HT
detection system. Section 4 presents the NLP technique
for netlist information extraction and the DL models for
training. Section 5 evaluates the proposed HT detection
system with different DL models and using different config-
uration parameters. Section 6 discusses a comparison with
other existing research and presents the potential of this
HT detection system for multi-type HT detection. Finally,
Section 7 provides concluding remarks.

2 BACKGROUND

2.1 Hardware Trojans

A HT can be a malicious circuit inserted into IC designs
or a malicious modification of the circuits. Typically, based
on the type of physical characteristics, HTs can be classified
into two categories: parametric and functional Trojans. Para-
metric HTs are inserted into a target circuit by modifying
wire thickness, dopant area and doping concentration of the
predefined transistors or any other circuit parameter [14],
while functional HTs are malicious logic implemented into
a chip design by inserting new circuits or modifying the
original circuits, components or wires. The implementation
of parametric Trojans involves manipulating the IC layout
during the manufacturing process, which is hard to achieve
based on feedback we received from industry. Hence, this
paper focus on functional HTs which can be inserted at gate-
level during the design stage.

Fig. 1(a) shows a typical functional HT circuit, which
consists of trigger logic and payload logic [1]. The trigger
circuit is a group of sensing circuits monitoring a set of sig-
nals in order to activate the payload logic at a precise time,
while the payload circuit works once the trigger is asserted
and executes the predefined malicious logic functions, such
as causing logic error or leaking key information [15]. Based
on the trigger circuit, functional HTs can be classified as
combinational Trojans and sequential Trojans, as shown in
Fig. 1(b) and Fig. 1(c), respectively. The trigger circuit in
combinational Trojans is typically built from combinational
logic. Its trigger condition is designed to require the mon-
itored signals to meet multiple conditions simultaneously.
The trigger circuit in sequential HTs is designed to require a
series of signals reaching specified values in sequence [16].

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 3

Deep Learning-based HT

Detection Module

Netlist Code Parser

Pin-level Feature Traces

Extractor

Cell-Pin Splitter

Search Depth:

logic_level
BFS-based Netlist Block

Generator

Data Labeling & Shuffling

Data Grouping & Balancing

NN Model

Learning

NN Model

Validation

NN Model

Tuning

Trained Deep Learning-based

HT Detection Module

...

×K

Training Data Validating Data

...

...

...

×K

Standard Cell

Library

HT Netlist

Label File:

log.txt

E-PCPs Translator

Training Mode

Detection Mode

Module

Parameter

DataTrained PCP to Vector

Embedding Dictionary Word Dictionary

Pin-Cell-Pin (PCP)

Feature Traces

Hierarchical Pin-level

Netlist Block

Pin-level Netlist Graph

Netlist Pseudo-Graph

Gate-Level

Netlist

Labels (HT/Normal)

E-PCP Feature Traces

(E-PCP Trace, Label) List

PCP Feature Traces

E-PCP Feature Traces

Classification Scores of

E-PCP Feature Traces

Classification Result:

Normal/HT Component

Netlist2Vector NLP module

(Skip-gram Embedding Model)

Embedded PCPs (E-PCPs) Translator

L
ab

el
s

(H
T

/N
o

rm
al

)

P
C

P
 F

ea
tu

re
 T

ra
ce

s

Class Type Decision for

Component

(Voting In the Range of Netlist

Block)

Fake Task
Embedding

Word Matrix

K-fold cross validation

Fig. 2. The Architecture of the DL-based HT detection system.

2.2 Previous Research

Static HT detection approaches extract HT related circuit
information without the need to run the circuit. Design
sources, such as gate-level netlists, are usually used for
detection in this scenario. Improved by ML, some new static
detection approaches haven been developed to improve the
efficiency of traditional ad-hoc approaches [17], [18], [19].

In [6], a K-means clustering-based HT detection ap-
proach that analyses controllability and observability fea-
tures of nets has been proposed. [7] tested the same features
in [6] on supervised ML algorithms and obtained a better
classification result using a Bagged Trees model. However,
with the limitation of computing power, the controllability
and observability of the nets with deep depth in the netlist
cannot be calculated correctly. Hence, the feature can not be
generally applied on all netlists for HT detection. Although
[8] enhanced the controllability and observability-based Tro-
jan classifier by gate-level feature statistics (i.e., the number
of primitives), the feature is specific for field programmable
gate arrays (FPGA) netlists only. [4] identified 5 general
circuit features for SVM-based HT detection. Moreover, [5]
manually designed 51 circuit features for gate-level sta-
tistical analysis and screened the best 11 features for HT
detection using the Random Forest model. Recently, an NN
model, multi-layer perceptron (MLP), was the first to train
for HT detection on gate-level netlists in [9]. However, the
utilized features are the same as [5]. Similarly, [10] adopted
an auto-encoder model for HT detection, but the features are
still manually designed based on the prior knowledge of the
circuits. Although [11] attempted to auto-encode the circuit
structures as features, their proposed encoding method has
to still use pre-knowledge of the netlist transition probabil-
ity and the detection accuracy still highly depends on the
manual adjustment of parameters.

In summary, most of the existing ML-based HT detec-
tion research still relies on the pre-understanding of the
circuit characteristics to design effective features for training

ML/NN-based HT detection models. Even with DL-based
algorithms (auto-encoder and LSTM), features are still iden-
tified by knowledge-driven approaches without utilizing
the self-learning ability of DL algorithms. Additionally, this
previous research only used 26 gate-level samples from the
SAED-based benchmark [12] for experiments, the size of
which is too small to provide comprehensive results and
analysis (especially for DL-based approaches).

3 PROPOSED HT DETECTION SYSTEM

Fig. 2 shows the architecture of the proposed HT detection
system, which can be divided into four components as
follows:

1) Step 1 to 4: Information extraction from “netlist-
block”;

2) Step 5: NLP model for encoding netlist information;
3) Step 6 to 11: DL-based HT detection model;
4) Step 12: HT component final voter.

In steps 1 to 4, the Pin-Cell-Pin (PCP) feature traces
are extracted using a previously developed platform [20],
which will be explained in Section 4.1 to 4.3. The skip-gram
prediction model from NLP is utilized in step 5 to train
and derive word embedding dictionary which contains the
distributed representations of each PCP word. When the
system works in training mode, each PCP feature trace in
the data set is translated in step 6 to an embedded-PCP (E-
PCP) feature trace. In step 7, feature traces are labelled as
HT or normal and then the data is shuffled. In step 8, all
the feature traces are divided into K groups to prepare for
K-fold cross-validation. To balance the amount of data in
the K groups, data balancing methods are applied to the
data set. Finally, K-fold cross-validation is implemented for
training and validating the DL-based HT detection model
in step 9. When the DL-based model is trained, the system
will switch to a detection mode. The PCP feature traces from
the netlist under test are first embedded and then classified

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 4

xnr2
QDIN1

DIN2

xnr2
QDIN1

DIN2

dffCLK

DIN

Q

QN
dffCLK

DIN

Q

QN

CLK

DIN
EB

dffle

Q

QN

CLK

DIN
EB

dffle

Q

QN

i1
DIN

Q

i1
DIN

Q

xnr2
QDIN1

DIN2

xnr2
QDIN1

DIN2

U13

U12

n10

U4

reg_0

reg_1

clk

n1

n6

counter_0_

N1
en0_0

n9

(a)
reg_0 U12

U13

reg_1U4

n10

n6

n1

N1
n9

en0_0

Input

clk
clk

n6

n1

(b)

Q Q

QN

Q

Q

xnr2 dff i1

xnr2

DIN1

DIN2

DIN

CLK

INPUT CLK

DIN

EB

DIN

DIN1

DIN2

U4
reg_0

reg_1

U12

U13dffle

Pin Vertex
Cell Vertex
Port Vertex

Edge
Edge from/to

Undrawn Vertex

(c)
Fig. 3. Pin-level netlist graph generation. (a) The schematic of a gate-
level netlist slice from a Trojan trigger. (b) The corresponding directed
graph. (c) pin-level directed graph of the netlist slice.

by the trained DL-based detection model in step 10 and 11.
In step 12, majority voting is applied to the classification
results of the feature traces belonging to the same netlist
block to determine their centre component’s class types: HT
or normal.

4 PROPOSED NETLIST INFORMATION EXTRAC-
TION METHOD AND HT DETECTION METHOD

In previous ML-based HT detection approaches the choice
of specific features for classification is a crucial step to
improve efficiency. Although a HT is like a hidden ”block
box” in traditional IC tests, rarely triggered and observed, it
is still a normal circuit design. In order to learn the features
of Trojan circuits using DL-based detection model, a netlist
information extraction method working on a design’s gate-
level netlists is proposed.

4.1 Pin-level Netlist Graph

Generally, the topology of a netlist can be represented as
a direct graph (containing loops and multiple edges), in
which components (instantiations of the cells in library) and
nets can be considered as nodes and edges, respectively.
The graph of a netlist slice from the s15850 T436 Trojan
[12] (Fig. 3(a)) is shown in Fig. 3(b). In order to present
the netlist topology more generally and eliminate the ran-
dom net names and component names generated by design
compiler tools, the pins of each component are separated
into independent vertices and extra direct edges are inserted
between each component and its pins. A new direct pin-
level graph is generated as shown in Fig. 3(c). As the edge
between each pair of output and input pins is unique, any

Algorithm 1 Netlist block extraction for components in
netlist.
Input: Pin-level netlist graph, G(V,E) (V is a set of ver-

tices, E is a set of directed edges, E ⊆ {(x, y) | x, y ∈
V ∧ x 6= y}); Searching depth, logic level;

Output: Dictionary to store all the netlist block, Dnb;
1: Extract cell vertices list Lvc from G;
2: for each vc in Lvc do
3: Initialize Dict. Dt to store vc’s netlist block tree;
4: cnt← logic level
5: if indegree(vc) > 0 then
6: Dt[

′I ′]←RECURSION(vc, cnt, ′I ′)
7: end if
8: if outdegree(vc) > 0 then
9: Dt[

′O′]←RECURSION(vc, cnt, ′O′)
10: end if
11: key ← Instance Name of vc
12: Dnb[key]← Dt

13: end for
14: return Dnb;

15: procedure RECURSION(vc, cnt, Direction) . Recursive
BFS on G

16: Initialize List Lp to store the accessed nets;
17: if cnt > 0 then
18: ll← (logic level − cnt) + 1
19: if Direction = ′I ′ then
20: for each vp in {v | (v, vc) ∈ E} do
21: for each v

′

p in {v | (v, vp) ∈ E} do
22: v

′

c ← parent(v
′

p)
23: Lp.push([v

′

c, v
′

p, vp, vc, ll])
24: Lp.push(RECURSION(v

′

c, cnt− 1, ′I ′))
25: end for
26: end for
27: else if Direction = ′O′ then
28: for each vp in {v | (vc, v) ∈ E} do
29: for each v

′

p in {v | (vp, v) ∈ E} do
30: v

′

c ← child(v
′

p)
31: Lp.push([v

′

c, v
′

p, vp, vc, ll])
32: Lp.push(RECURSION(v

′

c, cnt− 1, ′O′))
33: end for
34: end for
35: end if
36: end if
37: return Lp;
38: end procedure

net edge in the original netlist graph can be determined
by unique ordered pair of pin vertices (x, y), where x is
the tail (output pin) of the edge and y is the head (input
pin) of the edge. This procedure is carried out by the Cell-
Pin Splitter module (step 2) in Fig. 2. Based on the pin-
level netlist graph, a netlist information extraction method
is designed for the NLP-based data encoding and DL-based
HT detection, as described in the next section.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 5

Net a1 (Depth 1)

Net b1 (Depth 2)

Dt I O

Net c1 (Depth 3)

Net x1 (Depth m)

Net ai (Depth 1)

...

...

Net b2 (Depth 2)...

Net ci (Depth 3)

Net xi (Depth 4)

...

Net bi (Depth 2)...

(a)

Next Cell Next Output Pin

Current Cell

Current Input Pin

Depth

Current ComponentNext Component

Input Side (search from input pin to output pin) :

Next Cell Next Input Pin

Current Cell

Current Output Pin

Depth

Current ComponentNext Component

Output Side (search from output pin to input pin) :

(b)
Fig. 4. Netlist block format. (a) The tree-like list for storing nets in
netlist block(searching depth = m). (b) The vertex information of each
accessed net stored in the netlist block.

4.2 Netlist Block and Its Searching Depth

4.2.1 Netlist-Block

The netlist-block of each component in a netlist is defined
as the surrounding netlist topology found by breadth first
searching (BFS) starting from this component on the de-
sign’s pin-level netlist graph while this component is de-
fined as the centre component of the netlist block.

Algorithm 1 shows how the netlist-block (Dt) of each
component is extracted from the pin-level netlist graph (G).
The searching depth of BFS is defined by logic level (further
explained in Section 4.2.2). The searching direction of the
BFS procedure (RECURSION) is also controlled by parameter
Direction. On the input side (′I ′-side) of the component, the
program searches the netlist topology from input pins to
output pins, while on the output side (′O′-side), it searches
from the output pins to input pins. Each accessed net is
described by an array of vertices [v

′

c, v
′

p, vp, vc] (v
′

c is the
next cell vertex, v

′

p is the next pin vertex, vp is the current
pin vertex, vc is the current cell vertex). The accessed nets
on the ′I ′ and ′O′ sides are recorded with a hierarchical
structure in two lists (Dt[

′I ′] and Dt[
′O′]), as shown in

Fig. 4(a). The nets are kept in a tree-like structure and their
hierarchical dependencies are defined by depths. The vertex
information of each accessed net is shown in Fig. 4(b), in
which the next cell vertex defines the next level’s starting
node, the next and current pin vertices define the accessed
net and the current cell vertex defines the net’s father node.
In a netlist block, all the structural information surrounding
the centre component are retained. It contains all the nearby
components within the range of the searching depth and
the spatial dependence between each path. Therefore, the
function of the component in its local netlist area can be
reserved.

Centre Gate

Logic Level 1Logic Level 2 Logic Level 1 Logic Level 2

Output SideInput Side

.

net 1

output pin
input pin 2

ac

d

b

Fig. 5. The definition of logic level.

4.2.2 Searching Depth

As shown in Algorithm 1, the parameter logic level is de-
fined to limit the searching depth for the netlist topology.
For example, when logic level is 5, the BFS-based Netlist
Block Generator module (step 3 in Fig. 2) will extract a
netlist block within 5 logic levels of the centre component.
The logic level, as shown in Fig. 5, is defined according
to the number of gates encountered on the route when
transmitting from the centre gate to the current component
in netlist. In Fig. 5, a is the centre gate, and when d is the
current gate, on the path from a to d, gates b and d are
counted. The path from a to b is in logic level 1. The path
from b to d is in logic level 2.

The logic level affects the precision of the circuit features
in netlist block and there is a trade-off in the selection
of the logic level value. With a large logic level value, the
structural information contained in the netlist block will be
more specific and more in depth features can be included.
However, it can also include less relevant and redundant
information. On the other hand, a smaller logic level value
will reduce the information retained in the netlist block,
while ensuring the information is more relevant and smaller
in size. In order to choose the more appropriate logic level
value, the number of components in the netlist block is
estimated. The mutual information between the signals at
the edges of the netlist block and the signals from the
centre component is also estimated for different logic level
values. To simplify the estimation, reconvergent fan-out is
not considered and an ideal model is used. The actual netlist
may be more complicated than this ideal model, however, it
provides a reference for logic level selection.

Assuming there is a netlist block for which the com-
ponents on both sides of the centre component are all
two-input one-output gates, and on the output side each
output pin is connected to 2 input pins at the next logic
level (as shown in Fig. 6(a)), the relationship between the
number of components and the logic level can be repre-
sented in Fig. 6(b). Then, assuming the logic function of
all components is AND or OR operations and applying
random inputs to all the input ports in the netlist, the
trend of mutual information between an input signal at the
edge of the input side and the output signal of the centre
component (identified by the blue arrows in Fig. 6(a)) can
be demonstrated in Fig. 6(c). Similarly, Fig. 6(d) shows the
relationship between an output signal at the edge of the
output side and an input signal of the centre component
(the brown arrows in Fig. 6(a)). Based on the estimation, the
initial value of logic level is recommended to be set to 3,
4, or 5, offering sufficient information while eliminating less
relevant information.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 6

... ...C

(a)

0 1 2 3 4 5 6 7
searching depth (logic_level)

0

100

200

300

400

500

nu
m

be
r o

f c
om

po
ne

nt
s

1 5 13 29
61

125

253

509

(b)

1 2 3 4 5 6 7
searching depth (logic_level)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ut

ua
l i

nf
or

m
at

io
n

(b
it)

3.11×10 1

6.55×10 2

3.92×10 3 1.53×10 5

2.33×10 10
I 0

(c)

1 2 3 4 5 6 7
searching depth (logic_level)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
m

ut
ua

l i
nf

or
m

at
io

n
(b

it)
0.311

0.138

0.066
0.032

0.016 0.008
0.004

(d)
Fig. 6. Estimation for logic level selection. (a) The assumed netlist
block model. (b) The number of components in this netlist block. (c) The
estimated mutual information between the edge of input side and the
centre component. (d) The estimated mutual information between the
edge of output side and the centre component.

4.3 Netlist Path Information

The netlist block translation to PCP feature traces is de-
scribed in Algorithm 2. The netlist block contains the topol-
ogy information surrounding the centre component, but
the topology information needs to be extracted from the
hierarchical structure. The FLATTEN procedure in Algorithm
2 utilizes a stack to unfold the nets in the netlist block. The
Pin-Cell-Pin (PCP) feature trace is generated in Algorithm
2 to describe the netlist path. PCP, a basic element of the
PCP feature trace, is a tuple of the input pin vertex (vin p),
cell vertex (vc) and output pin vertex (vout p) from the same
component that connects two nets in adjacent logic levels.
According to the net information (as shown in Fig. 4(b)),
Equation 1 indicates the process of PCP generation from
two adjacent nets (logic level is x − 1 and x) on the ′I ′ side
and ′O′ side.

[
v
′
c, v

′
p, vp, vc

]
x−1[

v
′
c, v

′
p, vp, vc

]
x

}
→ I :

[
vp,x, vc,x, v

′
p,x−1

]
or

O:
[
v
′
p,x−1, v

′
c,x−1, vp,x

]
,

(1)

A PCP feature trace can be obtained by listing the PCPs
on the route when traversing the entire netlist block from
the input to the output. After the translation, for each netlist
block, all its PCP feature traces are stored in a list. The data
structure is shown in Fig. 7(a), where each list element is
a PCP feature trace. Meanwhile, since the logic level (ll)
defines the searching depth for the netlist block, the number
of PCP elements in each PCP feature trace is 2 × ll − 1.
This procedure is carried out by a Pin-level Feature Traces
Extractor module as shown in the system architecture (step
4 in Fig. 2).

Algorithm 2 PCP feature trace extraction from netlist block.
Input: Dictionary of netlist blocks, Dnb;
Output: Dictionary to store PCP feature traces, Dft;
1: for each key, Dt pair in Dnb do
2: Init. List LPI , LPO for storing netlist paths on 2

sides;
3: Initialize List Lft to store PCP feature traces;
4: LPI ←FLATTEN(Dt[

′I ′])
5: LPO ←FLATTEN(Dt[

′O′])
6: for each pathI in LPI do
7: for each pathO in LPO do
8: Initialize List Lpcps to store PCP feature trace;
9: for i =length of pathI − 1; i > 1; i−− do

10: neta ← pathI [i− 1]
11: netb ← pathI [i]
12: PCP ← [netb.vp, netb.vc, neta.v

′

p]
13: Lpcps.push(PCP) . input path PCPs
14: end for
15: neta ← pathI [0]
16: netb ← pathO[0]
17: PCP0 ← [neta.vp, neta.vc, netb.vp]
18: Lpcps.push(PCP0) . centre PCP
19: for i = 1; i <length of pathO − 1; i++ do
20: neta ← pathO[i− 1]
21: netb ← pathO[i]
22: PCP ← [neta.v

′

p, neta.v
′

c, netb.vp]
23: Lpcps.push(PCP) . output path PCPs
24: end for
25: end for . end of LPO loop
26: end for . end of LPI loop
27: Dft[key]← Lpcps

28: end for
29: return Dft;

30: procedure FLATTEN(L) . L, list of nets
31: Initialize List LS as a stack for unfolding nets;
32: Initialize List LP to store lists of nets (netlist paths);
33: for each net in L do
34: if LS is not empty ∧ LS .top.ll > net.ll then
35: LP .push(LS)
36: repeat
37: LS .pop
38: until LS is empty ∨ LS .top.ll < net.ll
39: else
40: LS .push(net)
41: end if
42: end for
43: if LS is not empty then . clear stack
44: LP .push(LS)
45: end if
46: return LP ;
47: end procedure

4.4 NLP-based Encoding for Extracted Information
(Net2Vec)

Word embedding is a collective name for a set of language
modelling and feature learning techniques in NLP where
words or phrases from the vocabulary are mapped to vec-
tors of real numbers [21]. As each unique PCP can be treated

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 7

PCP feature trace 2

Lpcps :

PCP feature trace 3

PCP feature trace n

Length: 2 × ll 1

(vin_ p ,vc ,vout_ p)

...

Centre

PCP0

Right SideLeft Side

PCP-1PCP-2PCP-ll+1 PCP1 PCP2 PCPll-1

L
is

t

PCP

... ...

(a)

(b)
Fig. 7. The sentence-like netlist path information. (a) The data
structure of the PCP feature trace list for each netlist block. (b)
An example of a PCP feature trace list in text format for com-
ponent ‘troj36 0counter reg 0’ in benchmark netlist s15850 T436 (
logic level = 5).

0

...

V×1 (ypred)

(K+1)×1
y1

y2

y3

yV

...

...

V×1

Winput

(V×N)

W
T

output

(N×V)

N× 1

(x) P(cneg,1|w)

Embedding matrix

Input layer Hidden layer

Context matrix

Output layer

Sigmoid output

P(cpos|w)

P(cneg,K|w)

Vector of word (w)

...

yj

ym...

h1

h2

h3

hN

...

h1

h2

h3

hN

...

0

0
0
1
0

x

h

ypredVector of context word
 (v)

Fig. 8. The structure of Skip-gram word embedding model with negative
sampling.

as vocabulary, the PCP feature trace is similar to sentences
in natural language. Therefore, in this paper, we propose
a Net2Vec methodology, in which a word embedding algo-
rithm is utilized to encode PCP feature traces.

The PCP vocabulary (w) can be assembled according
to Equation (2). An example of the rewritten PCP feature
traces using PCP words is shown in Fig. 7(b). The characters
related to cell size (like ”s1” in ”and2s1”) are eliminated
to make the PCP word more general.

w = vin p + “ ” + vc + “ ” + vout p (2)

In this research, a skip-gram neural network model [22]
with negative sampling is utilized to embed PCP words. A
PCP to numeric vector translation matrix is built after the
model training. The skip-gram model builds a fake task that
utilizes a given centre word (wI) to predict its context words
(Cpos) to train the weight matrix in its neural network and
finally learns the meaningful vector representations of the
words. The architecture of the skip-gram model is shown in
Fig. 8. The model contains one input layer, one hidden layer
and one output layer. The weight matrix from the input
layer to the hidden layer, W input, is the word embedding
matrix. Each line of this matrix represents a word vector.
When the vocabulary size of PCP words is V , for a centre
PCP wordwI , x is its one-hot encoded V -dim vector. Then h
is the N -dim word vector from the corresponding row (w)

in W input, projected by x (h = W T
inputx). At the output

layer, ypred is the V -dim matrix product of the context
weight matrix (W output) and h, which represents the unnor-
malized probability distribution of all possible context PCP
words when the centre PCP word is wI . Negative sampling
is utilized to improve the computational efficiency for each
centre word and context word (positive) pair (wI , cpos).
K words are randomly drawn from a noise distribution
Pn(w) (equation (3)) as negative words (cneg). Pn(w) is a
probability distribution related to the word (w) frequency.

Pn(w) =
count(w)0.75∑V

i=1(count(wi))
0.75

(3)

Therefore, for each wI , only K + 1 results ypos,
yneg,1, ..., yneg,K in ypred need to be calculated instead of the
whole vocabulary size (V). Next, the sigmoid function σ(x)
is applied to get the normalized probabilities p(cpos|wI).
{p(cneg,i|wI)|i = 1, 2, ...,K} is for loss calculation and back-
ward propagation. The main purpose of native sampling is
to optimize the weight matrices W T

input and W T
output by

maximizing the probability of the observed positive pairs
p(cpos|wI) while minimizing the p(cneg,i|wI) for negative
pairs, i = 1, 2, ...,K . With the variables from the model, the
cost function (L) of the model can be defined as equation
(4), where v ∈ W output, Wneg={cneg,i|i = 1, 2, ...,K},
θ = [W T

input,W
T
output]. θ represents the weight parameters

in two matrices. θ is updated by backward propagation per
(wI , cpos, Wneg) pair.

L(θ) = − log σ(vcpos · h)−
∑

cneg∈Wneg

log σ(−vcneg · h) (4)

Different from sentences in natural language, each com-
ponent’s netlist block has already extracted information
on the surrounding netlist components around the centre
component (window size = logic level). For each PCP
feature trace, PCP0 is the centre wordwI , and the remainder,
{PCPi|i 6= 0} is the context words, cpos. K negative samples
are randomly drawn from the noise distribution Pn(w) of
each PCP word in the corpus for each (PCP0,PCPi) pair,
i 6= 0. The corpus here is the PCP feature traces extracted
from the netlist samples compiled by the same process-
specific standard cell library, whether it has Trojans or is
Trojan-free. In our model, K = 5, each training batch
contains 1 positive PCP word and 5 negative PCP words.
N = 100, the hidden layer contains 100 neurons. After train-
ing, a V ×100 trained PCP word embedding matrix,W input,
can be obtained from the model. V is the vocabulary size
of the corpus. The i-th row (wi) in W input represents the
trained 100-dim vector representation of the PCPi word at
index i in the vocabulary dictionary. The training procedure
is completed by the Netlist2Vector NLP module (step 5).

4.5 Embedded PCP (E-PCP) Word Vectors

As an example, an embedded matrix containing 204 PCP
word vectors is trained using the feature traces from 60
HT-infected netlists (Appendix, Table 11) randomly se-
lected from the Trust-Hub benchmark library [12] when
the logic level is 4, which includes both combinational and
sequential (FSM-based, counter-based) Trojans inserted in 8
different host designs. The top 10 word vectors close to and

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 8

TABLE 1
PCP list sorted by the distance to the vectors of “DIN1 nnd4 Q”

Top 10 Nearest Distance Top 10 Furthest Distance
DIN2 nnd4 Q 0.215 SDIN sdff Q 3.187
DIN3 or5 Q 0.506 DIN dffle Q 2.903
DIN2 or5 Q 0.511 CLK sdff Q 2.630
DIN4 or5 Q 0.557 SSEL sdff Q 2.628
DIN1 or5 Q 0.605 DIN dffle QN 2.612
DIN3 nnd4 Q 0.627 SDIN sdff QN 2.539
DIN1 nnd3 Q 0.635 output 2.429
DIN4 nor6 Q 0.722 None I 2.428
DIN2 or3 Q 0.746 CLK dsmxc31 Q 2.427
DIN2 nnd3 Q 0.751 DIN7 and9 Q 2.424

tInput: E-PCP feature trace

,

L
S
T

M
 la

y
e
r

LSTM

network

Fig. 9. The processing of each E-PCP feature trace in a stacked n-layer
LSTM-based HT detection network.

far from the PCP word vector “DIN1 nnd4 Q” are listed
in Table 1. “None I” in the table is the placeholder for the
vacant positions on the input side when the feature trace
is short. “output” is the placeholder for the output ports.
It can be found that the closer the word vectors, the more
similar their semantics in the netlist. And the farther they
are, the greater the difference between them. The semantics
here are the function and role of the PCP in the netlist. The
E-PCPs Translator module (step 6) in the system is utilized
to translate the PCP feature traces into E-PCP feature traces
based on the embedding matrix.

4.6 Deep Learning-based HT Detection on Embedded
Feature Traces

With a large number of artificial neurons and multiple
hidden neural network layers, the most significant advan-
tage of the DL algorithm is that the neural network can
progressively learn high-level features from the raw input.
Utilizing the PCP feature traces explained in Section 4.3 and
the PCP word embedding matrix generated by the the NLP
model in Section 4.4, a DL-based HT detection method is
designed and implemented in this section.

The Deep Learning-based HT Detection Module (step
9) in Fig. 2 implements the DL-based HT detection modules
designed in this Section and carries out the model training
and validation. According to the different interpretations
of the PCP feature traces, two general DL models are
considered—the long short term memory networks (LSTM)
model and the convolutional neural network (CNN) model.

LSTM1
S

o
ftm

a
x

y1

y2

FC-layer

xt,N

xt,2

xt,1

LSTM2

LSTMM

LSTM1

LSTM2

LSTMM

S(y1)

S(y2)

Input layer LSTM layers Softmax layer

M×1N×1
xt

xT,N

xT,2

xT,1

N×1
xT 1

st
 layer 2

nd
 layer

when t=T

LSTM LSTM unit

Fig. 10. The architecture of the LSTM network in Fig. 9.

4.6.1 LSTM Model

As discussed in section 4.3, a PCP feature trace contains the
structural information from the corresponding netlist paths,
and spatial dependency exists between PCP words in trace.
Consequently, PCP feature traces can be treated as data
sequences with spatial dependency. LSTMs [23], a special
kind of Recurrent Neural Network (RNN), can learn long-
term dependencies in entire sequences of data and hence
are considered suitable for this HT detection task. Fig. 9
shows the processing of an embedded PCP (E-PCP) feature
trace by an n-layer LSTM network. Each PCP is translated
to the corresponding E-PCP word vector by looking up the
embedding matrix. t = 1, 2, 3, ... is the time step. According
to the order of E-PCP vectors in the feature trace at each
time step, there is one E-PCP vector (xt) processed by the
LSTM network, hence, T = 2ll−1. The green block in Fig. 9
shows the state of each LSTM layer at different time steps. h
is the hidden state and also the output of each LSTM layer,
while cell state c is the memory of the current layer. For the
first layer, at each time step, the input data is composed of
(xt) at current time step t and h(1)

t−1, c(1)t−1 from the previous
time step t − 1. For a middle layer n, the input comprises
h
(n−1)
t from layer n − 1 at t and h(n)

t−1, c(n)t−1 at this layer
from t− 1. Thus, h at the last time step of the last layer can
be regarded as the vector representation of the whole input
sequence (E-PCP feature trace).

The architecture of the LSTM-network utilized in our
system is composed of 2 LSTM layers. The dimension of
hidden state M is taken to be 128, which is larger than the
dimension of the word vector to retain the encoded infor-
mation of the whole feature trace. As presented in Fig. 10,
it contains 1 input layer, 2 LSTM layers, 1 fully connected
(FC) layer and 1 softmax layer. xt is the E-PCP word vector
at time step t. The input layer maps the 100-dim xt to the
LSTM layer with 128-dim. Each dimension is handled by
one LSTM unit [23]. After T time steps’s encoding, a 128-
dim feature vector (h(2)

T) for the whole E-PCP feature trace
is generated. The FC-layer calculates the classification scores
(y1, y2) and the softmax layer normalizes them to either the
HT class probability S(y1) or normal class probability S(y2).

The adopted cost function for loss calculation and back-
propagation is cross entropy. It estimates the difference
between the probability distribution of the sample’s actual
class and that of the predicted classification result. The
equation is shown in (5), where ci is the class i. For each
sample, p(ci) is the actual probability of class i and q(ci|θ) is
the predicted probability of class i under the current model
(θ represents all the parameters in the model). In our model

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 9

E
-P

C
P

 fe
a
tu

re

m
atrix

Convolutions Subsampling

C1: 6 feature maps
S1: 6 f. maps

Convolutions Subsampling Fully connected

C2:16 f. maps

S2:16 f. maps

S(y1)

S(y2)

OutputInput

FC1:

FC2:

FC3:

S
o
ftm

a
x

y1,

y2

Fig. 11. The CNN network for HT detection.

there are two classes, c0 is the normal class, while c1 is the
HT class. For a normal trace, p(c0) = 1, p(c1) = 0, while for
a HT trace, p(c0) = 0, p(c1) = 1. The cross entropy can be
calculated according to equation (6).

L(θ) = −
∑
i

p(ci) log q(ci|θ) (5)

= −p(c0) log q(c0|θ)− (1− p(c0)) log(1− q(c0|θ)) (6)

4.6.2 CNN Model
Taking another perspective, the E-PCP feature traces can be
treated as N×(2ll−1) matrices, in which each column is an
E-PCP word vector, and the row width is equal to the length
of the trace. Hence, instead of sequential processing, neural
network (NN) models can process all the E-PCP vectors in
one feature trace simultaneously as a matrix. The convo-
lutional neural network (CNN) [24], which performs well
in image processing, is suitable for building classification
models from matrix data.

To evaluate its performance, we customized a CNN
model based on LeNet-5 [25] and tested it in our HT
detection system. The model has been trimmed to match
the matrix size of the E-PCP feature trace. Its architecture is
shown in Fig. 11. The model contains 2 convolution layers
(C1, C2), 2 subsampling layers (S1, S2), 3 fully connected
layers (FC1, FC2, FC3) and 1 softmax output layer. The
function of the subsampling layers used in our model is
max-pooling.

The convolution layers can automatically extract higher-
level features from its input data. The subsampling layers
perform a non-linear down-sampling on the input data
to shrink the data size and reduce the exact positional
features in data to enhance the robustness of the model.
The subsequent FC-layers and softmax layer perform the
same functions as those in the LSTM model. However, as
a whole E-PCP feature is processed by the CNN model per
time step, more neurons will be needed in FC-layers than
in LSTM, the 3 stacked FC-layers can encode the multiple
feature maps from the S2 layer into a 2-dim score vector,
(y1, y2).

The key parameters in our CNN model are listed in Table
2. The exact size of the output feature maps at each layer
depends on the length of the E-PCP feature trace (2ll−1) and
the number of dimensions (N) of the E-PCP word vector in
the embedding matrix. The cost function is cross entropy. As
the output layer is not changed, the form of the cost function
is the same as that in the LSTM model (equation (6)).

4.7 Voting Method in HT Detection Mode
After model training, steps 10 to 12 (Fig. 2) utilize the trained
model to detect HTs in the target netlist. A Trojan/normal

TABLE 2
The Key features of Each layer in Our CNN Model

Layer
Kernels

(num., size)
Stride

(row, col.)
Padding

(row, col.)
Output feature

maps (num., size)
Input — — — 1, N × (2ll− 1)

C1 6, 3× 2 1, 1 1, 1 6, N × 2ll

S1 1, 2× 1 — — 6, N/2× 2ll

C2 16, 3× 3 1, 1 1, 0 16, N/2× (2ll− 2)

S2 1, 2× 2 — — 16, N/4× (ll− 1)

FC1 — — — −, 2N(ll− 1)

FC2 — — — −, N(ll− 1)/4

FC3 — — — −, 2

Softmax — — — −, 2

Normal Netlist

Trojan Netlist

Netlist block range

PCP

U1

U3

U4

U2

PCP feature trace
Trojan PCPNormal PCPUx: Component name

Fig. 12. The voting method in netlist block range for final classification.

component voter (Class Type Decision for Component,
step 12 in Fig. 2) is designed to optimize the detection results
and conclude the final detection results at component level.

As each PCP feature trace represents the structural infor-
mation contained on the corresponding netlist path, some
normal feature traces with partial HT-like structural features
may be misclassified as HTs by the trained model and vice
versa. Meanwhile, the information contained in a single PCP
feature trace can not fully represent the logic of that netlist
block. Hence, a voting strategy in the range of netlist blocks
is adopted in this module for final HT detection. To reduce
the impact of misclassification and improve the detection
accuracy, instead of the PCP feature trace, components in
the netlist become the object of final HT classification. The
voting strategy decides the class type (HT/normal) of a
component based on the voting results of all PCP feature
traces in the network block with it as the centre component
(Section 4.2).

According to the searching algorithm of for each netlist
block (Algorithm 1), the topology of a netlist block is shared
by multiple PCP feature traces. If a HT netlist exists in the
range of the netlist block, its structural features should also
be shared by multiple PCP feature traces. Therefore, with
the classification results of all feature traces within the scope
of each component’s netlist block, the voting scheme can
decide the class of the component by majority voting. In
other words, outliers in the PCP feature trace classification
results will be covered by voting. The voting procedure is
shown in Fig. 12. Ux is the name of the centre component in
a netlist block. If the number of PCP feature traces classified
as HTs is higher than the number of normal ones in the
scope of a component’s netlist block, this component will be
classified as a HT component, and vice versa. In this case,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 10

Q

Q
S ET

CLR

D

PCP feature trace 1

PCP feature trace 2

PCP feature trace n

...
DIN3_nor3_Q DIN4_nnd4_Q DIN2_nor2_Q DIN2_xnr2_Q DIN_dff_Q DIN_hi1_Q DIN1_nor2_Q DIN2_xnr2_Q DIN_dffle_QN

Details of a PCP Feature Trace

[x1, x2, x3, , x2ll-1]

E-PCP Feature Trace

xi : PCP vector

[x1, x2, x3, , x2ll-1]
E-PCP Feature Trace with Label

Label: HT/Normal

Label

DL Model

Parameters

of NN: ...

Read in
Predicated

Label

Predicated

Label

Actual

Label

Actual

Label

Error Calculation: L()

Predication

Backpropagation
(update the)

Trained

DL Model

E-PCP feature trace 1

E-PCP feature trace 2

E-PCP feature trace n

...

After Training (Detection Mode)

Q

Q
S ET

CLR

D

Error

Step 12

Majority VotingPredicationRead in

Step 1 to 3 Step 4

Netlist File Netlist Block of Component reg_0

reg_0

Step 5 to 6

Extract Netlist

Block

Extract PCP

Feature Traces

PCP Word Embedding

& PCP to Vector Encoding Step 7
Label PCP

Feature Traces

Step 8 to 9
Train

Classification

Model

E-PCP feature trace 1

E-PCP feature trace 2

E-PCP feature trace n

Predicated Labels

(of PCP Feature Traces)

Predicated Labels

(of Components)

Step 10

(Step 11)
Encode PCPs

to Vectors

PCP feature trace 1

PCP feature trace 2

PCP feature trace n

...

Fig. 13. Workflow of the proposed HT detection system. “reg 0” from netlist s15850 T436 [12] is the example component being processed
(logic level = 5).

U1, U2 and U3 are voted into the HT class, while U4 is
classified to the normal class. For boundary conditions (as
shown for U1), when the number of traces in the two classes
is equal, the component will be classified to the HT class in
the proposed system.

4.8 System Workflow

The detailed description of the algorithms and functional
modules has been presented in the previous sections. To
summarise, Fig. 13 shows the workflow of the system. The
processing of component “troj36 0counter reg 0 ” (“reg 0”
for short) from HT-infected benchmark netlist s15850 T436
[12] is presented as a running example to clarify the proce-
dures. As shown in Fig. 13, steps 1 to 3 in the system (Fig. 2)
extract the netlist block of “reg 0” within 5 logic levels,
and then the netlist path information is extracted as PCP
feature traces in step 4. The details of one PCP feature trace
and the corresponding netlist path from the original netlist
are provided as an example to illustrate how the topology
information surrounding the centre component (“reg 0”) is
stored in the feature trace. After the NLP-based encoding
(steps 5 and 6), the E-PCP feature traces are labelled as
either HT or normal according to the class of their centre
component (step 7). For example, as the centre component
(“reg 0”) of the extracted feature traces in Fig. 13 belongs
to a Trojan circuit according to the netlist description file
provided by the benchmark library [12], this feature trace is
labelled as HT, and vice versa. The DL model is trained with
these labelled feature traces to predicate their categories
(either HT or normal class). During the training, the cost
function continuously calculates the error values between
the predicated labels and the actual labels, then the values
will be back-propagated to the DL model to automatically
update the parameters (θ) of its inner neural network based
on gradient descent to reduce the predication error. In this
procedure, the features (like the type, number and order
of different components, used pins and specific structures,
etc.) contained in the feature traces that can be utilized for

classification are gradually extracted and learned by the
DL model. After training, the DL model can perform HT
detection based on its trained inner neural network (trained
θ) without labelling.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the impact of system parameters
on the detection results and test the performance of the
proposed HT detection system.

5.1 Experimental Setup
Overall, the experimental setup consists of two parts: the
platform setup, and benchmark preparation. For the plat-
form, the modules in step 1 to 3 of the proposed HT
detection system are implemented in Perl language, while
all other modules are implemented in Python. An open
source machine learning library, Pytorch, is utilized to build
the neural network models in the system (Net2Vec, CNN,
LSTM), and the detection system is running on a Linux
machine with an AMD Ryzen 1700 CPU, a NVIDIA RTX
2060 GPU and 32GB memory. For the benchmarks, Trojan-
infected gate-level netlists from the Trust-Hub Trojan bench-
marks [12] are utilized as samples for the experiments. It
should be noted that the netlist samples from Trust-Hub can
be divided into two groups according to the standard cell
libraries used. One is the Synopsys 90nm generic library
(SAED), and the other is the LEDA system 250nm library.
An overview of these benchmarks is presented in Table 3.

5.2 Parameter Control
The parameters that can be configured in our system are
summarized in Table 4, and are classified into two groups:
system parameters and neural network hyperparameters.
For the system parameter logic level defines the searching
depth of a netlist block and directly influences the informa-
tion contained in each feature trace. Therefore, its impact on
HT detection results is investigated. For the neural network

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 11

TABLE 3
Overview of Publicly Available Trojan-infected Netlists on Trust-Hub

Category Library Num. Details

Abstraction Level/
Gate/TRIT-TC, TRIT-TS

LEDA 914

580 Combinational HTs
based on 8 host circuits;
334 Sequential HTs
based on 8 host circuits.

Abstraction Level/
Gate/other benchamrks

SAED 26

11 Combinational HTs
based on 6 host circuits;
15 Sequential HTs
based on 6 host circuits.

TABLE 4
The Summary of the Parameters in the Proposed System

Category Descriptions
System Parameter logic level (ll)

NN Hyper-
parameters

Net2Vec Model Embedding Dimension

Detection Model
LSTM Networks Parameters
CNN Parameters

Training Procedure
Class Balancing Method(Up/Down
Sampling, Weighted Loss Function);
Batch Size; Number of Epochs.

hyperparameters, some of the parameters are fixed to con-
trol the total number of variables in the experiments and
reduce the complexity. As we do not focus on optimizing
the deep learning models, the parameter configurations of
the PCP word embedding model (Net2vec) and the HT
detection models are fixed as described in Section 4.4 and
4.6. The batch size is also set to 32 in all the experiments.

Meanwhile, as the feature trace numbers of the HT class
and normal class in the training set are usually unbalanced,
class balancing is used in the training procedure. This will
change the composition of the training dataset. As such, 3
methods with 1 control group are evaluated in our experi-
ments as follows:

1) Upsampling: This method up samples the feature
traces in the smaller class by randomly duplicating
samples to make the number of samples in both
classes the same.

2) Downsampling: This method is similar to upsam-
pling, but involves down sampling the larger class
by randomly discarding samples.

3) Weighted Loss Function: This function deals with
the imbalance by re-scaling the penalty on each class
for the misclassification in training. The weights
(W) are defined according to the number (Ni) of
feature traces in each class. According to equation
(5), the new cost function is rewritten as (7).

L(θ) = −
∑
i

1∑
i

1
Ni

1

Ni
p(ci) log q(ci|θ) (7)

4) Control Group: The HT detection model will be
trained with the original training set without class
balancing.

Overall, the impact of system parameter logic level and
the class balancing methods will be investigated. During
training, the number of epochs indicates the number of

TABLE 5
The evaluation metrics (confusion matrix)

True Condition
Normal HT

Predicted
Condition

Normal
TN (True
Negative)

FN (False
Negative)

NPV /

HT
FP (False
Positive)

TP (True
Positive)

/
PPV

(Precision)
TNR FNR=1-TPR

FPR=1-TNR TPR (Recall)

times that the entire training dataset passes through the
model.

5.3 Evaluation
Considering the number of samples and the variants of
inserted HTs, benchmarks from the LEDA library [13] are
utilized as the source for the following evaluation. Accord-
ing to the parameter configuration in 5.2, in experiment 1,
different class balancing methods are evaluated. In experi-
ment 2, we evaluate the impact of the logic level parameter
swap on the detection results. Finally, in experiment 3, based
on the parameter settings acquired from experiment 1 and
2, the performance of the proposed HT detection system
when integrating with different DL models (LSTM and
CNN) is evaluated. In the experiment 1 and 2, we evaluate
the impact of parameter configurations on the detection
results rather than evaluating the performance. As such, the
evaluation datasets are smaller than that in experiment 3 to
save training time and accelerate the multiple control group
experiments.

The basic evaluation metrics are shown in Table 5, which
is referred to as the confusion matrix. The true negative rate
(TNR), true positive rate (TPR, Recall), negative predictive
value (NPV) and positive predictive value (PPV, Precision)
are calculated according to equations (8) to (11).

TNR =

∑
TNs∑

True Condition Normal
(8)

TPR =

∑
TPs∑

True Condition HT
(9)

NPV =

∑
TNs∑

Predicted Condition Normal
(10)

PPV =

∑
TPs∑

Predicted Condition HT
(11)

In addition, as the FN case is more critical than FP in
HT detection, the evaluation metric F2-score is also used to
evaluate the trained models. The calculation is presented in
equation (12).

Fβ-score = (1 + β2) · PPV · TPR
β2 · PPV + TPR

, β = 2 (12)

5.3.1 Experiment 1: Different Balancing Methods
In this experiment, HT-infected netlist datasets are ran-
domly picked from the benchmark library. One is a com-
binational Trojan-infected dataset, the other a sequential
Trojan-infected dataset. For each dataset, there are 24 netlist
samples with different combinational/sequential Trojans in-
serted to 8 host circuits (3 samples for each). The detection
results are acquired when logic level is configured to 4 and
the DL model is LSTM.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 12

TABLE 6
Experimental Results with Different Class Balancing Methods (DL model=LSTM, logic level=4, 5 epochs)

HT Type Balancing Method
After 5 Epochs

Validation Group: K1 K2 K3 Average (95% CI)
TNR TPR NPV PPV TNR TPR NPV PPV TNR TPR NPV PPV F2-score

Comb.

None 0.9999 0.4888 0.9994 0.9006 0.9999 0.6346 0.9997 0.8801 0.9999 0.7616 0.9998 0.9057 0.666 (+/- 0.251)
Upsampling 0.9997 0.7821 0.9998 0.7163 0.9999 0.6213 0.9996 0.9010 0.9998 0.8296 0.9998 0.7933 0.751 (+/- 0.163)
Downsampling 0.9820 0.9867 1.0 0.0572 0.9850 0.9496 1.0 0.0565 0.9895 0.9672 1.0 0.0838 0.257 (+/- 0.094)
Weighted Loss 0.9994 0.7321 0.9997 0.5879 0.9966 0.6277 0.9996 0.1477 0.9988 0.6919 0.9997 0.3613 0.554 (+/- 0.324)

Seq.

None 0.9999 0.967 0.9995 0.9927 0.9996 0.9844 0.9997 0.9832 0.9996 0.9754 0.9994 0.9838 0.978 (+/- 0.012)
Upsampling 0.9997 0.9778 0.9997 0.9821 0.9994 0.9900 0.9998 0.9701 0.9991 0.9860 0.9997 0.9642 0.982 (+/- 0.007)
Downsampling 0.9993 0.9802 0.9997 0.9570 0.9989 0.9902 0.9998 0.9508 0.9985 0.9884 0.9997 0.9421 0.979 (+/- 0.007)
Weighted Loss 0.9979 0.9732 0.9996 0.8743 0.9977 0.9845 0.9997 0.9001 0.9989 0.9818 0.9996 0.9548 0.965 (+/- 0.025)

Seq. (non
-scan)

None 0.9998 0.9395 0.9963 0.9974 0.9992 0.9780 0.9981 0.9913 0.9987 0.9839 0.9983 0.9876 0.972 (+/- 0.036)
Upsampling 0.9998 0.9506 0.9970 0.9968 0.9994 0.9742 0.9977 0.9925 0.9987 0.9863 0.9986 0.9870 0.975 (+/- 0.028)
Downsampling 0.9994 0.9555 0.9973 0.9894 0.9976 0.9825 0.9985 0.9726 0.9977 0.9864 0.9986 0.9776 0.976 (+/- 0.024)
Weighted Loss 0.9996 0.9458 0.9967 0.9938 0.9981 0.9856 0.9987 0.9790 0.9976 0.9874 0.9987 0.9772 0.975 (+/- 0.035)

In order to provide a fair evaluation for each balancing
method, 3-fold cross-validation is used. Before training and
validation, the netlist dataset is divided into 3 groups: K1,
K2 and K3. For each evaluation, 1 group (8 samples) is
retained for validation and the other 2 groups (16 samples)
are utilized for training. This cross-validation process is
repeated 3 times to make sure each of the 3 groups is used
exactly once as the validation set. Finally the F2-scores of
the 3 groups are averaged to evaluate the configured model.
(The list of chosen samples and their grouping are shown in
Appendix, Table 12.)

Table 6 shows the detection results of the HT detection
model, which is trained with different class balancing meth-
ods after 5 epochs, acquired from 3-fold cross-validation.
From the average F2-scores with 95% confidence interval
(CI), it can be found that the detection model with the
upsampling method achieves the best performance for both
combinational and sequential Trojan types. Using down-
sampling and weighted loss can not improve the perfor-
mance when compared with the model trained without class
balancing.

In particular, Table 6 shows that the HT detection per-
formance for the sequential Trojan dataset is much higher
than that for combinational Trojans. According to our in-
vestigation into the benchmark netlists, we found that the
flip-flops (FFs) used in the sequential Trojans are all general
FF cells while all the FFs used in the normal circuit part
are scan-enabled. In order to eliminate the possibility that
the scan-FFs affect the detection results, we replaced all the
scan-FFs with corresponding general FF cells for the netlists
in the sequential Trojan dataset and used it as a control
group (seq.(non-scan)). From the table, it can be found that
the performance difference between the original sequential
Trojan dataset and non-scan dataset is almost negligible,
which proves that our trained HT detection model does not
overfit for scan FFs.

From Fig. 14(a), it can be seen that all the trained models
have achieved a high F2-score after finishing 1 epoch of
training. It shows that our HT detection model can be well
trained for sequential Trojan detection within 1 epoch. On
the other hand, as shown in Fig. 14(b), after 2 training
epochs, the F2-scores of the model trained with the upsam-
pling and weighted loss methods start to fluctuate, which
means the convergence of the model with these two meth-

(a) (b)
Fig. 14. The trend of average F2-scores of the detection model trained
with different class balancing methods on the Trojan-infected datasets
in 5 training epochs. (a) Sequential Trojans. (b) Combinational Trojans.

(a) (b)
Fig. 15. The average F2-scores of the detection model trained with
feature traces extracted under different logic levels on the sequen-
tial/combinational Trojan-infected datasets after 5 training epochs. (a)
Sequential Trojans. (b) Combinational Trojans.

ods needs at least 2 epochs of training for combinational
Trojan detection. From Fig. 14(b), it is also evident that the
score of the model with downsampling keeps raising during
all 5 epochs and model does not converge within this time
frame. The reduction in the amount of training feature traces
caused by the downsampling has a great impact on the
convergence speed of the HT detection model. Overall, from
the validation results, upsampling is selected as the class
balancing method for subsequent experiments.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 13

TABLE 7
Experimental Results with Different logic level Values (DL model=LSTM, 5 epochs)

HT Type Balancing Method ll
After 5 Epochs

Validation Group: K1 K2 K3 Average (95% CI)
TNR TPR NPV PPV TNR TPR NPV PPV TNR TPR NPV PPV F2-score

Comb.

Upsampling
3 0.9998 0.5908 0.9995 0.8150 0.9999 0.6202 0.9996 0.8267 0.9998 0.7256 0.9997 0.8152 0.673 (+/- 0.123)
4 0.9997 0.7821 0.9998 0.7163 0.9999 0.6213 0.9996 0.9010 0.9998 0.8296 0.9998 0.7933 0.751 (+/- 0.163)
5 0.9992 0.6679 0.9997 0.4526 0.9988 0.6775 0.9997 0.3833 0.9990 0.8294 0.9998 0.4435 0.635 (+/- 0.127)

None
3 0.9999 0.4874 0.9993 0.8802 0.9998 0.5594 0.9996 0.7284 0.9999 0.6825 0.9997 0.9076 0.613 (+/- 0.190)
4 0.9999 0.4888 0.9994 0.9006 0.9999 0.6346 0.9997 0.8801 0.9999 0.7616 0.9998 0.9057 0.666 (+/- 0.251)
5 0.9998 0.5128 0.9995 0.7492 0.9999 0.2688 0.9992 0.8151 0.9999 0.5868 0.9996 0.8727 0.495 (+/- 0.332)

Seq. (non
-scan)

Upsampling
3 0.9995 0.9322 0.9978 0.9838 0.9989 0.9462 0.9976 0.9751 0.9983 0.9654 0.9983 0.9650 0.953 (+/- 0.023)
4 0.9998 0.9506 0.9970 0.9968 0.9994 0.9742 0.9977 0.9925 0.9987 0.9863 0.9986 0.9870 0.975 (+/- 0.028)
5 0.9995 0.9787 0.9975 0.9957 0.9987 0.9855 0.9975 0.9928 0.9980 0.9954 0.9990 0.9911 0.988 (+/- 0.013)

None
3 0.9996 0.9411 0.9981 0.9874 0.9996 0.9422 0.9974 0.9909 0.9993 0.9506 0.9976 0.9857 0.953 (+/- 0.008)
4 0.9998 0.9395 0.9963 0.9974 0.9992 0.9780 0.9981 0.9913 0.9987 0.9839 0.9983 0.9876 0.972 (+/- 0.038)
5 0.9997 0.9732 0.9969 0.9971 0.9994 0.9897 0.9982 0.9964 0.9988 0.9937 0.9986 0.9947 0.988 (+/- 0.017)

5.3.2 Experiment 2: Choice of logic level Parameter

The netlist datasets used in Experiment 2 are the same as
in Experiment 1, but from Experiment 1, the class balancing
method is fixed to upsampling, and the non-scan version
of the sequential Trojan dataset is used. The logic level (ll)
parameter is configured to 3, 4 and 5 in this experiment.
The detection results of ll=4 comes from Experiment 1.

Fig. 15 shows the average F2-scores of the detection
model trained with PCP feature traces extracted under dif-
ferent ll values. In Fig. 15(a), when evaluating the sequential
Trojan-infected netlists, the F2-score increases as the value of
ll increases, but the improvement is small compared with
the baseline performance achieved by the trained detec-
tion model (F2-score=0.953, when ll=3, no class sampling
method).

According to the detailed results in Table 7, this improve-
ment is mainly due to the growth of the TPR, which means
for sequential Trojan detection increasing ll can ensure more
HT feature traces are classified correctly. But we do not push
ll to a higher value due to the increase in the number of the
extracted feature traces and training time (Table 9).

However, for combinational Trojan detection, the sit-
uation changes. As shown in Fig. 15(b), when ll=4, the
detection model achieves the best performance, while when
ll=5, there is a large performance drop. According to Table
7, the decrease in the TPR and PPV causes the large perfor-
mance loss when ll=5. It means that when comparing with
condition ll=4 (length of PCP feature trace = 7 PCP), HT
feature traces under condition ll=5 (length=9 PCP) are more
likely to be misclassified as normal.

This phenomenon is due to the fact that the structural
features in combinational Trojans are more similar to normal
circuits than sequential Trojans. In addition, a longer Trojan
feature trace may include more information (that is irrele-
vant to the Trojan) related to the normal parts of the circuit,
so that the DL model can not correctly specify the weights
on the different features in the feature trace for classification
during the training. The DL model learned more, but less
accurate, Trojan features from the feature traces of length 9
than those from length 7, thus leading to misclassification.

Considering the overall performance, ll=4 will be con-
figured as the default value for feature traces extraction for
both combinational and sequential Trojan detection.

Fig. 16. The training loss of the Net2Vec model when generating each
dataset’s PCP word embedding matrix.

Fig. 17. The F2-scores of the trained LSTM/CNN-based HT detection
model on each epoch.

5.3.3 Experiment 3: Overall System Performance

Based on these previous experiments, the influence of the
balancing methods on model training and the impact of
logic level, which is the only user-defined parameter in the
system, on detection results are investigated. Experiment 3
focuses solely on performance evaluation.

In this experiment, the performance of the overall HT
detection system is evaluated. In order to provide a fair
performance evaluation for the system, two common deep
learning models (LSTM and CNN) are utilized in the test.
Their structures are not modified. The parameters are only
modified once before the test to fit the size of the feature
data, then fixed during the test without further optimisation.

Two training and testing datasets are prepared, one is
a combinational Trojan-infected netlist dataset, the other a
sequential Trojan-infected netlist dataset. For each training
and testing dataset, 80 netlist samples are randomly picked
from the benchmark library with no overlapping, of which
50% are used as the training set and 50% are used as the
test set. (The list of chosen samples and their grouping are
shown in Appendix, Table 13.) According to the results in
experiment 1 and 2, logic level is configured to 4 for feature
trace extraction, and upsampling is adopted to balance the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 14

TABLE 8
HT Detection Performance with Different DL Models on Test Sets (logic level=4, upsampling, 5 epochs)

HT
Type

DL
Model

Epoch
Num. of Feature Traces

TNR TPR NPV PPV
F2-

score
HT

Type
DL

Model
Epoch

Num. of Feature Traces
TNR TPR NPV PPV

F2-
scoreTN FN TP FP TN FN TP FP

Comb.

LSTM

1 18307889 5872 14483 6355 0.9997 0.7115 0.9997 0.6950 0.708

Seq.(non
-scan)

LSTM

1 7514993 7638 541188 6966 0.9991 0.9861 0.9990 0.9873 0.986
2 18310537 4746 15609 3707 0.9998 0.7668 0.9997 0.8081 0.775 2 7514658 6465 542361 7301 0.9990 0.9882 0.9991 0.9868 0.988
3 18303430 3626 16729 10814 0.9994 0.8219 0.9998 0.6074 0.768 3 7515796 7689 541137 6163 0.9992 0.9860 0.9990 0.9887 0.987
4 18309289 4480 15875 4955 0.9997 0.7799 0.9998 0.7621 0.776 4 7517216 8791 540035 4743 0.9994 0.9840 0.9988 0.9913 0.985
5 18305138 3185 17170 9106 0.9995 0.8435 0.9998 0.6534 0.797 5 7515539 6169 542657 6420 0.9991 0.9888 0.9992 0.9883 0.989

CNN

1 18275361 4172 16183 38883 0.9979 0.7950 0.9998 0.2939 0.593

CNN

1 7509821 13030 535796 12138 0.9984 0.9763 0.9983 0.9778 0.977
2 18276665 3975 16380 37579 0.9979 0.8047 0.9998 0.3036 0.605 2 7508386 10596 538230 13573 0.9982 0.9807 0.9986 0.9754 0.980
3 18275349 4227 16128 38895 0.9979 0.7923 0.9998 0.2931 0.591 3 7507471 10129 538697 14488 0.9981 0.9815 0.9987 0.9738 0.980
4 18281621 3722 16633 32623 0.9982 0.8171 0.9998 0.3377 0.636 4 7505939 11131 537695 16030 0.9979 0.9797 0.9985 0.9711 0.978
5 18286957 4473 15882 29287 0.9985 0.7803 0.9998 0.3680 0.637 5 7510272 12076 536750 11687 0.9984 0.9780 0.9984 0.9787 0.978

TABLE 9
The Number of Extracted Feature Traces and the Time for Training with
Different logic level Values (training set=K2+K3, 16 samples, 1 epoch)

ll HT Type
Num. of
Traces

Training Time
Upsampling None

3
Comb. 2157804 18min 9min
Seq. (non-scan) 1271965 11min 5min

4
Comb. 7332420 1h12min 36min
Seq. (non-scan) 3330315 29min 16min

5
Comb. 25164366 3h35min 2h8min
Seq. (non-scan) 9405796 1h18min 41min

feature traces in each class.
To train the PCP word embedding matrix, the training

loss is shown in Fig. 16. It shows that the loss is stabilized
at around 2.2 after 2 training epochs for both combinational
and sequential Trojan-infected datasets, which also means
the fake task generates stable embedding matrices after 2
epochs.

Table 8 presents the HT detection results when applying
the trained DL-based HT detection models on test sets after
each training epoch. Meanwhile, Fig. 17 shows the trend of
F2-score for each model with increasing epochs. Both LSTM
and CNN perform well in detecting sequential Trojans in
test set. As sequential Trojans can be easily detected nearly
in all experiments (different class balancing methods, differ-
ent logic level and different DL models), we can infer that the
sequential Trojans in the benchmark library retain obvious
structural features.

However, the detection of combinational Trojans is more
challenging. After 5 training epochs, the TPR of the LSTM
model applied to the combinational Trojan test set reaches
84.35% and the PPV is 65.34%. Meanwhile, the LSTM model
performs 20% better than CNN after the first training epoch
and 25% better after 5 training epochs.

Furthermore, as the results of LSTM outperform CNN
for both the sequential and combinational Trojan test sets,
we can infer that LSTM model is more suitable for process-
ing the proposed sentence-like PCP feature traces in our HT
detection system.

Finally, the Trojan/normal component voter (Section 4.7)
performs voting on the class type of the components (in
the range of the netlist block) according to the classifi-
cation results of the feature traces. Table 10 presents the
voting results based on results classified by the LSTM-based
detection model. This table provides the detection results
for each netlist sample in two test sets. In these samples,

although some Trojan components are not detected (FN)
and some normal components are misclassified into the HT
class (FP), the number of detected Trojan components (TP)
is typically much higher than the FN number and no Trojan
sample evades detection (TP=0). The statistical results of
all the components show that, after voting, the precision
(PPV) of the detection increased from 65.34% to 87.75%
for combinational Trojans and from 98.83% to 98.92% for
sequential Trojans, but the price is a small TPR loss in both
test sets (5.06% for combinational Trojans and 5.42% for
sequential Trojans).

In conclusion, according to the final results in Table 10,
the proposed HT detection system achieves 79.29% TPR,
99.97% TNR, 87.75% PPV and 99.94% NPV for combi-
national Trojan detection and 93.46% TPR, 99.99% TNR,
98.92% PPV and 99.92% NPV for sequential Trojan detec-
tion (logic level=4, upsampling, LSTM, 5 epochs). It means
the detection accuracy (TPR) for combinational Trojans
is 79.29%, with 87.75% precision (PPV) and only 0.03%
(TNR=1-TNR) Trojan components are undetected. The per-
formance of sequential Trojan detection is even better, with
93.46% accuracy, 98.92% precision and the misclassification
of Trojan components is only 0.01%. The system achieves
high accuracy, high precision and a very low Trojan com-
ponent misclassification rate for both combinational and
sequential Trojan detection.

6 DISCUSSION

6.1 Comparison
The performance of nearly all ML, NN and DL algorithms
is positively related to the quality and size of the data set.
Our survey of the publicly available HT netlist benchmark
is shown in Table 3.

According to the number of Trojan variants, the types of
host circuits and the number of samples, the LEDA library-
based Trojan-infected benchmark [13] published in 2018 is
selected as the source for the training and testing datasets in
our experiments.

However, all previous research on gate-level HT detec-
tion, including ML-based and DL-based, utilizes the SAED
library-based benchmark for experiments, in which the
number of Trojan variants and the number of host circuits
is too small to provide a comprehensive experimental result
and evaluation. In particular, for DL-based approaches, the
SAED benchmark can not provide sufficient samples to train
a trustworthy detection model. Therefore, it is not possible

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 15

TABLE 10
HT Detection Results on Each Sample in Test Sets after Voting in Netlist Block (logic level=4, upsampling, LSTM, at epoch 5)

Combinational Trojan-infected Dataset Sequential (non-scan) Trojan-infected Dataset

Netlist
Num. of Components

Netlist
Num. of Components

Netlist
Num. of Components

Netlist
Num. of Components

TN FN TP FP TN FN TP FP TN FN TP FP TN FN TP FP
c2670 T093 776 4 5 0 s15850 T003 2984 4 3 1 s1423 T408 480 4 53 0 s15850 T417 2985 2 22 0
s15850 T012 2985 3 5 0 c6288 T041 2416 0 9 0 s15850 T439 2985 0 35 0 s13207 T462 2309 4 57 1
c2670 T016 775 1 6 1 c6288 T066 2416 0 5 0 s15850 T450 2985 3 30 0 s35932 T414 6839 7 76 0
c2670 T073 769 1 7 7 s1423 T008 480 3 4 0 s1423 T405 480 6 101 0 s13207 T440 2310 1 20 0
c2670 T054 776 0 6 0 s1423 T003 480 1 6 0 s1423 T429 479 5 84 1 s35932 T402 6836 5 68 3
c2670 T095 775 0 6 1 s15850 T009 2984 4 4 1 s1423 T418 478 5 61 2 s13207 T449 2310 0 18 0
c3540 T087 1134 4 6 0 s1423 T011 480 1 5 0 s1423 T412 480 1 41 0 s35932 T421 6836 0 32 3
c3540 T005 1133 0 9 1 s1423 T005 480 1 4 0 s15850 T468 2984 2 18 1 s13207 T484 2310 4 8 0
c3540 T015 1133 1 7 1 s1423 T014 480 0 5 0 s1423 T407 480 1 16 0 s35932 T413 6839 2 60 0
c3540 T012 1129 0 5 5 s13207 T002 2309 1 4 1 s1423 T411 480 1 19 0 s13207 T444 2310 1 16 0
c3540 T017 1133 3 6 1 s35932 T015 6838 4 4 1 s1423 T421 480 5 19 0 s35932 T408 6839 8 75 0
c5315 T004 2307 1 7 0 s13207 T013 2310 5 6 0 s1423 T422 480 1 19 0 s13207 T473 2310 2 10 0
c5315 T047 2306 0 8 1 s35932 T006 6838 2 5 1 s1423 T413 480 0 18 0 s15850 T406 2985 9 40 0
c5315 T064 2306 0 6 1 s13207 T014 2310 0 6 0 s15850 T434 2985 2 8 0 s35932 T430 6839 0 21 0
c5315 T057 2306 0 6 1 s35932 T005 6838 3 4 1 s13207 T425 2310 0 41 0 s35932 T435 6839 1 22 0
s15850 T014 2984 3 1 1 s13207 T005 2310 0 7 0 s13207 T468 2310 1 22 0 s15850 T429 2984 9 92 1
c5315 T063 2306 0 8 1 s35932 T018 6838 5 4 1 s15850 T475 2984 2 21 1 s35932 T427 6839 0 22 0
c6288 T049 2415 0 6 1 s13207 T011 2310 2 4 0 s13207 T461 2310 0 21 0 s15850 T443 2983 0 33 2
c6288 T048 2416 0 6 0 s35932 T016 6838 1 5 1 s15850 T433 2985 1 20 0 s35932 T411 6839 1 21 0
c6288 T082 2416 0 5 0 s15850 T002 2985 0 7 0 s13207 T450 2309 7 93 1 s35932 T434 6839 0 18 0

Final TNR=0.9997, TPR=0.7929, NPV=0.9994, PPV=0.8775 Final TNR=0.9999, TPR=0.9346, NPV=0.9992, PPV=0.9892

to provide a meaningful comparison on detection results
with other research based on the SAED library.

For future referencing and comparison against our work,
in section 5, experiment 3, the lists of utilized samples
(Appendix, Table 13), detailed performance data and the
detection results for each netlist in the test sets are provided.

6.2 Multi-type Detection

Currently, the DL model in the proposed system is trained
to detect combinational Trojans and sequential Trojans sep-
arately in order to simplify the experiments and show the
performance difference. But multi-type HT detection for a
mixed Trojan data set is realizable based on this system.
A Softmax function that can output multi-class prediction
scores is employed as the DL model’s output layer. If
different labels are assigned to combinational Trojan feature
traces and sequential Trojan features traces, and then mixed
into a single training set, a multi-type HT detection model
can be trained. However performance optimization is much
more complex and therefore, will be considered in further
work.

7 CONCLUSION

In this paper, we propose a data-driven HT detection sys-
tem for gate-level netlists using novel netlist information
extraction technology. The proposed block-based netlist in-
formation extraction technology involves a netlist data pre-
processing algorithm can automatically extract sentence-
like netlist path information (PCP feature traces) from
netlist topology for limited depth (logic level). Next, an NLP
model (Net2vec) is design to encode the netlist information
traces by training an embedding matrix (PCP word em-
bedding matrix). After that, the DL-based learning models
are trained to classify the encoded feature traces (E-PCP
feature trace) into either a HT class or normal class. Finally,
a voting algorithm in the range of the netlist block is used

to classify if a netlist component belongs to a HT circuit
or not. The experimental results show that the proposed
HT detection system can achieve 79.29% TPR, 99.97% TNR,
87.75% PPV and 99.94% NPV for combinational Trojans
and 93.46% TPR, 99.99% TNR, 98.92% PPV and 99.92%
NPV for sequential Trojans with voting-based optimization
using the LEDA library-based HT benchmark (logic level=4,
upsampling, LSTM, 5 epochs).

REFERENCES

[1] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehra-
nipoor, “Benchmarking of hardware Trojans and maliciously af-
fected circuits,” Journal of Hardware and Systems Security, vol. 1,
no. 1, pp. 85–102, Mar 2017.

[2] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of
hardware Trojans: A survey from the attacker’s perspective,” IET
Computers Digital Techniques, vol. 14, no. 6, pp. 231–246, 2020.

[3] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in IEEE Symp. on
Security and Privacy, May 2007, pp. 296–310.

[4] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hard-
ware Trojans classification for gate-level netlists based on machine
learning,” in Proc. IEEE 22nd Int. Symp. On-Line Testing and Robust
System Design (IOLTS), Jul. 2016, pp. 203–206.

[5] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature
extraction at gate-level netlists and its application to hardware-
Trojan detection using random forest classifier,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS), May 2017, pp. 1–4.

[6] H. Salmani, “COTD: Reference-free hardware Trojan detection and
recovery based on controllability and observability in gate-level
netlist,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338–
350, Feb. 2017.

[7] C. H. Kok, C. Y. Ooi, M. Moghbel, N. Ismail, H. S. Choo, and
M. Inoue, “Classification of Trojan nets based on SCOAP values
using supervised learning,” in Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS), May 2019, pp. 1–5.

[8] X. Xie, Y. Sun, H. Chen, and Y. Ding, “Hardware Trojans clas-
sification based on controllability and observability in gate-level
netlist,” IEICE Electronics Express, vol. 14, no. 18, pp. 1–12, 2017.

[9] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hardware Trojans
classification for gate-level netlists using multi-layer neural net-
works,” in Proc. IEEE 23rd Int. Symp. On-Line Testing and Robust
System Design (IOLTS), Jul. 2017, pp. 227–232.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021 16

[10] R. Vishnupriya and M. Nirmala Devi, “Hardware Trojan detection
using deep learning-deep stacked auto encoder,” in Proc. Int. Conf.
Recent Trends in Machine Learning, IoT, Smart Cities and Applications,
Oct. 2020, pp. 345–353.

[11] R. Lu, H. Shen, Y. Su, H. Li, and X. Li, “GramsDet: Hardware
Trojan detection based on recurrent neural network,” in Proc. IEEE
28th Asian Test Symp. (ATS), Dec. 2019, pp. 111–1115.

[12] H. Salmani and M. Tehranipoor, “Trust-Hub,” accessed on
2020-10-02. [Online]. Available: https://trust-hub.org/home

[13] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated
configurable Trojan insertion framework for dynamic trust bench-
marks,” in Proc. IEEE Design, Automation Test in Europe Conf. Exhib.
(DATE), Mar. 2018, pp. 1598–1603.

[14] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware Trojans,” in Proc. Int. Conf. Cryptographic
Hardware and Embedded Syst. (CHES), Aug. 2013, pp. 197–214.

[15] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “To-
wards Trojan-free trusted ICs: Problem analysis and detection
scheme,” in Proc. IEEE Design, Automation Test in Europe Conf.
Exhib. (DATE), Mar. 2008, pp. 1362–1365.

[16] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in
Proc. Int. Conf. Cryptographic Hardware and Embedded Syst. (CHES),
Sep. 2009, pp. 396–410.

[17] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M.
Smith, “Overcoming an untrusted computing base: Detecting and
removing malicious hardware automatically,” in Proc. IEEE Symp.
Security and Privacy, May 2010, pp. 159–172.

[18] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verifica-
tion for hardware trust,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 34, no. 7, pp. 1148–1161, 2015.

[19] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identi-
fication of stealthy malicious logic using boolean functional anal-
ysis,” in Proc. ACM SIGSAC Conf. Computer and Communications
Security (CCS), Nov. 2013, pp. 697–708.

[20] S. Yu, C. Gu, W. Liu, and M. O’Neill, “A novel feature extraction
strategy for Hardware trojan detection,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS), Oct. 2020, pp. 1–5.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Proc. 26th Int. Conf. Neural Information Processing
Systems - Volume 2 (NIPS), Dec. 2013, pp. 3111–3119.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. 1st Int. Conf.
on Learning Representations (ICLR), May 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

[23] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks
for language modeling,” in Proc. 13th Annu. Conf. Int. Speech
Communication Association (INTERSPEECH), Sep. 2012, pp. 194–
197.

[24] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in Proc. Int. Conf. Eng. and Technol.
(ICET), Aug. 2017, pp. 1–6.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

Shichao Yu (GS’19) received the B.Sc. degree
in electrical and information engineering from
Hangzhou Normal University, Hangzhou, China,
in 2014, and the M.Sc. degree in electronic cir-
cuit and system from the Nanjing University of
Aeronautics and Astronautics, Nanjing, China,
in 2017. He is currently pursuing the Ph.D. de-
gree in electrical and electronic engineering with
Queen’s University Belfast, Belfast, U.K. He is
a research student in the Center for Secure In-
formation Technologies, Institute of Electronics

Communications and Information Technologies. His research interests
mainly include hardware Trojan detection, secure hardware architecture,
and the application of machine learning/deep learning in hardware
security.

Chongyan Gu (S’14–M’16) received the Ph.D.
degree from Queen’s University Belfast, Belfast,
U.K., in 2016. She is currently a Lecturer (As-
sistant Professor) in the School of EEECS
at Queen’s University Belfast, and a mem-
ber of Center for Secure Information Technolo-
gies (CSIT) with in the Institute of Electronics
Communications and Information Technologies
(ECIT). Dr. Gu is an expert in hardware security.
Her research into physical unclonable function
(PUF) has been utilised as part of a security

architecture for electronic vehicle (EV) charging systems, licensed by
LG-CNS, South Korea, and was also licensed for evaluation by Thales,
U.K.. Her team was the overall winner of INVENT 2015, a competition
to accelerate the commercialisation of innovative ideas. She has suc-
cessfully organised two special session conferences (IEEE APCCAS in
2018 and ACM GLSVLSI in 2020). She was invited to give tutorial/talks
to international conferences, such as, IEEE ASP-DAC 2020 on the topic
of practical PUF design on FPGA. Her current research interests in-
clude PUFs, security in/for approximate computing, true random number
generator (TRNGs), hardware Trojan detection and machine learning
attacks.

Weiqiang Liu (M’12-SM’15) received the B.Sc.
degree in Information Engineering from Nan-
jing University of Aeronautics and Astronautics
(NUAA), Nanjing, China and the Ph.D. degree
in Electronic Engineering from the Queen’s Uni-
versity Belfast (QUB), Belfast, UK, in 2006 and
2012, respectively. In Dec. 2013, he joined the
College of Electronic and Information Engineer-
ing, NUAA, where he is currently a Professor and
the Vice Dean of the college. He has published
one research book by Artech House and over

100 leading journal and conference papers. His paper was selected as
the Highlight Paper of IEEE TCAS-I in the 2021 January Issue and the
Feature Paper of IEEE TC in the 2017 December issue. He has been
awarded the prestigious Excellent Young Scholar Award by NSFC in
2020. He serves as the Associate Editors for IEEE TCAS-I (2020.1-
2021.12), IEEE TETC (2019.5-2021.4) and IEEE TC (2015.5-2019.4),
an Steering Committee Member of IEEE TVLSI (2021.1-2022.12). He
is the program co-chair of IEEE ARITH 2020, and technical program
committee members for a number of IEEE conferences. His research
interests include approximate computing, hardware security and VLSI
design for digital signal processing and cryptography.

Máire O’Neill (M’03-SM’11) is Regius Profes-
sor of Electronics and Computer Engineering at
Queen’s University Belfast. She is Director of
the Institute of Electronics Communications and
Information Technologies (ECIT) and the Cen-
tre for Secure Information Technologies (CSIT)
at Queen’s. She is also Director of the £5M
EPSRC/NCSC-funded Research Institute in Se-
cure Hardware and Embedded Systems (RISE:
www.ukrise.org) and recently led the AC3.8M EU
H2020 SAFEcrypto (Secure architectures for Fu-

ture Emerging Cryptography: www.safecrypto.eu) project (2014-2018).
She previously held a UK EPSRC Leadership Fellowship (2008-2014)
and was a former holder of a UK Royal Academy of Engineering
research fellowship (2003-2008). She has received numerous awards,
which include a Blavatnik Engineering and Physical Sciences medal,
2019, a Royal Academy of Engineering Silver Medal, 2014 and British
Female Inventor of the Year 2007. She has authored two research
books, and over 170 peer reviewed international conference/journal
publications. She has been an Associate Editor for IEEE TC and IEEE
TETC and is Chair-Elect of the IEEE Circuits and Systems for Commu-
nications Technical committee. She is a member of the UK AI Council.
She is a Fellow of the Royal Academy of Engineering, a member of the
Royal Irish Academy and a Fellow of the Irish Academy of Engineering.
Her research interests include hardware cryptographic architectures,
lightweight cryptography, side channel analysis, physical unclonable
functions, and post-quantum cryptography.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, JAN 2021

APPENDIX

Table 11 shows the sample list used for word embedding
in Section 4.5. Table 12 shows the list of samples used in
experiments 1 and 2. Table 13 shows the list of samples used
in experiment 3.

TABLE 11
Sample List for Word Embedding in Section 4.5

Sample Lsist
c5315 T025, s15850 T427, s35932 T430, s13207 T408, c3540 T002,
s15850 T421, s13207 T436, s1423 T404, s13207 T479, s13207 T446,
c5315 T050, c3540 T042, s13207 T009, c2670 T075, s13207 T437,
s15850 T001, c3540 T024, s13207 T480, c2670 T021, c6288 T027,
c3540 T070, s13207 T472, c3540 T018, s15850 T405, s13207 T404,
s15850 T439, s13207 T469, c3540 T041, s35932 T406, s1423 T401,
s15850 T402, s1423 T421, s13207 T476, c6288 T099, s13207 T449,

c6288 T044, c2670 T015, c6288 T055, c5315 T063, s1423 T429,
s1423 T418, s35932 T425, s35932 T408, s13207 T419, s13207 T475,
s13207 T422, c3540 T013, s13207 T400, s13207 T405, s13207 T458,
c6288 T010, s1423 T426, s13207 T401, s13207 T426, s15850 T462,
s13207 T474, s1423 T414, s13207 T466, s15850 T420, s13207 T417

TABLE 12
Sample Lists in Experiment 1 and 2

Group Comb. Seq./Seq.(non-scan)

K1

c2670 T026, c3540 T018,
c5315 T042, c6288 T054,
s1423 T000, s13207 T016,
s15850 T000, s35932 T019

s1423 T401, s1423 T404,
s13207 T446, s13207 T420,
s15850 T408, s15850 T427,
s35932 T437, s35932 T400

K2

c2670 T086, c3540 T029,
c5315 T096, c6288 T084,
s1423 T002, s13207 T012,
s15850 T018, s35932 T009

s1423 T410, s1423 T425,
s13207 T429, s13207 T471,
s15850 T446, s15850 T452,
s35932 T416, s35932 T440

K3

c2670 T002, c3540 T064,
c5315 T058, c6288 T033,
s1423 T010, s13207 T015,
s15850 T007, s35932 T017

s1423 T416, s1423 T423,
s13207 T442, s13207 T455,
s15850 T451, s15850 T489,
s35932 T404, s35932 T401

TABLE 13
Sample Lists in Experiment 3

Group Comb. Seq./Seq.(non-scan)

Train

s1423 T015, c5315 T042,
s35932 T017, s1423 T019,
c2670 T002, c2670 T086,
c5315 T014, c6288 T054,
c6288 T053, s15850 T018,
c6288 T084, c6288 T033,
c6288 T002, s35932 T013,
s15850 T001, c5315 T072,
c5315 T096, s35932 T002,
c2670 T026, s35932 T009,
s13207 T015, c3540 T029,
s13207 T016, c5315 T058,
s1423 T002, c2670 T055,
s35932 T019, s1423 T000,
s1423 T010, c3540 T092,

s15850 T000, s13207 T010,
c3540 T064, c3540 T018,
c3540 T072, s15850 T007,
s13207 T012, c2670 T075,
s13207 T018, s15850 T005

s13207 T455, s35932 T407,
s1423 T425, s13207 T420,

s15850 T408, s15850 T424,
s35932 T401, s35932 T426,
s35932 T440, s35932 T400,
s13207 T460, s35932 T415,
s15850 T420, s13207 T414,
s13207 T471, s13207 T436,
s15850 T451, s15850 T428,
s13207 T429, s1423 T401,
s1423 T430, s1423 T420,

s1423 T404, s35932 T404,
s15850 T427, s1423 T416,
s13207 T442, s1423 T410,

s15850 T446, s35932 T437,
s1423 T423, s13207 T475,

s15850 T489, s13207 T446,
s1423 T402, s35932 T416,

s35932 T439, s15850 T452,
s1423 T417, s15850 T480

Test Table 10 Comb. Table 10 Seq.(non-scan)

