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ABSTRACT Indoor localization has received wide attention recently due to the potential use of wide
range of intelligent services. This paper presents a deep learning-based approach for indoor localization
by utilizing transmission channel quality metrics, including received signal strength (RSS) and channel
state information (CSI). We partition a rectangular room plane into two-dimensional blocks. Each block
is regarded as a class, and we formulate the localization as a classification problem. Using RSS and CSI,
we develop four deep neural networks implemented with multi-layer perceptron (MLP) and one-dimensional
convolutional neural network (1D-CNN) to estimate the location of a subject in a room. The experimental
results indicate that the 1D-CNN using CSI information achieves excellent localization performance with

much lower network complexity.

INDEX TERMS Indoor localization, deep learning, convolutional neural network (CNN), received signal

strength (RSS), channel state information (CSI).

I. INTRODUCTION

With the rapid growth of artificial intelligence technology,
intelligent application has sprung up in many ways, such as
indoor navigation, intelligent robots, internet of things (IoT)
applications, and smart architectures (such as smart home,
smart cities, smart buildings and smart grids). These appli-
cations require the location of a user or a device in an
indoor environment. In medicine, industry, disaster manage-
ment, surveillance, and a number of various other fields, user
and device localization also has wide-scale applications [1].
Therefore, developing a kind of localization technology spe-
cific to indoor environment is becoming more and more
important.

Indoor localization is the process of obtaining device or user
location in an indoor environment. It can be roughly divided
into two categories. One is analyzing the attenuation phe-
nomenon caused by radio waves crossing objects to estimate
the location of objects. The common techniques include Time
of Flight (ToF), Time Difference of flight (TDoF), Angle of
Arrival (AoA), Time of Arrival (ToA), Time Difference of
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Arrival (TDoA), Received Signal Strength (RSS), and Chan-
nel State Information (CSI) [2]-[5]. The other category is to
capture images with a video camera (color camera or infrared
camera) and use image processing techniques to estimate
the location of the objects [6], [7]. The radio-wave and the
video-camera localization methods have their own advan-
tages and disadvantages. At present, radio-wave localiza-
tion seems to have more advantages than video localization
does.

With radio-wave approach, indoor environment is often
complex, characterized by non-line-of-sight (NLoS) signal
propagation, presence of obstacles, signal fluctuation or
noise, environmental changes, etc. Obtaining high localiza-
tion precision is still challengeable. Various techniques and
systems of the radio-wave approach have been reviewed
in [1], and [8]-[13]. These techniques and systems can be
further classified into device-based and device-free methods.
The former configures a wireless transmitter in the object
to be located, and builds multiple wireless receivers in the
environment. The value of the transmission quality index in
the wireless receiver changes when the object is placed in
different locations. The use of this feature achieves indoor
localization. The device-free method analyzes transmission
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quality index in a similar manner. The main difference is that
it puts the transmitter and the receiver in the environment
without wearing the device on the object to be positioned.
The device-free method has some advantages over the device-
based method. For instance, the user doesn’t need to carry
the device, which is troublesome for most people. Another
advantage is that the device-free method only needs to build
one transmitter and one receiver in the environment, and thus
costs less than the device-based method. These may explain
why the device-free method has received wide attention in
recent years.

Fingerprinting is a popular technique in radio-wave indoor
localization. It often requires environmental survey to obtain
fingerprints of the environment where the localization system
is to be used. The fingerprinting technique consists of two
phases: offline training and online localization. During the
offline phase, a site survey is conducted to collect radio
signals from different access points (APs) at many refer-
ence points (RPs) of known locations. Thus, each RP is
represented by its fingerprint. All the signal vectors form
the fingerprints of the site and are stored in a database.
In online phase, the real-time measurements match the offline
stored fingerprints to estimate the user location using a dis-
tance metric [8], [12], [14]. Various radio-wave technolo-
gies have been studied and implemented such as Bluetooth,
Zigbee, WiFi, and UWB (Ultra Wideband) [12]. Most of
current smart phones, laptops and other portable devices are
WiFi enabled. Existing WiFi APs can also be used as RPs
for signal collection. Therefore, basic localization systems
can be built without the need of additional infrastructure.
This makes WiFi one of the most widely-studied localization
technologies in the literature [1], [12].

In WiFi-based localization, the fingerprints are usually col-
lected in the form of RSS or CSI. For example, the RADAR
system [15] first builds a fingerprint map by gathering the
WiFi RSS measurements at different locations in the offline
training phase, and then estimates the location by minimiz-
ing the Euclidean distance between online RSS measure-
ments and fingerprints in the radio map during the online
test phase. The work in [16] considers channel interference
and the reliability of the RSS measurement and proposes
a pre-processing and a post-processing scheme to improve
localization accuracy. Reference [17] presents a novel scheme
of fingerprint generation, representation and matching, which
significantly outperforms existing approaches. The accuracy
can be further improved by using CSI since it provides more
accurate channel information. The Splicer [18] measures the
CSIs from spectrum band and adjusts the errors of ampli-
tude and phase to further improve localization precision.
Reference [19] presents a novel method for reducing local-
ization error. It utilizes multidimensional scaling analysis to
calculate the Euclidean distance and time-reversal resonating
strength between the target point and the reference points and
then employs the K Nearest Neighbor (KNN) algorithm to
estimate location. In [20], a probabilistic fingerprint-based
technique, using principal component analysis to filter the
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most relevant feature vectors, is suggested to boost the local-
ization efficiency.

In fingerprinting approach, machine-learning methods can
be used to extract core features of signals. The features
are regarded as fingerprints and stored in a database. This
method is highly different from traditional methods that store
RSS or CSI directly in the database. Fingerprint approach
not only improves localization accuracy but also reduces
computational complexity. A number of machine-learning
algorithms, including probabilistic methods, KNN, Artificial
Neural networks (ANN), Support Vector Machine (SVM),
and Random Forest (RF), are widely used to match online
measurements to offline measurements [21], [22].

In recent years, deep learning has been widely explored
and achieved great success, especially in computer vision.
Several indoor fingerprinting systems, based on deep
neural networks, have been proposed [23]-[29]. They
reported better performance over the conventional methods.
Reference [24] presents a deep learning-based indoor finger-
printing algorithm, called DeepFi, which uses CST amplitudes
from all the subcarriers with a deep autoencoder network.
DeepFi adopts a greedy learning algorithm using a stack of
RBMs (Restricted Boltzmann Machines) to train the deep
autoencoder in a layer-by-layer manner. With the trained
network parameters of the autoencoder, a data fusion scheme
is then utilized to estimate the location. However, the deep
autoencoder is only used to extract the features of the CSI
signal. A localization method that first leverages calibrated
phase information of CSI signals is presented in [25]. A deep
neural network similar to [24] is employed in this method.
Reference [26] proposes an autoencoder based Deep Extreme
Learning Machine indoor localization method, which uti-
lizes the high level extracted features by autoencoder
from collected data by smartphones with internal sensors.
Chen et al. [27] propose the convolutional neural net-
work (CNN)-based localization algorithm using CSI. The
CSI amplitude is organized into a time-frequency matrix,
which resembled the image. A two-dimensional convolution
neural network (2-D CNN) is then utilized for localization.
Unlike [24], the network utilizes end-to-end deep learning.
Wang et al. [28], [29] propose deep convolutional neural
network based scheme for indoor localization. The scheme
transforms the AoA data into CSI image and utilizes 2-D
CNN to improve localization performance as well. Several
more recent CNN-based works adopt 2-D CNN for localiza-
tion as well [30], [31]. They convert 1-D time-series signal
into 2-D matrix in different manners. For example, [30] com-
bines magnetic field and WiFi signal into positioning image.
In [31], the RSS signals obtained with K APs and N unique
locations are formed into fingerprint images of size Nx K.

The methods that convert a 1-D signal to 2-D image lead
to two drawbacks: (a) an increase in network complexity,
and (b) an overhead of conversion; both increase computa-
tional burden of the system. To attack this problem, this paper
explores a deep neural network for indoor localization that
processes 1-D signals directly. By partitioning a rectangular
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room plane into two-dimensional blocks, we formulate the
localization as a classification problem. RSS and CSI sig-
nals are respectively applied to two deep neural networks,
including MLP and 1-D CNN. As a result, four deep neural
networks, including MLP-RSS, MLP-CSI, CNN-RSS and
CNN-CSI, are developed. The localization performances of
the four networks are compared and analyzed by their pre-
diction accuracy and network complexity. A novel localiza-
tion error metric, referred to as localization error probability,
is also proposed to evaluate the localization accuracy. The
contributions of this work are summarized as follows:

1) We investigate various end-to-end deep learning meth-
ods using RSS and CSI signals for device-free indoor
localization, and evaluate their performance in terms of
localization accuracy and network complexity.

2) To our best knowledge, this work is the first to propose
1-D CNN for device-free indoor localization, which
is proved to achieve comparable performance with
much lower network complexity, as compared to the
existing 2-D CNN.

3) A novel localization error probability metric is pre-
sented to evaluate the localization precision.

The remainder of this paper is organized as follows.
Section II gives a preliminary on the basics of RSS and CSI.
In Section III, the proposed method is described in details;
we first describe how to collect packet data and parsed
data to obtain RSS and CSI features; based on two types
of features, we design MLP and 1D-CNN deep neural net-
works separately. The experimental process, selection of
network architectures, performance comparison, and local-
ization error analyses are described in Section IV. Finally,
the conclusion is drawn in Section V.

Il. PRELIMINARY

A. RECEIVED SIGNAL STRENGTH (RSS)

RSS is the measurement of power present in a received radio
signal. It depends on the transmitted power and the distance
between the transmitter and receiver [32] as

P
RSS(dbm) = 10 x log——, (D)
Pref
where P is the reference power, and P, is the received
power calculated as

A
P, =P, x G, x G, x (mﬁ 2

where P, is the transmitted power, G; denotes the transmit-
ter antenna gain, G, is the receiver antenna gain, A is the
wavelength of the radio wave, and d represents the distance
between the transmitter and receiver.

The above equation proves that the RSS is inversely
proportional to squared distance. However, in actual use,
it can be affected by many factors, such as multipath effects
and diffraction phenomena. Consequently, the RSS signal
depicts highly nonlinear and uncertain relation with the dis-
tance in a residential room. Thus, modeling the relation of
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RSS signals with locations is very challenging. However, due
to its simplicity and easy implementation, RSS is still popular
in indoor localization.

B. CHENNEL STATE INFORMATION (CSI)

Recently, the Multiple Input Multiple Output (MIMO) sys-
tem has been widely applied in wireless communications
for raising the transmission efficiency. It is a method for
multiplying the capacity of a radio link using multiple trans-
mitter and receiver antennas to exploit multipath propagation.
In MIMO antenna configuration, a high-rate signal is split
into multiple lower-rate streams, and each stream is transmit-
ted from a different transmit antenna in the same frequency
channel. The MIMO is typically combined with orthogo-
nal frequency-division multiplexing (OFDM) modulation,
which is a digital multi-subcarrier modulation method. The
CSI obtained at the receiver, is often used to measure the
quality of the channel.

CSI describes how a signal propagates from the trans-
mitter to the receiver and represents the combination effect
of, for example, scattering, fading, and power decay with
distance [10]. The quantitative analysis of signal propagation
behavior within a WiFi-covered area can identify different
types of disturbances. Thus, CSI has a variety of applications,
such as detecting human motion or identifying the location of
a subject.

Most radio wave transmission processes are susceptible to
multipath effects. Therefore, the received signal is a superpo-
sition of multiple path signals. The CSI distinguishes multi-
path signals by means of Channel Impulse Response (CIR).
In a non-time-varying system, CIR is represented as

-3,

where a;, 6;, T; represent the amplitude, phase angle and time
delay of the ith transmission path, respectively, N is the total
number of paths, n(t) is Gaussian noise, and § is an impulse
function. However, in general commercial equipment,
CIR cannot be accurately obtained. To overcome this limi-
tation, the channel frequency response (CFR) is often used to
model the channel, which consists of amplitude response and
phase response in frequency domain. CFR can be obtained by
Fast Fourier Transform (FFT), i.e., H = FFT (h(1)).

Letx (fi, t) and y (f¢, t) be the frequency domain represen-
tations of transmitted and received signals, respectively, with
carrier frequency f. The two signals are related by

Yy, ) =H (fi, t) x x (fi, 1), 4

where H (fi, t) is the complex valued CFR for carrier fre-
quency f; measured at time ¢. CSI measurements contain
these CFR values. The frequency response of the kth channel
can be expressed as

H(fi) = |H(fi)l exp{j LH (i)}, Q)

where |H (f;)| is the amplitude response of the kth channel at
frequency f, and ZH(fi) is its phase response.

aie s (t — ) + n(1), 3)
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FIGURE 1. Proposed positioning system architecture.

Ill. PROPOSED METHOD

The localization system proposed in this paper collects the
RSS and CSI between the wireless AP and the network
interface card to estimate the current location of a person.
Our system consists of two phases, offline training and online
positioning, as shown in Fig.1. During the offline training
phase, the system captures the fingerprints (features) of RSS
and CSI to train a proposed deep neural network (DNN) in
order to obtain a positioning model. During the online posi-
tioning, the system receives real-time data from a network
interface card and then predicts where the person is located.
We also design an efficient packet data parsing tool to extract
CSI and RSS from the original packet data received.

A. DATA COLLECTION AND PROCESSING

OF RSS AND Csi

To collect RSS and CSI data, we adopt a notebook computer
that installs an Intel 5300 network interface card with three
receiving antennas and a wireless network router with two
antennas. RSS can be collected through a general network
interface card. However, for the CSI at the physical layer,
in addition to hardware support, it requires software tool to
help. The most stable CSI collection tool currently known is
the Linux 802.11n CSI Tool [33]. The tool provides drivers
and collection library that allow us to collect CSI through the
firmware of the Intel 5300. In addition, it provides a series
of Matlab-based analysis tools to help researchers develop
CSI applications. In this work, we develop an efficient packet
data-parsing tool written in C language, which strengthens
Linux 802.11n CSI Tool. It is fully automatic and thus lowers
labor costs for data collection.

The raw binary data received by the wireless network
receiver contains various information of the transmission
process, such as the numbers of transmitter antennas and
receiver antennas, the CSI, and the RSS. However, to obtain
this information from the original data needs certain analy-
sis process. The developed packet data-parsing tool aims to
analyze and parse the original data file. The parsing process
of this tool consists of packet verification, data analysis, and
data verification, as shown in Fig. 2. If the RSS or CSI is
lost during the transmission process, it is unable to check
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FIGURE 2. Data parsing process.

FIGURE 3. Layout of the quantized locations.

from the packet integrity. Thus, the data verification step is
required to confirm whether the RSS or CSIis complete. With
the parsing procedure, the parsed data is ensured whether
it is complete. The developed packet data parsing tool is
very computationally efficient and can improve the overall
localization performance.

As stated above, the network receiver contains three
antennas. Therefore, a received packet contains only three
RSS data. Obviously, a single packet in one position is not
enough to consider the environmental changes. To solve the
problem, we concatenate 15 packets into one training /testing
sample. Thus, an RSS sample vector is expressed as

RSS = (|rss1,11, |7ss1,2], [rss1,31, [7ss2,10, .. ., [7ss15,3]), (6)

where rss; ; denotes the received RSSs for the ith packet from
the jth antenna.

The number of CSIs in a packet is the product of the
transmitter antenna, the receiver antenna, and the number
of channels (sub-carriers). The Intel 5300 network interface
card used in this work has 30 channels. Thus, the total num-
ber of CSI data per packet is 3 x 2 x 30 = 180. Using
Intel 5300 wireless network, we can obtain CFR containing
30 frequency responses defined in (5).

In our work, only amplitude response is utilized for indoor
localization. For simplicity, we concatenate the 180 data into
a CSI sample vector and denoted as

CSI = (lesit,iul, lesitaal, - - -, lesiti,zol,

x|esiy o], ..., lesiz o zol). (7)

B. DEEP NEURAL NETWORK DESIGN

We partition the space of a rectangular room into M x N
(2 x 8 in our experiment) blocks, as shown in Fig. 3.
Each block denotes a quantized location and represents a
class. The localization problem therefore becomes a clas-
sification one with M x N classes. The size of the block
determines the localization resolution as well as the sys-
tem complexity. The smaller the block size, the higher the
resolution. However, due to the increase of the number of
classes, the system complexity will become higher. In this
work, we adopt the MLP and 1-D CNN for the supervised
classification problem, which are described in the following
paragraphs.
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FIGURE 4. Typical architecture of proposed MLP using RSS and CSI.

1) MULTI-LAYER PERCEPTRON

Fig. 4 shows a typical architecture of the proposed MLP
using RSS or CSI. In our typical indoor-localization design,
16 locations are preset in a room. The size of the output
layer K is thus 16. The size of the input layer depends upon
the dimension of RSS or CSI signal, which is 45 for RSS
and 180 for CSI. In this architecture, several configurations
are implemented and evaluated, which will be discussed in
the next section.

The MLP model is obtained by training with the well-
known stochastic gradient descent (SGD) algorithm [28].
The SGD employs the backpropagation (BP) scheme which
calculates the loss (error) function between the network pre-
diction and the ground truth, and back propagates the error
of each layer from output to input, and updates the network
parameters 6 (weights and biases) iteratively.

To avoid vanishing gradient problem, the ReLu function
is adopted as the activation function in the hidden layers.
However, the softmax activation function, as defined in (8),
is employed in the output layer, which maps the real-value
input into prediction probability in the range of [0,1] by

ey )
o (z) = SE o j=1,...K. (8)

In this network, we choose cross-entropy as loss function.
Furthermore, we adopt L, regularization to avoid overfit-
ting [34]. Thus, the learning of DNN is to minimize the
loss function L(¢, y, 8) defined in (9) with respect to network
parameter set 8, where the second term is for regularization.

K
L(t,y.0) =~ tdogys+1y wi, ©)
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where ¢ and y denote the target output and the predicted
output vectors of the MLP. The cross-entropy indicates the
difference between the amount of information contained in ¢
and the amount of information contained in y. If the value of
the cross-entropy is small, then the predicted output is close
to the target output.

In BP training, the modified gradient descent method,
named adaptive moment estimation (adam), is employed to
update the parameter set of the MLP by [35]

nmy
RV \A)t + &
where 7 is a fixed learning step size; ¢ is a very small con-
stant; 7, and v, are the bias-corrected first moment estimate

and the biased-corrected second moment estimate, which are
calculated by

O < 01 — (10)

N nmy ~ V¢

= —, =—, 11
nm; 1— ‘8{ Vi 1— ﬂé ( )
my = Bim,_; + (1 — B)er, (12)
Vi = Bavey 4+ (1 = Bo)g?, (13)

where g; is the gradient of lost function at time t; 8; and
B> are the attenuated constants for the first moment and
second moment, respectively.

In addition, the dropout is also employed between the two
hidden layers to avoid overfitting [34].

2) 1-D CONVOLUTIONAL NEURAL NETWORK

In general, the CNN is composed of a number of con-
volutional layers for feature extraction, where each layer
is usually followed by a pooling layer which is also fol-
lowed by one or more fully connected layers for classifi-
cation (or regression). 2D-CNN has been widely used for
image feature extraction and classification problems in the
literature [36]-[41].

A typical architecture of the proposed 1-D CNN for indoor
localization is shown in Fig.5. We use the convolution blocks
to extract hierarchical features from low level to high level.
Each convolution block consists of 1-D convolution, batch
normalization, and activation function. It is noted that the
polling layer is not utilized here as it degrades the perfor-
mance in our experiment. Batch normalization is applied
after convolution and before activation. It provides any layer
in a convolution block with inputs that are zero mean/unit
variance, which improves the performance and the stability
of deep neural networks [42].

The fully connected layer (dense layer) is aimed to con-
struct a classifier based on the input hierarchical features. The
number of neurons in this layer is 16. The ReLu function
is utilized as activation function in all blocks except the
output layer. The SGD algorithm and the cross-entropy loss
function are utilized in learning the CNN model. The learning
procedure is similar to that of the MLP stated before, and
hence the description is omitted here. The optimal kernel size
and the feature maps are obtained in Section IV.
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IV. NUMERICAL ANALYSIS

A. EXPERIMENTAL ENVIRONMENT AND PROCEDURE

The localization performance is generally affected by the
complexity of the indoor environment. To evaluate the robust-
ness of the proposed methods, we choose a room with many
furniture and obstacles in order to increase the complexity
of the environment. The room is a closed space with a length
of 13.82 meters and a width of 8.58 meters, as shown in Fig.6.
A rectangular area between two desks of the room is uni-
formly divided into 2 x 8 blocks. The center of each block is
the reference point (or training/testing point), as denoted by
the blue circle in Fig. 6. The distance between two horizontal
adjacent points is 1.2 m, and the distance between two vertical
adjacent points is 1.4 m. The router (transmitter) is located
on the front desktop, and the receiver is located on the rear
desktop. Both are one meter above the ground.

A personal computer (PC) equipped with an Intel 5300 net-
work interface card is used as a receiver, and a TP-Link
WA901-D wireless network router is adopted as a transmitter.
The PC for training the DNN is equipped with i7-3770 CPU,
a memory of 20GB and a GTX1060 display card.

In order to increase the robustness of the system, three
persons with different body shapes are chosen for evaluation.
Each person stands at the training point for one minute. The
network receiver captures packets, and the developed packet
data-parsing tool stated previously extracts RSS and CSI data
for training and testing. The total number of valid samples of
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RSS and CSI are 16,753 and 251,388, respectively. For both
RSS and CSI, 90% of the total samples are randomly chosen
for training, and 10% for testing.

B. MEASUREMENT OF RSS AND CSI SIGNALS

Fig.7 and Fig. 8 show the signal power waveforms of the RSS
sample and the CSI sample, respectively; different colors in
the figures indicate signals measured by different receiving
antennas. It is difficult to observe RSS since each packet con-
tains only three records of data. Therefore, we concatenate
15 packets into a waveform for easier observation. The CSI
and RSS waveforms change when the person stands at dif-
ferent points, as shown in the figures. However, the changes
generated by RSS are relatively small, which means that
RSS is less sensitive to environmental changes than CSIL.
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C. SELECTION OF DNN ARCHITECTURES

In this work we use two different signals (RSS and CSI) and
two deep neural networks (MLP and 1-D-CNN) to estab-
lish four different indoor localization methods: MLP-RSS,
MLP-CSI, CNN-RSS, and CNN-CSI. For comparing the
networks, two metrics, including prediction accuracy and
total number of parameters, are adopted. The second metric
reveals the complexity of a network. The higher the complex-
ity, the larger the computational load is required. We apply
the popular deep learning platform Keras to evaluate the
performance of all deep learning architectures discussed in
this paper. The total number of parameters required in an
architecture can be easily calculated with Keras.

The design of architectures of deep neural networks
includes settings of a large variety of hyper-parameters, such
as the number of hidden layers, nodes (neurons) of every
layer, number of channels, learning rate, etc. Utilizing the
grid search [34], [43] and applying our experience, we aim
to obtain better architectures through the process of trial and
error.

Eight MLP architectures are designed in our experiment.
The first architecture utilizes four hidden layers with differ-
ent number of neurons in each layer. The next five archi-
tectures have five hidden layers with different numbers of
neurons in each layer. The last two architectures have 6,
and 7 layers. We also design eight 1-D CNN architectures.
The first architecture uses hidden convolution blocks with
kernel size of 26. The next four architectures use three hidden
convolution blocks with different kernel sizes and different
number of filters. The last three architectures employ four,
five and six hidden convolution blocks. For comparing those
architectures, two metrics, including prediction accuracy and
total number of parameters, are adopted. The second metric
reveals the complexity of a network. The higher the complex-
ity, the larger the computational load is required. We aim to
select the best architecture from the eight MLPs and eight
CNN s stated above using the two metrics.

Table 1 lists the performance comparison of the eight
MLP architectures using RSS signal. For an MLP, if the
numbers of nodes of all layers are the same, we denote the
network architecture as m x k, which represents that there are
k layers and every layer has m neurons in the network. For
example, 360 x 5 denotes a network with 5 layers, and each
layer has 360 neurons. On the contrary, if the numbers of
nodes of all layers are not exactly the same, the particu-
lar number of nodes of a layer is specified. For instance,
960-860-560-460-360 represents a network in which the
first layer has 960 nodes, the second layer 860 nodes, and
SO on.

The 6th architecture in this table, 960-860-560-460-360,
achieves similar prediction accuracy to the third architecture,
but it has much less network complexity. Thus, we choose
the 6th architecture. Table 2 shows the comparison of
the eight MLP architectures using CSI signal. Again, the
6th architecture is chosen since it performs the best with
lower network complexity. Note that when the MLP exceeds
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TABLE 1. Comparison of MLP architectures using RSS signal.

MLP Architectures Total Number Prediction
of Parameters Accuracy(%)

360x 4 412577 67.94
360x 5 542176 78.26
720x 5 2121136 81.25
960 x 5 3749776 80.53
720,620,520,420,320 1161736 77.37
960,860,560,460,360 1782576 81.07
960,860,560,460,360,360 1912897 6.92

960,860,560,460,360,360,360 | 2042857 9.07

TABLE 2. Comparison of MLP architectures using CSI signal.

MLP Architectures Total Number Prediction
of Parameters Accuracy(%)
360x4 460816 99.43
360X 5 590776 99.54
720X 5 2218336 99.80
960X 5 3879376 99.61
720,620,520,420,320 1258936 99.83
960,860,560,460,360 1912176 99.93
960,860,560,460,360,360 2042136 99.68
960,860,560,460,360,360,360 2172096 99.61

5 layers, the prediction accuracy drops sharply, which may be
caused by overfitting.

Table 3 and Table 4 list the performance comparison
of 1-D CNN architectures using RSS and CSI, respectively.
As shown in Table 3, the first architecture uses two hidden
convolution blocks (16-32) with kernel size of 26. The next
four architectures utilize three hidden convolution blocks
(16-32-32) with different kernel sizes and different number of
filters. The last three architectures employ four, five and six
hidden convolution blocks. The architecture 16-32-32 with
kernel size of 16 performs the best for RSS signal. As shown
in Table 4, all architectures obtain approximately the same
prediction accuracy, which is excellent. The architecture
16-32-32 with kernel size of 26 is selected since it has the
best performance with relatively lower network complexity.

Taking both the prediction accuracy and network complex-
ity into account, the best architectures selected are as follows:

MLP network: the architecture 960-860-560-460-360 is
selected for both RSS and CSI.

CNN network: the architecture 16-32-32 with kernel size
of 16 is selected for RSS, and the same architecture with
kernel size 26 is selected for CSI.

We use the best architectures above for performance anal-
ysis and comparison. The prediction accuracy of each refer-
ence point is shown in Table 5. Both MLP and CNN using
CSI feature achieve prediction accuracy over 99% at all
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TABLE 3. Comparison of CNN architectures using RSS signal.

TABLE 5. Comparison of prediction accuracy.

Kernel sizes Number of filters Total Number Prediction
of Parameters | Accuracy(%)
26 16-32 38465 70.68
10 16-32-32 38976 80.65
16 16-32-32 48288 82.92
26 16-32-32 63808 82.32
36 16-32-32 79328 79.94
26 16-32-32-32 92033 63.46
26 16-32-32-32-32 118817 67.10
26 16-32-32-32-32-32 | 145601 66.38
TABLE 4. Comparison of CNN architectures using CSI signal.
Kernel sizes Number of filters Total Number Prediction
of Parameters | Accuracy(%)
26 16-32 106144 99.04
10 16-32-32 108096 99.79
16 16-32-32 117408 99.93
26 16-32-32 132928 99.97
36 16-32-32 148448 99.97
26 16-32-32-32 159712 99.96
26 16-32-32-32-32 196496 99.90
26 16-32-32-32-32-32 | 213280 99.82

reference points. However, the accuracy can be as low
as 51.69 % when RSS feature is used. Table 6 shows that
the average prediction accuracy using CSI is significantly
higher than that using RSS, basing on either MLP or CNN
network. Table 6 also shows the variation of accuracy over
different reference points using RSS is significant with stan-
dard deviation more than 10%. On the contrary, the stan-
dard deviation is only 0.11% for MLP and 0.05% for CNN
using CSI. This indicates that the prediction stability using
CSI signal is much better than using RSS signal. This is
because CSI provides fine-grained physical layer (PHY)
information [44] and therefore achieves better performance,
as kexpected.

As to MLP-CSI (or CNN-CSI), the accuracy is higher
when the reference point is close to the wireless network
receiver. When the reference point moves further from
the receiver, the accuracy reduced, as expected. However,
to MLP-RSS (or CNN-RSS), the relationship between accu-
racy and distance seems to be random. This implies that
CSI signal is less affected by multipath. Therefore, it shows
better stability than RSS.

As mentioned above, we use the mean and standard devi-
ation of the prediction accuracy to evaluate the localization
accuracy and localization stability. Moreover, we utilize the
total number of parameters of the deep neural networks to
evaluate the system complexity. Table 6 indicates that based
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Methods
Prediction
2DCNN-
Accuracy (%) | MLP- | MLP- | ONN- | CNN- | 0
RSS CSI RSS CSI
1 85.39 | 100.00 | 90.57 | 100 100
2 96.58 | 100.00 | 93.41 | 100 90

3 99.12 | 99.94 96.77 | 100 100

4 94.06 | 100.00 | 9545 | 99.93 | 100

5 87.31 | 100.00 | 94.34 | 99.88 | 100

6 86.24 | 99.89 91.43 | 100 100

7 65.79 | 99.69 51.69 | 99.84 | 100

Reference | 8 | 61.00 | 99.76 | 59.63 | 99.81 | 100

points 9 81.60

100.00 | 80.67 | 100 90

10 | 84.00 | 100.00 | 90.29 | 100 100

11 | 75.79 | 99.93 82.00 | 100 100

12 | 91.15 | 100.00 | 85.37 | 100 100

13 | 78.10 | 100.00 | 87.18 | 99.88 | 100

14 | 67.71 | 99.79 67.86 | 99.93 | 100

15 | 62.14 | 99.81 64.00 | 99.62 | 100

16 | 68.69 | 100.00 | 86.52 | 100 100

on CSI signal, either MLP or CNN can achieve excellent pre-
diction accuracy with very small deviation. However, the total
number of parameters required in CNN is less than 1/14 of
the total number of parameters required in MLP. Therefore,
we conclude that CNN-CSI performs the best in terms of
localization accuracy, localization stability and system com-
plexity.

To prove the effectiveness of the 1-D CNN, we imple-
ment ConFi network [27], which is based on 2-D CNN
network using CSI signal and is state-of-the-art of the
CNN-based approaches. ConFi is a five-layer network that
mainly includes three 2D convolution layers, and two
fully connected (dense) layers. The details can be found
in [27]. We evaluate our proposed networks and ConFi,
and the results are shown in Tables 5, 6 and 8. It is
seen from Table 6 that CNN-CSI achieves slightly bet-
ter prediction accuracy (both average and deviation) than
ConFi. However, the total number of network parameters
of ConFi is approximately 690 times that of CNN-CSL
Obviously, the proposed 1-D CNN-CSI reduces the net-
work complexity significantly without sacrificing prediction
accuracy. In addition, our 1-D CNN reduces the overhead
of 2-D CNN that requires converting time-series data into
2D images.
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TABLE 6. Performance summary of various methods.

Mean of Deviation of
Prediction Jeviation Total No. of
Prediction Accuracy
Accuracy %) Parameters
(%) ’

MLP-RSS 80.29 12.34 1,782,576
MLP-CSI 99.93 0.11 1,912,176
CNN-RSS 82.32 13.94 48,288
CNN-CSI 99.98 0.05 132928
2DCNN-CSI 98.75 3.42 81,158,836

FIGURE 9. Localization error for correct prediction. : reference point, x:
estimate.

D. LOCALIZATION ERROR ANALYSIS

This work formulates the localization as a classification prob-
lem and utilizes the prediction accuracy or prediction error
rate (1-prediction accuracy) to evaluate the localization per-
formance. As stated previously, we partition the space into
2 x 8 blocks. If the target is at one block (class) and the
predicted is at another block (class), the localization system
will cause a misidentification, and the localization error is
proportional to the distance between the target block and
the predicted one. In this subsection, we aim to convert the
prediction error rate into the localization error, which will
achieve the requirements of the localization task.

The localization error is the distance between the position
of the reference point and the estimated position. In our
experiments, the total number of blocks is 16. For any target
block, the possible predicted block is from 1 to 16. Therefore,
by calculating the distance between the reference point in the
target block 7 and any position at the predicted block j, [dj],
we can further obtain the distance matrix with 16 x 16 size.
Refer to Fig. 3, the distance matrix can be calculated in the
situations as follows.

1) LOCALIZATION ERROR FOR CORRECT PREDICTION
Correct prediction means that the predicted block (class)
is the target block (class). In this case, the minimal local-

ization error is 0, and the maximal localization error
is v/(0.5dp)? + (0.5d,)?, as illustrated in Fig. 9.

2) LOCALIZATION ERROR FOR INCORRECT PREDICTION
Incorrect prediction means that the predicted block is not the
target block. Three situations exist in this case.
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FIGURE 10. The minimal and maximal localization errors for horizontal
error. o: reference point, x: estimate.

FIGURE 11. The minimal and maximal localization errors for vertical error
case. o: reference point, x: estimate.

a: HORIZONTAL ERROR

Assume the reference point is at the center of the block i,
the estimated position will be at any position of the other
block j in horizontal direction. Refer to Fig. 10, it is seen
that the minimal localization error exists where the estimated
location is in the middle of the left boundary of the block j.
In addition, the maximal localization error exists where the
estimated is at the top-right corner or bottom-right corner of
the block j. We can calculate the minimal and maximal error
as

duin = di((j — il = 0.5), (14)
dnar = (U = i1 +0.5)d))? + 05d,)%, (15)

where i,j = 1,2,...,8,dy, is the distance between two
horizontal neighbors, and d, is the distance between two
vertical neighbors. In our implementation, d; = 1.2m and
d, = 1.4m.

b: VERTICAL ERROR

The reference point is assumed at the center of the block i,
and the estimated location will be at any position of the other
block j in vertical direction. Referring to Fig. 11, it is easy to
calculate the minimal and maximal error as

dnin = dy((j — il = 7.5), (16)
dnax =\ (= 11 =750 + (= il —6.5)d%, (17)

wherei=1,2,...,8;j=1+8.
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FIGURE 12. The minimal and maximal localization errors for oblique error
case. o: reference point, x: estimate.

TABLE 7. 8 x 8 submatrix of the distance matrix.

1 2 3 4 5 6 7 8
|| 0000 | [0.60,1 | [1803 | [3.004 | [4205 | [540.6 | [6.60,7 | [7.809
92) 92) 08) 26) 45) 64) 83) 03)
5| 10.60,1 | 0000 | [0.60,1 | [1.803 | [3.004 | [4.20.5 | [5406 | [6.60,7
92) 92) 92) 08) 26) 45) 64) 83)
5 | (1803 | [0.60,1 | [0.000 | [060,1 | [180.3 | [3.004 | [4205 | [5.406
.08) 92) 92) 92) 08) 26) 45) 64)
4| 13004 | [1803 | [0.60,1 | [0.000 | [0.60,1 | [1.803 | [3.004 | [4.20.5
26) 08) 92) 92) 92) 08) 26) 45)
S| (4205 | [3.004 | [1.803 | [060,1 | [0.00,0 | [0.60,1 | [1.80,3 | [3.00.4
45) 26) 08) 92) 92) 92) 08) 26)
o | (5406 | [420.5 | [3.004 | [1803 | [0.60, | [0.000 | [0.60,1 | [1.80,3
64) 45) 26) 08) 92) 92) 92) 08)
;| [660.7 | [5.40.6 | [420.5 | [3.00.4 | [180.3 | [0.60,1 | [0.000 | [0.60.]
83) 64) 45) 26) 08) 92) 92) 92)
o | (7809 | [6.60.7 | [5.40,6 | [4205 | [3.004 | [1.803 | [0.60,1 | [0.00,0
03) 83) 64) 45) 26) 08) 92) 92)

¢: OBLIQUE ERROR

In this case, the estimated position will be at any position of
the other block j in oblique direction of the reference point.
Referring to an example in Fig. 12, we can calculate the
minimal and maximal error as

dnin =\ — 1l = 8=0.5)d,* + (0.54,%,  (18)

dnae = /(= 11 =8+ 0.5)d,* + (054, 2, (19)

wherei=1,2,...,8;j=1+8.

With the above procedure, we can obtain a 16 x 16 distance
matrix [dj;] in which each entry has two values, minimal
localization error d,,;, and maximal localization error d; 4.
Due to space limitation, we crop an 8 x 8 submatrix from an
example of the distance matrix, as displayed in Table 7.

Since some elements in the distance matrix [d;] are
the same value, e.g., di3 = dap, those elements should
be combined into one distance. From the predicted results
of the deep neural networks stated before, we can calcu-
late the confusion matrix [p;], which represents the error
rate that the deep network misclassifies the class i into
the class j. Combining the distance matrix with the con-
fusion matrix, we can obtain localization error probabil-
ity p(d), where d is the localization error distance in meter.
Table 8 shows the localization error probability for the
best architectures selected from the four methods men-
tioned above and the existing 2DCNN [27], respectively.
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TABLE 8. Comparison of localization error probability of various methods.

L Methods
Localization Error
Provabiiy®) | oe | s | Rss | ost | cst
0.00.
L ’ 81.07 99.93 82.92 99.97 98.75
0.92)
0.60,
L ’ 3.82 0.05 2.93 0.028 0.625
1.92)
0.70.
L ’ 0.48 0 0.77 0 0
2.18)
0.92
[ ’ 1.13 0 1.37 0 0
2.77)
1.80,
L 2.63 0.012 2.39 0 0
3.08)
1.93,
[ 0.78 0 1.97 0 0
3.66)
3.00,
[ 0.9 0.004 0.9 0 0
4.26)
[3.08,
1.85 0.004 0.84 0 0.625
Error 4.70)
Range [4.20
(m) ol 203 0 2.32 0 0
5.45)
4.26
[ ’ 1.25 0 1.01 0 0
5.80)
5.40,
[ 0.41 0 0 0 0
6.64)
5.45,
[ 0.95 0 1.73 0 0
6.93)
6.60,
[ 0.36 0 0.12 0 0
7.83)
6.64,
[ 0.6 0 0.54 0 0
8.08)
[7.80,
0 0 0 0 0
9.03)
7.83
L ’ 0.12 0 0.12 0 0
9.24)

It indicates that CNN-CSI performs the best with results
in maximal localization error of 0.92 m with probability
of 99.97%. It also shows that the localization error will
be no larger than 1.92 m. The worst is MLP-RSS, which
achieves maximal localization error of 0.92 m with probabil-
ity of 81.07%; however, it possibly yields localization error
up to 9 m. Besides, this table also demonstrates that
the proposed 1-D CNN performs slightly better than the
2-DCNN method [27].

V. CONCLUSION

This paper has proposed deep learning-based methods for
device-free indoor localization based on MLP and 1-D CNN.
We used a wireless network router as the transmitter, and a
network interface card as the receiver to collect packet data.
We designed an efficient data packet-parsing tool to obtain
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