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Abstract. Combining multi-modality brain data for disease diagnosis
commonly leads to improved performance. A challenge in using multi-
modality data is that the data are commonly incomplete; namely, some
modality might be missing for some subjects. In this work, we proposed
a deep learning based framework for estimating multi-modality imag-
ing data. Our method takes the form of convolutional neural networks,
where the input and output are two volumetric modalities. The network
contains a large number of trainable parameters that capture the rela-
tionship between input and output modalities. When trained on subjects
with all modalities, the network can estimate the output modality given
the input modality. We evaluated our method on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, where the input and output
modalities are MRI and PET images, respectively. Results showed that
our method significantly outperformed prior methods.

1 Introduction

Alzheimer’s disease (AD) is a common neuro-degenerative disease for which we
still lack effective treatment. It has been shown that early detection and inter-
vention at its prodromal stage, such as the mild cognitive impairment (MCI)
stage, are effective in delaying the onset of AD. Developments in neuroimaging
techniques, such as the magnetic resonance imaging (MRI) and positron emission
tomography (PET) techniques, coupled with advanced computational methods,
have led to accurate prediction of AD and MCI [1].

A key challenge in employing computational methods for disease diagnosis
is that the neuroimaging data usually consist of multiple modalities, but they
could be incomplete in the sense that not all subjects have all data modalities.
The accuracy of disease diagnosis might be improved if the missing data could
be estimated. However, the relationship between different data modalities is
complicated and nonlinear. Thus, a highly sophisticated model is required for
the collaborative completion of neuroimaging data.

Deep convolutional neural networks (CNNs) are a type of multi-layer, fully
trainable models that are capable of capturing highly nonlinear mappings be-
tween inputs and outputs [2]. These models were originally motivated from
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computer vision problems and thus are intrinsically suitable for image-related
applications. Deep CNNs have been successfully applied to a variety of applica-
tions, including image classification [2,3], segmentation [4], and denoising [5].

In this work, we propose to use deep CNNs for completing and integrating
multi-modality neuroimaging data. Specifically, we designed a 3-dimensional (3-
D) CNN architecture that takes one volumetric data modality as input and
another volumetric data modality as its output. When trained end-to-end on
subjects with both data modalities, the network captures the nonlinear relation-
ship between two data modalities. This allows us to predict and estimate the
output data modality given the input modality.

We applied our 3-D CNN model to predict the missing PET patterns from
the MRI data. We trained our model on subjects with both PET and MRI
data, where the MRI data were used as input and the PET data were used as
output. The trained network contains a large number of parameters that encode
the nonlinear relationship between MRI and PET data. We used the trained
network to estimate the PET patterns for subjects with only MRI data. Results
showed that our method outperformed prior methods on disease diagnosis.

2 Material and Methods

2.1 Data Preprocessing

The data used in this work were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. For each subject, the T1-weighted MRI
was processed by correcting the intensity inhomogeneity followed by skull-
stripping and cerebellum removing. In addition, each MRI was segmented into
gray matter, white matter and cerebrospinal fluid and was further spatially nor-
malized into a template space. In this work, the gray matter tissue density maps
were used. The PET images were also obtained from ADNI, and they were
rigidly aligned to the respective MR images. The gray matter tissue density
maps and the PET images were further smoothed using a Gaussian kernel (with
unit standard deviation) to improve the signal-to-noise ratio. To reduce the com-
putational cost, we downsampled both the gray matter tissue density maps and
PET images to 64× 64× 64 voxels.

We used data for 830 subjects in the ADNI baseline data set. This data set
was acquired from 198 AD patients, 403 MCI patients, which include 167 pMCI
patients (who will progress to AD in 18 months) and 236 sMCI patients (whose
symptom were stable and will not progress to AD in 18 months), and 229 healthy
normal controls (NC). Out of these 830 subjects, more than half of them (432)
do not have PET images. Thus, accurate completion of PET images for these
subjects would improve the accuracy of disease diagnosis.

2.2 3-D Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep models that are able
to capture highly nonlinear relationships between input and output [2]. In image
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classification tasks, two types of layers, i.e., convolutional layer and subsampling
layer, are usually stacked alternatingly. The convolutional layer applies trainable
filers to feature maps in the previous layer, while the subsampling layer is used
to reduce the resolution of feature maps.

CNNs have been primarily applied to 2-D images such as visual object recog-
nition [2,3] and segmentation [6]. In [4,5], 2-D CNNs have been extended to
segment and restore 3-D images. In [7], 3-D CNNs have been applied to process
spatiotemporal video data. Similar to the 2-D case, 3-D CNNs perform nonlinear
mapping by computing convolutions with 3-D filters.

Formally, let the value at position (x, y, z) on the jth feature map in the ith
layer be vxyzij . Then the 3-D convolution is given by

vxyzij = σ

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
, (1)

where σ(·) is the sigmoid function, bij is the bias, m indexes the set of feature
maps in the (i − 1)th layer connected to the current feature map, Pi, Qi and
Ri are the sizes of the 3-D kernel along three spatial dimensions respectively,
wpqr

ijm is the (p, q, r)th value of the filter connected to the mth feature map in the
previous layer. Note that Eq. (1) describes a generic 3-D convolution operation
and can be applied to any layer of a 3-D CNN architecture with any number of
feature maps.

Subsampling layers are commonly used in recognition and classification tasks.
In these layers, the resolution of feature maps is reduced by pooling over lo-
cal neighborhood, thereby enhancing invariance to distortions on the inputs. In
this work, our primary focus is data completion instead of recognition. Thus,
subsampling layers were not used.

2.3 3-D CNN for Imaging Data Completion

Based on the 3-D convolution described above, a variety of CNN architectures
can be devised. In the following, we describe a 3-D CNN architecture, shown
in Fig. 1, for PET image completion. The data for training this CNN model
consist of patches extracted from subjects having both PET and MRI images.
The input patch size was determined by the size of output patch in the output
layer, since each convolution operation reduces the size of feature map along
each dimension by a factor related to the size of filter. In this work, the size of
output patches was set to 3 × 3 × 3. We randomly selected a large number of
patches from each 3-D MRI volume, and the corresponding PET image patches
were also obtained. Patches that cross the boundary or are located completely
within background were removed. The total number of patches extracted from
each volume was 50, 000 so that the entire volume is largely covered.

In the CNN architecture, we first applied 3-D convolution with a filter size
of 7 × 7 × 7 on the input patch and construct 10 feature maps in the first
hidden layer. The second hidden layer is again a 3-D convolution layer with 10
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3-D convolution 7 X 7 X 7
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Input:
1@15 X 15 X 15
3-D MRI Patch

10@9 X 9 X 9
3-D feature maps

10@3 X 3 X 3
3-D feature maps

Output:
1@3 X 3 X 3

3-D PET Patch

Fig. 1. The 3-D CNN architecture for imaging data completion used in this work.
There are 2 hidden layers between the input and output layers. Each of the hidden
layers contains 10 feature maps. The total number of trainable parameters in this
network is 37, 761.

feature maps fully connected to all the feature maps in the previous layer. The
output layer contains only one feature map, which is the corresponding PET
image patch. In addition, the filter size for mapping the feature maps of the last
hidden layer to the output was set to 1 to reduce the computational cost. In
total, the number of trainable parameters for this network is 37, 761. The latent
nonlinear relationship between the MRI and PET images was encoded into the
large number of parameters in the network. This CNN architecture was selected
based on a balance between the representation power and the computational cost
of training the network. A network with more layers and feature maps might be
able to represent the training data better, but the computational cost of training
more complex networks is prohibitive.

In this work, the CNS package [8] was used to implement the CNN architec-
ture. The weights of this network were updated by error back-propagation using
stochastic gradient descent algorithm. The learning rate was fixed to 10−2 in
all the experiments, and other parameters were set to the default values given
in the CNS package [8]. The network was trained for multiple epochs, where
each epoch involves training the network by each example once. In this paper,
we trained the network for 10 epochs since the performance seems to have con-
verged after 10 epochs and the training was very time-consuming. In particular,
we have 398 × 50, 000 = 19.9 million training patches. Each epoch took about
48 hours if all the patches were used on a Tesla K20c GPU with 2,496 cores.
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3 Results and Discussion

3.1 Experimental Setup

In the experiments, we focused on evaluating our 3-D CNN model for missing
PET data completion. We used several controlled experiments to compare the
predicted and the true PET image data. We did not employ advanced feature
extraction and classification methods to compare the completed and true data,
but rather used a set of standard methods to make the comparison straightfor-
ward. We consider three binary-class classification tasks (i.e., AD vs. NC, MCI
vs. NC, and sMCI vs. pMCI) in this paper, where MCI includes both pMCI and
sMCI.

We compared our method with two other commonly used missing data esti-
mation methods, namely, K-nearest neighbor (KNN) and Zero methods [9]. The
experiments in this work consist of two steps. The first step is to complete the
missing PET data using CNN, KNN, or Zero methods. The second step then
evaluate the classification performance based on reconstructed data using the
�2-norm regularized logistic regression classifiers for all methods. In the experi-
ments, we trained the classifiers by randomly selecting 2/3 of the samples and
performed an evaluation using the remaining 1/3 as test data in the second step.
To obtain robust performance estimates, we repeated the random partition 30
times and reported the statistics computed over these 30 trials. Note that no
class information was used in our CNN training. Thus, we built one CNN model
and applied it for all 30 random trials. We performed feature selection by remov-
ing voxels that have zero value for all subjects. Since the number of samples was
not balanced between classes, we used the area under the ROC curve (AUC) as
the performance measure to evaluate different methods in this study.

3.2 Evaluation on Subjects with Both MRI and PET

We first evaluated whether the predicted PET data were similar to the true PET
data. In the data set used for this study, there were 398 subjects with both MRI
and PET images. We randomly sampled 1/2 of these 398 subjects for training
the 3-D CNN model. Then the model was used to predict the PET images of
the remaining 1/2 subjects. Since we had true PET images for the test subjects,
we were able to compare the true and the predicted PET images both visually
and quantitatively.

We first visually examined the predicted PET patterns with the ground truth
data for each subject. Figure 2 shows the predicted and the ground truth data
slice by slice for two subjects. We can observe that the predicted PET patterns
are similar to the ground truth. This demonstrates that our deep learning based
method can successfully estimate the missing PET data.

To evaluate the proposed data completion method quantitatively, we also
compared the classification results based on the true and the predicted PET
images. In addition, we report the classification results based on KNN and Zero
methods. The AUC values of the three classification tasks based on true PET
images and predicted images by three methods are given in Table 1.
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Predicted PET for an AD subject

Ground truth PET for the same AD subject

Predicted PET for an NC subject

Ground truth PET for the same NC subject

Fig. 2. Comparison of the predicted and the ground truth PET images on two subjects.
Each row corresponds to the data (either ground truth or predicted) of one subject,
and each column corresponds to slice with the same brain position.

We can observe from these results that the 3-D CNN model outperforms KNN
and Zero methods significantly in all three classification tasks. These significant
performance differences verify that our deep learning method successfully ex-
tracts highly nonlinear relationship between the MRI and PET images. We can
also observe that the results of the 3-D CNN model is comparable with those
of the true PET images. This demonstrates that our predicted PET images can
potentially be used to improve the accuracy of disease diagnosis. Note that the
classification performance reported here might be lower than those in the current
literature on the ADNI data set because (1) we do not employ advanced feature
extraction and classification methods on the true and completed data, and (2)
the number of subjects used in the study is relatively small, since we used only
these subjects with both MRI and PET.
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Table 1. Performance comparison of classification tasks using the true and the pre-
dicted PET data. The data set consists of 398 subjects having both MRI and PET
images.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

PET

True data 0.7014 ± 0.0212 0.6823 ± 0.0241 0.8982 ± 0.0224
3-D CNN 0.6947 ± 0.0281 0.6804 ± 0.0267 0.8868 ± 0.0208
KNN 0.6304 ± 0.0248 0.6278 ± 0.0326 0.7421 ± 0.0282
Zero 0.6175 ± 0.0213 0.6124 ± 0.0243 0.6928 ± 0.0225

Table 2. Performance comparison of classification tasks using the true and the pre-
dicted PET images. All 830 subjects were used in this experiments, where subjects
with no PET images were completed using three methods.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

MRI 0.7439 ± 0.0329 0.7168 ± 0.0253 0.9192 ± 0.0188

PET
3-D CNN 0.7305 ± 0.0315 0.7029 ± 0.0245 0.8762 ± 0.0236
KNN 0.6352 ± 0.0200 0.6133 ± 0.0346 0.7391 ± 0.0304
Zero 0.6102 ± 0.0268 0.5924 ± 0.0331 0.7028 ± 0.0331

MRI + PET
3-D CNN 0.7621 ± 0.0205 0.7244 ± 0.0241 0.9287 ± 0.0207
KNN 0.7231 ± 0.0214 0.6813 ± 0.0312 0.7691 ± 0.0213
Zero 0.7217 ± 0.0290 0.6291 ± 0.0317 0.7003 ± 0.0162

3.3 Evaluation on All Subjects

To further evaluate the effectiveness of our proposed method, we report the
prediction performance on all 830 subjects, where 398 subjects have both MRI
and PET images, and the remaining 432 subjects have only MRI images. The
3-D CNN and other data completion methods were trained on the 398 subjects,
and the trained models were used to complete the PET images of the remaining
432 subjects. The classification performance on all 830 subjects is reported in
Table 2. Note that the comparison of classification performance based on true
data is not applicable in this experiment, since 432 of 830 subjects did not have
PET images.

We can observe that the 3-D CNN model outperforms KNN and Zero methods
for all three tasks with three different combinations of PET and MRI modalities.
This again demonstrates that the proposed 3-D CNN data completion method
is more effective than the competing methods. We can also observe that the per-
formance was improved when the MRI and PET image features were combined.
Overall, these experiments yielded insights on the power of the 3-D CNN model
in completing missing neuroimaging data, thereby providing practical guidelines
for employing multi-modality data even when some data modalities are miss-
ing. These results demonstrated that the estimated PET data could be used to
improve the accuracy of disease diagnosis.
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4 Conclusion and Future Work

We developed a 3-D CNN model for completing and integrating multi-modality
neuroimaging data. This model takes one volumetric data modality as input and
another modality as output. The nonlinear relationship between different data
modalities is captured by a large number of trainable parameters in the network.
We applied this model to predict the missing PET patterns from the MRI data.
Results showed that the predicted PET data achieved similar classification per-
formance as the true PET images. Additionally, our data completion method
significantly outperformed the previous methods.

In this paper, we considered the CNN model for data completion. There are
also other deep architectures that achieved promising performance on image-
related tasks. It would be interesting to apply other deep models, such as the
deep belief networks, for volumetric image data completion. In this work, we
employed a CNN model with two hidden layers due to the high computational
cost of training. We will explore ways of expediting the computation and design
more complicated deep models in the future.
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