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ABSTRACT Fault diagnosis of rotating machinery plays a significant role in the industrial production

and engineering field. Owing to the drawbacks of traditional fault diagnosis methods, such as heavily

dependence on human knowledge and professional experience, intelligent fault diagnosis based on deep

learning (DL) has aroused the interest of researchers. DL achieves the desirable automatic feature learning

and fault classification. Therefore, in this review, DL and DL-based intelligent fault diagnosis techniques

are overviewed. DL-based fault diagnosis approaches for rotating machinery are summarized and discussed,

primarily including bearing, gear/gearbox and pumps. Finally, with respect to modern intelligent fault

diagnosis, the existing challenges and possible future research orientations are prospected and analyzed.

INDEX TERMS Deep learning, deep neural network, intelligent fault diagnosis, rotating machinery.

I. INTRODUCTION

As an essential part and one of the most representative of

mechanical equipment, the rotating machinery relies on rota-

tion for purpose of a specific function. It has beenwidely used

in the field of mechanical transmission, including aircraft

engines, pump, wind turbine generator systems, gas turbine

engine, and power plants [1], [2]. Owing to unavoidable mal-

function and downtime of the mechanical equipment in the

process of operation, fault diagnosis is of great significance

for rotating machinery in order to ensure the reliability and

safety [3]–[6].

In general, fault diagnosis methods are divided into

the followings, model-based methods, signal-based meth-

ods, knowledge-based methods and composite methods [7].

In view of traditional fault diagnosis methods, they are pri-

marily based on mechanism, feature frequency or fault fea-

ture extraction [8]. On account of dependence on the practical

experience and professional knowledge, it is difficult to detect

the fault of rotating machinery with complex structure by the

use of traditional subjective fault diagnosis methods [9], [10].

Some improvement and achievement have been made on

fault diagnosis with respect to the model-based methods and
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signal-based methods. A kalman filter was improved and

used to evaluate the state of hydraulic actuator and leakage

of hydraulic system by An and Sepehri [11], [12]. Du and

Goharrizi et al. analyzed and estimated vibration signal of

hydraulic pump, pressure signal of hydraulic cylinder and

actuator via wavelet transform [13], [14]. The doubly iter-

ative empirical mode decomposition (EMD) and adaptive

multifractal detrended fluctuation analysis were employed

to analyze fault diagnosis of the bearing, the gear and the

piston pump [15]. Although the shortages of artificial data

statistics have been compensated by the methods discussed

above to some extent, there are still some limitations in fault

diagnosis of rotating machinery owing to the difficulty in

feature extraction and complicate mathematical model.

With the implement of ‘‘Industry 4.0’’ and ‘‘Internet +’’,

artificial intelligence (AI) has been quickly integrated into the

various traditional industries [16]. Intelligent fault diagnosis,

which is combined with other feature extraction methods,

AI as the main body, has attracted more and more attention.

It is considered to be a powerful tool for big data processing

and fault diagnosis of mechanical equipment, which provides

a new exploration path for fault diagnosis and health manage-

ment of rotating machinery [17], [18].

Great success has been achieved in fault diagnosis of rotat-

ing machinery with traditional machine learning methods,
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such as support vector machine (SVM) and artificial neural

network (ANN) [19]–[22]. Wavelet packet decomposition

and EMD were combined and used to feature extraction,

moreover, ANN was utilized to preliminary fault diagno-

sis by Bin et al. [23]. In order to achieve fault diagnosis

of hydraulic pipe, an integrated method including principal

component analysis (PCA), ANN and multiple adaptive neu-

ral fuzzy inference system was proposed by Saeed et al. [24].

On account of on-line intelligent diagnosis based on neural

network, Schlechtingen et al. used it to fault diagnosis of

wind turbine generator [25]. In order to realize fault iden-

tification of bearing, many various efforts have been made

on the exploration of novel methods. Amar et al. proposed a

neural network based on vibrational spectra [26], Jiang et al.

combined improved singular value decomposition (SVD) and

hidden markov model [27], and Zeng et al. used a maxi-

mum interval classification method based on flexible convex

hull [28]. A novel diagnosis method for bearing was proposed

by Li et al., thereinto, the geometry of input data was taken

into account [29]. In addition, intelligent diagnosis method

was proposed based on firefly neural network by Li et al. [30].

However, there are still some limitations and deficiencies in

traditional intelligent diagnosis methods. On the one hand,

in consideration of feature extraction, a large number of

signal processing technologies requires to be grasped and

rich experience in engineering practice needs to be possessed;

additionally, feature extraction and intelligent diagnosis are

treated separately, the relationship between them could not

be taken into account. On the other hand, with regard to

model training, the shallow model is used to characterize the

complex mapping relationship between signals and health

status, which leads to the obvious deficiency in diagnostic

ability and generalization performance of the model in the

face of mechanical big data [31], [32].

Modern intelligent fault diagnosis technology is based on

the new theory and method of AI. In 2006, Hinton et al.

first proposed the deep learning (DL) theory in Science [33],

which triggered a wave of research on many different fields.

DL was ranked as the top 10 breakthrough technologies

of 2013 by MIT Technology Review. In 2015, Hinton et al.

indicated that DL was thought to be one of machine lean-

ing, and breakthrough was analyzed and discussed in the

respects of image, video, audio and text processing [34].

It has been adequately demonstrated that DL presents the

broad prospects on research and application. Through multi-

layer nonlinear network training, potential features of sam-

ples have been learned and classification or prediction ability

have been improved with DL. DL methods that are widely

studied usually include deep belief network (DBN) [35],

stacked self-encoders (SAE) [36], convolutional neural net-

work (CNN) [37] and recurrent neural network (RNN) [38].

Based on multivariate encoder information, a CNN was

designed to intelligently identify the failure of planetary gear

box by Lin et al. Not only did the deficiency of traditional

vibration analysis overcome, but also a potential intelligent

tool was provided to obtain the expected diagnosis towards

rotating machinery [39]. In accordance with multi-domain

features, an integrated kernel extreme learning machine was

proposed and used to gear box, rotor and motor bearing,

effective diagnosis was achieved by visualization with the

method [40].

Presently, on account of the wide use of DL in many

pattern recognition fields, intelligent fault diagnosis based

on DL has attracted much more attention of professional

researchers in machinery field. Therefore, this review will

focus the efforts on fault diagnosis of rotating machinery.

It will place an emphasis on fault diagnosis integrated with

deep neural network technology. Furthermore, a summary

of the applications will be given towards commonly used

rotating machinery such as bearing, gear and pump. Finally,

the above discussions are concluded and the possible research

directions are provided to inspire more researches in this

field.

II. DL BASED FAULT DIAGNOSIS

A. ARTIFICIAL INTELLIGENCE

As a new and interdisciplinary science, AI is aiming at sim-

ulating some of human thinking processes and intelligent

behavior by the use of computer. It can be achieved in com-

puter by the following two different ways, one is engineering

approach which adopts traditional programming technique;

the other is modeling approach, such as generic algorithm

and ANN.

From SIRI to AlphaGo, rapid development of AI has

been supposed to be interesting, surprising and outstanding

[41], [42]. AI approaches have been integrated into many

various fields, great achievements have been obtained in

man-machine game, pattern recognition, automatic engineer-

ing and knowledge engineering [43]–[45]. Because of the

increase of machinery data and complication of fault which

result in high uncertainty during diagnosis process, AI based

methods will outperform traditional methods on diagnosis

efficiency. AI-based approaches can be divided into the fol-

lowing two categories, knowledge-driven methods and data-

driven approaches [46].

B. DL

As a distinguished development of AI, DL can be under-

stood as feature learning or representation-learning, which

possesses multiple and high levels representations of data,

concretely, through DL, low-level features from simple and

nonlinear modules were composed to form more abstract

high-level representations in terms of categories or features,

complex functions and distributed feature representations of

data can be obtained [47]. Very deep neural networks can be

considered to be typical DL model. DNN plays an essential

role in deep models, mainly including DBN, SAE, CNN,

RNN and GAN. As one of unsupervised learning ways, DBN

is a DNN which possesses the stacked structure and consists

of multiple Restricted Boltzmann Machines. Similarly, SAE

is used to deal with high-dimensional data by means of
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unsupervised learning. It is composed of multiple auto-

encoders, which presents a three-layer neural network

including both encoding and decoding processes. CNN is

a supervised learning network, whose structure seems to be

more complex with convolution layers, sample layers and full

connected layers. With especial ring structure, RNN repre-

sents a unique advantage in settling learning problems with

sequential data via unsupervised learning. It is interesting

that GAN is comprised by generally both non-linear function

models, that is, a generative model and a discriminative

model respectively [48]. In order to overcome the deficiency

of insufficient training data, deep transfer learning (TL)

has achieved that the learning from the source domain is

employed to the target domain [49]. Compared with tradi-

tional machine learning, it should be noted that the key advan-

tage of DL is layers of features are automatically learned from

raw data through a general-purpose learning procedure, not

dependent on engineering skills and domain expertise [34].

In view of the advantages of DL, it has been applied

to many different fields such as language processing, auto-

matic speech recognition, and audio recognition [50], [51].

Meanwhile, this has aroused the interest of researchers in the

field of mechanical engineering, making it play an essential

role in intelligent fault diagnosis combined with other meth-

ods and technologies [52], [53].

C. OVERVIEW OF DL BASED FAULT DIAGNOSIS

Intelligent fault diagnosis is the combination of AI and fault

diagnosis, which expresses comprehensive use of domain

expertise and AI technology and strong capability of process-

ing considerable mechanical data [54], [55].

Three different steps are included in traditional intelli-

gent fault diagnosis, namely, signal collection, feature extrac-

tion and fault classification. Since some exhausted and

handcrafted signal feature extraction technologies could be

required in those methods, diagnosis results will finally be

affected. Moreover, the ability to learn the complex non-

linear relationships between features and patterns will be

hindered with the shallow structures such as SVM [56]. With

respect to new intelligent fault diagnosis, in place of feature

extraction and selection, the features can be automatically

learned from raw signals, which presents more intelligent

than conventional approaches [57], [58].

Some good results have been achieved in applications

to gear, gearbox, bearing, rolling, pump, wind turbine and

nuclear power plant with modern intelligent fault diagno-

sis [59]–[62]. Xu and his colleagues proposed a new intel-

ligent diagnosis method based on elaborately designed deep

neural network for failure detection of wind turbine, which

solved the problem of unbalanced distribution with regard

to SCADA data [63]. Combined a CNN with a Naïve Bayes

data fusion proposal, Chen et al. applied DL theory to nuclear

power plant inspection [62]. Zhang et al. constructed a

new unsupervised learning method called general normalized

sparse filtering, which was used for fault diagnosis of rolling

bearing and planetary gearbox [64].

III. APPLICATIONS OF DL TOWARD FAULT DIAGNOSIS

IN ROTATING MACHINERY

Combined with the above analysis, it can be proved that it has

acquired some improvements and achievements for machin-

ery fault diagnosis illuminated from the applications of DL

technique in other fields. As shown in Table 1, the appli-

cations of DL-based methods in machinery fault diagnosis

have been summarized. In order to evaluate the diagnosis

performance of methods, the following evaluation indicators

are employed, including the diagnosis accuracy, the training

accuracy, the average testing accuracy, the prediction accu-

racy, the clustering effect from visualization.

This review will play an emphasis on intelligent fault diag-

nosis of typical rotating machinery, including bearing, gear

and pump. Furthermore, DL-based approaches for improving

diagnosis accuracy will be analyzed and discussed in the

following.

A. INTELLIGENT FAULT DIAGNOSIS OF BEARING

As one of well-known and widely-used rotary machinery,

bearing is of great significance but its brokendown occu-

pies nearly 45-55% of equipment fault, which will lead to

accidents, downtime, even severe damage and economic loss

[93], [94]. Therefore, it is of vital importance to investigate

intelligent fault diagnosis methods of bearing, especially the

DL technique.

In order to overcome the imbalanced distribution of

machinery health conditions, a new learning method called

deep normalized CNN (DNCNN) was investigated to clas-

sify the faults of bearing by Jia et al. [95]. Three bearing

datasets are employed to validate the diagnosis accuracy of

the proposed methods, in which single faults and compound

faults with various imbalanced degrees are taken into account.

In Figure 1(a-c), it can be seen that DNCNN presents the

superiority than S-CNN and R-CNN in terms of learning

features from the vibration signals, in which the features

cluster well. By the use of the confusion matrices, the

imbalanced classification results were successfully obtained,

that is, 95.4% of the samples were correctly classified by

the proposed method, and only 4% of the samples were

misclassified.

As one method of machine learning, TL makes it possible

that one pretrained model is employed again to another task

with the purpose of reducing the distribution discrepancy and

enhancing the predictive performance [96].

Generally, both developing model and pretraining model

are included, moreover, the latter is widely used in machine

learning. Through the integration of auto-balanced high-order

Kullback-Leibler divergence, smooth conditional distribution

alignment and weighted joint distribution alignment, a novel

TL framework was designed for fault diagnosis of rotator

bearing and gearbox under varied conditions [97]. Inspired

by the idea of TL, a deep CNN was proposed to be used for

fault diagnosis of unlabeled data by Lei et al., which made

it possible that labeled data from one machine after being
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TABLE 1. Summary of DL-based methods for machinery fault diagnosis. TABLE 1. (Continued.) Summary of DL-based methods for machinery
fault diagnosis.

FIGURE 1. The visualization of learned features for Dataset A: (a) S-CNN,
(b) R-CNN, (c) DNCNN. S-CNN represents the convolutional neural
networks (CNN) using sigmoid function, R-CNN represents the CNN using
ReLU, DNCNN represents deep normalized convolutional neural network,
respectively [95].

trained could effectively classify the unlabeled data from

other machines [98]. Furthermore, as one of CNN, a transfer

neural network based on feature was explored for state identi-

fication of bearings. In comparison to the other methods such

as CNN and multi-layer adaptation CNN, the average clas-

sification accuracy of the proposed method was the highest

one which achieved 84.32%. It has been demonstrated that

more desirable transfer results and transfer performance were

obtained with FTNN. Seen from Figure 2(f), in considera-

tion of the learned transferable features, the distribution was

adapted efficaciously, furthermore, the among-class distance

was expanded [99]. In order to overcome the limitations in

training and the performance degradation, a new deeper 1D

CNN based on the residual learning was developed for fault

diagnosis of wheelset bearings, and the effectiveness was

approved by visualization Figure 3 [71].
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FIGURE 2. The visualization of the learned features on the dataset B
(source domain) and the dataset D (target domain): (a) CNN, (b) TCA,
(c) DAFD, (d) DDC, (e) MACNN, and (f) FTNN. CNN represents
convolutional neural networks, TCA represents transfer component
analysis, DAFD represents, DDC represents, MACNN represents
multi-layer adaptation CNN, and FTNN represents feature-based transfer
neural network [99].

FIGURE 3. Visualization of these five methods in noise environment
(SNR = −16 dB). ADCNN represents adaptive deep CNN, Wen-CNN
represents CNN proposed by Wen et al, MSCNN represents multiscale
CNN, WDCNN represents deep convolutional neural networks with wide
first-layer kernels, Der-1DCNN represents deeper 1D CNN [71].

A new deep TL with three-layer sparse encoder was inves-

tigated by Wen et al, which was validated by the use of motor

bearing dataset. Compared with other traditional methods,

such as DBN, ANN, sparse filter, and SVM, this proposed

method presents good performance and the prediction accu-

racy achieved 99.82% [100].

He et al. presented a composite deep signal processing

approach, which integrated vibration analysis and deep learn-

ing [101]. Vibration analysis was embedded into the dis-

crete Fourier transform - inverse discrete Fourier transform

autoencoder, which achieved that time-frequency charac-

teristics were learned adaptively and effective convergence

was obtained in view of learning procedure. Real bearing

data was employed to validate the performance of the pro-

posed method, which presented obviously higher diagno-

sis accuracy compared with those of popular deep neural

network (DNN), CNN and SVM. Specifically, the testing

accuracy reached 100.00% while below 95.50% in other

methods when shaft speeds were set as 45 and 60.

Motivated by the thought of enhancing the generalization

ability and robustness of diagnosis model through utilizing

the structural domain information among multiple bearing

fault types, a new deep output kernel learning was presented

in order to overcome the randomness of some deep learn-

ing methods [102]. In comparison to one the-state-of-the-art

signal analysis method, four shallow models and four deep

models, it showed higher accuracy of 100.00% and shorter

training time of less than 7 s.

Combined compressed sensing with a convolutional DBN,

a new improved deep model with powerful feature learn-

ing ability was constructed to analyze the single fault and

compound faults of rolling bearing by Shao et al. [103].

It should be pointed that the analysis efficiency was enhanced

by compressed sensing and the generalization performance

was enhanced via exponential moving average technique. The

average testing accuracy of the proposed method achieved

94.80%, which was be superior to other traditional methods

of no more than 90.00%, including the standard DBN, CNN,

deep auto-encoder (DAE), BP neural network and SVM.

From the visualization of PCA (Figure 4), it can be proved

that the better clustering result was obtained from the pro-

posed method, which expressed the superiority in capturing

potential features.

FIGURE 4. Three dimensional visualization of different features using
PCA. (a) Compressed data features, (b) extracted 22 features, and (c) deep
features [103].

In regard to the diversity of the fault data distribution and

the data reconstruction ability, a sparse stacked denoising

autoencoder is developed for the fault diagnosis of rolling

bearings [104]. With the introduction of optimized trans-

fer learning algorithm, the problem of the domain adaption

was solved, and the accuracy of the target domain achieved

96.70% in one of motor loads. It was demonstrated that the

quality of the target domain was influenced by the perfor-

mance of the source domain algorithm, however, it is limited

to only depend on the enhancement of the source domain.

In consideration of unlabled data in practical engineering,

combined with Gath-Geva clustering algorithm, a stacked

denoising autoencoder was investigated for roller bearing

fault diagnosis without principal component analysis and data

mark [105]. The proposed method presented the superior

clustering effect. Moreover, its classification accuracy was

higher compared to those of the other combination models,

and the highest one reaches up to 100.00%.
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FIGURE 5. The structure of the proposed CNN-ELM model for fault
diagnosis [107].

B. INTELLIGENT FAULT DIAGNOSIS OF GEAR AND

GEARBOX

It was indicated that the gearbox failure was the primary

contributor to equipment fault, which took up nearly 40% in

mechanical transmission field according to the investigation

performed under the assistance of the Institute of Electrical

and Electronic Engineers (IEEE) [106]. Hence, in view of the

fault diagnosis for gear and gearbox, the methods based on

DL will be highlighted in the following.

Combined CNN and extreme learning machine, a new

model without any extra training and fine tuning was estab-

lished by Chen et al., gearbox dataset and motor bearing

dataset were selected to verify the effectiveness of the pro-

posed method, as depicted in Figure 5 [107]. It was demon-

strated that the feature learning capability was improved by

the CNN employed as an automatic feature extractor, and

the classification performance and the learning speed were

promoted through the extreme learning machine. In view of

gearbox, the results indicated that the training accuracy and

average test accuracy reached 100.00%± 0.00 and 99.83%±

0.24 respectively, which achieved the superiority in contrast

to the other methods such as standard CNN. With regard to

motor bearing, the training accuracy and average test accu-

racy gained 100.00%± 0.00 and 99.92%± 1.24 respectively,

which exhibits the better classification performance.

With respect to signal processing-basedmethods, a wavelet

packet transform, a distance evaluation technique and a sup-

port vector regression (SVR)-based genericmulti-class solver

were combined for fault diagnosis of bearing and gearbox [1].

The proposed method presented the superior representative

capability and the higher diagnosis accuracy, which was

mainly attributed to the influences of wavelet basis functions

on the proposed whole framework.

Motivated by the idea of TL, a new intelligent fault

diagnosis scheme named deep transfer network with joint dis-

tribution adaptation was exploited to overcome the applica-

bility limitations for the traditional diagnosis methods [108].

Three datasets including wind turbine, bearing and gearbox

fault dataset, were employed to verify the performance of

the proposed framework, which displayed some good results

in accordance to various working conditions, the types and

severities of fault. In order to demonstrate the performance

of the proposed method, the average diagnosis accuracy,

missing alarm rate, and false alarm rate were chosen as evalu-

ation indicators, meanwhile, eight state-of-the-art intelligent

diagnosis approaches were used as comparisons. With regard

to gearbox, the average diagnosis accuracy of the proposed

scheme outbalanced those of other methods, which reached

up to more than 96%. Similarly, a working condition-robust

fault diagnosis method based on an improved joint distri-

bution adaptation was exploited to achieve the acquisition

of more useful samples and reduction of the input dimen-

sion [109]. The vibration signal datasets of roller bearings

and a gearbox were used to validate the fault diagnosis per-

formance of the proposed method, which obviously demon-

strated its effectiveness although its computational time was

completely unsatisfactory.

In consideration of unexpected diagnostic results via uti-

lizing the spectrum signal, modern spectrum signals through

preprocessing current signals was incorporated into DNN by

Li et al. [110]. Compared with SVM and BPNN, the pro-

posed method represented superior diagnostic results for

faults detection in planetary gears, the testing accuracy rate

of which achieved 96.69% with standard deviation of 1.05%.

Furthermore, the diagnosis advantage of the proposedmethod

was proved by the visualization of fault characteristics from

PCA, as shown in Figure 6(d), which presented better clus-

tering effect and little overlapping than those of others.

FIGURE 6. Scatterplot of the main characteristic components: (a) signals
in the time domain, (b) direct spectrum signals, (c) spectrum signals
without the power frequency, and (d) modified spectrum signals.
Reprinted with permission from ref. [110].

A new DL method was developed for fault diagnosis of

planetary gear through combining power spectral entropy

of variational mode decomposition and DNN, which was

trained through unsupervised training and supervised fine

tuning [111]. It is beneficial to fault classification via the

reduction of raw signals by the use of BP. Compared with

other methods such as SVM and BP, the proposed method

exhibited the higher overall recognition rate of 100%.

Based on time-frequency analysis and DNN, a deep

residual learning was constructed for fault diagnosis in
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planetary gearbox [112]. Its performance was demonstrated

under nonstationary running conditions, which implied

admirable results for the incipient fault detection, especially

when rotating speed was variable. The proposed scheme

presented the higher diagnosis accuracy, which reached up

to 95.4% under faulty condition.

A deep CNN was constructed for gearbox fault diagnosis

under different operating conditions, which was compared

with different SVM classifiers optimized by the use of a

grid search technique [113]. With regard to vibration sig-

nals of different directions, the proposed method showed the

superiority to other traditional methods. The identification

accuracy achieved 93.6% and the computational cost was

reduced.

By the use of the maximum correntropy and artificial fish

swarm algorithm, a new deep autoencoder feature learning

method was designed and optimized by Shao et al. for the

fault diagnosis of gearbox and electrical locomotive roller

bearing [114]. Compared with other approaches such as stan-

dard deep autoencoder, BP and SVM, the proposed method

possessed the admirable diagnosis effectiveness including

robustness, and the average testing accuracy reached 94.05%

with a smaller standard deviation of 1.34.

In order to overcome the dependence on numerable

labelled data and time consuming of handcrafted feature

extraction in traditional supervised diagnosis, a new deep

semi-supervised method of multiple association layers net-

works was investigated by Zhang et al. [115]. As shown

in Figure 7, the wavelet packet transform was employed to

preprocess raw signals, moreover, the labeled and unlabeled

data was together used to train the model and method. It can

be concluded that the recognition accuracy of the proposed

method presented the advantage in comparison to SAE and

DBN with less labeled data. The recognition rate increased

from 78.58% to 93.26% with the increase of the labeled

samples from 2% to 100%. Additionally, it is worth to note

that the optimization of the hyper-parameter may be a key

challenge and have a great influence on the performance of

the neural networks.

FIGURE 7. The framework of the proposed method for fault diagnosis of
planetary gearbox [115].

C. INTELLIGENT FAULT DIAGNOSIS OF PUMPS

With the function diversity and structural complexity of

hydraulic system, it seems to be more challenging for

fault identification and classification [116]–[118]. As power

source of hydraulic system, hydraulic pump plays an indis-

pensable role in reflecting the working state of the system

[119], [120]. Meanwhile, with respect to the wide use of

centrifugal pump, whose operating state directly affects pro-

duction and safety. According to the statistics on the mechan-

ical and electrical equipment defects, more than 50% are

connected with pump failures [121], [122]. Therefore, it is

of great significance to diagnose pump faults accurately and

effectively in order to ensure the safety and reliability of the

system. Although some researches have achieved admirable

results on machinery intelligent fault diagnosis, there are still

little investigations on pumps.

As an essential and famous DL, DNN has aroused great

attention in intelligent fault diagnosis, which has also stim-

ulated interest in research for pumps. A new data-driven

method based on CNN with LeNet-5 was developed by

Wen et al. [90]. In regard to axial piston hydraulic pump,

two fault conditions were taken into account, and the piston

shoes and swashplate wearing and valve plate wearing were

included. The prediction accuracy achieved 100%. As for

self-priming centrifugal pump, four faults conditions were

analyzed, including bearing roller wearing, inner race wear-

ing, outer race wearing, and impeller wearing fault condition.

From the results of confusion matrix, it can be observed that

the prediction accuracy of 99.481% was obtained, moreover,

the most misclassification was 0.4%. Similarly, a simple

improved CNN was proposed for fault diagnosis of hydraulic

pump by Yang et al. [123]. Two operating conditions includ-

ing stable and variable pump speeds were investigated, the

accuracy rate exceeded 95% and 90% in view of the worst

results.

Based on image-processing technique, a probabilistic neu-

ral network was introduced by Lu et al, and it was achieved

that the feature was automatically extracted in a two-

dimensional space [124]. The speeded-up robust features and

t-Distributed Stochastic Neighbor Embedding (SNE) were

employed to automatic feature extraction and dimensionality

reduction respectively. By the use of t-SNE, the feature infor-

mation was more clustered and presented the potent capabil-

ity of separability (Figure 8(A)). It can be concluded from the

cross-validation results that the proposed method presented

the high diagnosis accuracy. The classification accuracy was

more than 96% for the self-priming centrifugal pump. For

the axial piston hydraulic pump, the average classification

accuracy achieved as high as 98.71%.

Through introducing data indicator containing time and

frequency, Wang et al. investigated a DBN for multiple faults

diagnosis of the axial piston hydraulic pump, which achieved

the advantageous classification accuracy of 97.40% in com-

parison to SVM and ANN [125]. It deserved to be mentioned

that the restricted Boltzmann machine was used to realize the

automatic learning of fault features.
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FIGURE 8. The first three features extracted using t-SNE (A) and without
using t-SNE (B) [124].

In consideration of the complex dynamic behavior for

rotary machinery, symbolic analysis plays an essential

role [126]. In combination with hierarchical symbolic analy-

sis (HSA), a CNN was used for fault diagnosis of centrifugal

pump [127]. The diagnosis accuracy improved as the number

of hierarchical layers increased, moreover, the computation

time admirably reduced after usingHSA. It achieved themax-

imum of 98.50% when hierarchical layer was 3. By means

of data fusion which achieved the transformation of multi-

sensor-signals to images, another improved CNN was pro-

posed by Wang et al., and the prediction accuracy reached up

to 99.47%. It presented the obvious better diagnosis effective-

ness in comparison with other intelligent methods [128].

Owing to the long operating time and computing compli-

cation, a novel intelligent fault diagnosis scheme was devel-

oped combined deep structure with SVM, which realized the

learning of the hidden features [129]–[131]. The similar con-

clusions were obtained that the accuracy rate increased with

the number of network layers. In contrast to other methods,

the proposed method exhibited the superior diagnosis perfor-

mance. In consideration of the accuracy rate and computing

time, the optimum result achieved up to 97.75%with standard

deviation of 0.20.

IV. CONCLUSIONS AND PERSPECTIVES

Relevant studies on fault recognition methods have been

performed by our research group [132], [133]. Additionally,

PCA and XGBoost were integrated to diagnose hydraulic

valves. It is worth noting that we have conducted many

investigations on fault diagnosis and signal processing for

hydraulic pumps and centrifugal pumps, which mainly con-

centrate on conventional intelligent methods [134]–[137].

Furthermore, we gradually begin to study intelligent fault

diagnosis methods such as SVM for hydraulic pumps [138],

which provides a theoretical foundation for the following

researches on DL-based fault diagnosis approaches. In the

present and future, we will put emphasis on the DNN-based

methods and exploremulti-information fusion technique with

well generalization capability, moreover, remote diagnosis

system will be exploited and constructed.

In accordance with the analysis and discussions above,

the methods based on DL can not only adaptively extract

the hidden complex and changeable fault information, but

also overcoming the reliance on diagnostic knowledge and

engineering experience of traditional methods. Although

these methods have achieved some expected results in rotary

machinery, there are still some challenges in the current

researches and the corresponding future research directions

are as follows:

(a) A large number of studies only used experiments or

existing datasets to validate the effectiveness of the proposed

methods, and the underlying mechanism of improved diag-

nostic accuracy has not been analyzed in details.

(b) Many researches primarily focus on the single phys-

ical source information, diagnosis accuracy requires to be

improved owing to small data size. It is significant to pay

more attention to multi-source information, which can com-

prehensively reflect the state of equipment. But multi-source

signal has diversity and complexity problems, which need to

be further studied.

(c) The commonly used single marker system has inter-

preted fault information out of context, and the introduction

of multi-marker system could be promising to explore the

identification of multiple faults.

(d) On account of many present methods, only the diag-

nosis accuracy is improved. However, in the face of the

fault with more coupled and concurrency characteristics, it is

urgent for further exploring the identification of complex

faults and the generalization performance of the method.

Based on the thinking of DL, intelligent fault diagnosis

strategies are overviewed in this review. The applications of

DL-based techniques in fault diagnosis of rotating machinery

are thoroughly analyzed and discussed, mainly bearing, gears

and pumps. The diagnosis performance of these emerged

methods is highlighted, which provides ideas and guidance

for the exploration and applications of novel intelligent fault

diagnosis in rotarymachinery extending to othermachineries.
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