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Abstract: The Internet of Things (IoT) is a key enabler technology that recently received significant
attention from the scientific community across the globe. It helps transform everyone’s life by con-
necting physical and virtual devices with each other to offer staggering benefits, such as automation
and control, higher productivity, real-time information access, and improved efficiency. However,
IoT devices and their accumulated data are susceptible to various security threats and vulnerabilities,
such as data integrity, denial-of-service, interception, and information disclosure attacks. In recent
years, the IoT with blockchain technology has seen rapid growth, where smart contracts play an
essential role in validating IoT data. However, these smart contracts can be vulnerable and degrade
the performance of IoT applications. Hence, besides offering indispensable features to ease human
lives, there is also a need to confront IoT environment security attacks, especially data integrity
attacks. Toward this aim, this paper proposed an artificial intelligence-based system model with a
dual objective. It first detects the malicious user trying to compromise the IoT environment using a
binary classification problem. Further, blockchain technology is utilized to offer tamper-proof storage
to store non-malicious IoT data. However, a malicious user can exploit the blockchain-based smart
contract to deteriorate the performance IoT environment. For that, this paper utilizes deep learning
algorithms to classify malicious and non-malicious smart contracts. The proposed system model
offers an end-to-end security pipeline through which the IoT data are disseminated to the recipient.
Lastly, the proposed system model is evaluated by considering different assessment measures that
comprise the training accuracy, training loss, classification measures (precision, recall, and F1 score),
and receiver operating characteristic (ROC) curve.

Keywords: blockchain; artificial intelligence; intrusion detection system; internet of things; malicious
smart contract

MSC: 68M25

1. Introduction

The rise of Internet of Things (IoT) devices has decisively stood out in the industrial
market to orchestrate the massive roll-out of applications, such as smart cities, smart
healthcare, smart grids, and smart homes. The IoT devices are equipped with smart sensors
that obtain data from the surroundings and process it to obtain intuitive information,
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such as managing energy efficiency in smart grids, temperature and pressure control in
smart industries, and optimizing route patterns in vehicular communication. Moreover,
it paved the way for individuals to remotely connect and control their IoT devices using
smartphones, tablets, and computers via the Internet. These devices are synergistically
interconnected over the Internet to accomplish the shared objective of the application (e.g.,
smart home systems). As a result, IoT applications are progressively becoming a part of
people’s daily lives that enhance their quality of life. Despite its remarkable advantages,
the IoT environment is still in its infancy from the perspective of security and privacy.
The IoT ecosystem comprises heterogeneous devices, where each device has a colossal
amount of data relaying via the insecure Internet. Moreover, the communication link
between IoT devices is vulnerable to various security threats, such as volumetric attacks
(distributed denial of service (DDoS)) [1], data integrity attacks, session hijacking, and man-
in-the-middle attacks. Furthermore, the current IoT systems are centralized in nature;
thereby, it suffers from a bottleneck of low scalability. This is because as the number of IoT
devices increases, the authentication, authorization, and control and management become
unmanageable by the current centralized IoT systems. Therefore, the IoT administrator has
to employ large data servers for the information exchange, resulting in a cost-expensive IoT
environment. Moreover, the scalability deteriorates if the central server is compromised
or goes down by the well-known DDoS attack [2,3]. Therefore, there is an imperative
requirement for organizations to invest in modern technological support to confront the
aforementioned security issues.

Recently, blockchain has attracted a lot of attention and emerged as a breakthrough
technology to resolve security and scalability issues in the IoT environment [4,5]. It has
unique capabilities, such as immutability, decentralization, transparency, and high reli-
ability, that are tempted by the research community across the globe. For instance, Ro-
drigues et al. in [6] proposed a queue-theoretical analytical model to improve the processing
efficiency of data transactions and the integrity of stored data in the blockchain-enabled
IoT network. Further, the authors of [7] explored the optimal block assignment of the
blockchain technology in the wireless IoT system. Their proposed solution ensures that
each blockchain node efficiently verifies every transaction between the IoT nodes. Further,
genetic algorithms are adopted to optimize the block assignment problem in the blockchain
network. Their results show that the proposed solution improves the convergence time
and occupancy storage rate. However, they have not considered the security parameters
that restrict the data integrity and volumetric attacks in the IoT ecosystems.

Ren et al. in [8] presented a joint solution for the low-latency, task offloading, and secu-
rity provision problems in wireless body area network-based IoT systems. Toward this aim,
the authors first proposed a decision-making algorithm to manage resource-constrained
IoT devices. Then, they employed blockchain technology to offer a robust security solution
for data tampering, authentication, and cyber-physical attacks. Nevertheless, there is no
security provision for the smart contract used to authenticate the incoming data. Then,
Ref. [9] presented a resource constraint problem of IoT devices in the smart healthcare
system. They employed an Ethereum-based blockchain technology to address the load
distribution between the resources in the IoT environment. Here, they consider rich and
thin clients based on their resource capacity, i.e., high resources (rich clients) and low
resources (thin clients). Only rich clients can participate in the blockchain mining process,
whereas thin clients can only access the blockchain and participate in the transaction pro-
cess. Their proposed solution outperforms in terms of efficiency compared to other baseline
IoT-enabled blockchain architectures. However, the security prospect is not considered,
for instance, the integrity of a smart contract is not verified, i.e., whether it is manipulated
or not.

From the literature, we can observe that most of the blockchain-based security solu-
tions are centered on secure data storage and task offloading for IoT applications [10,11].
However, none of them verify the authenticity of the smart contract, which is an integral
part of the blockchain network. Smart contracts verify and authenticate the data that are
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required to be stored in the blockchain immutable ledger. Earlier, this was accomplished
using various third-party intermediaries (middlemen), which manually check and authenti-
cate the data. However, these intermediaries are non-trusted and can exploit the operations
of the blockchain network. On the contrary, smart contracts are programmable code that
automates the agreement workflow, i.e., when certain conditions are met, possible actions
get executed. Nevertheless, there is a possibility that malicious users maneuver the smart
contracts, where it accepts the non-secured data and discards the secure data from the
blockchain network, deteriorating the security performance of the IoT systems. Recently,
artificial intelligence (Al) captured the IoT market by offering staggering benefits in the
field of healthcare [12], banking, agriculture, and robotics. If offers predictive services,
intelligence, automation, and security for various real-world applications. To respond to
the aforementioned challenges, the authors in [13,14] utilized Al-based algorithms and
an attention mechanism to detect reentrancy programs (a single program executes mul-
tiple outputs) and vulnerabilities in the smart contracts. However, the above-mentioned
approaches do not consider all aspects of the security threats, such as the access control,
time manipulation, low-level calls, denial of service, and bad randomness vulnerabilities in
smart contracts.

As mentioned above, a lot of work has been performed in aligning the blockchain
with IoT systems. Nevertheless, the smart contracts used in the blockchain network are
not properly assessed for their malicious behavior. They merely checked the possible
security threats while deploying smart contracts and how to eliminate them from the IoT
applications. In order to create a system that considers all aspects of security, there is
a need for an architecture that has selective permeability for users to deploy the smart
contract. By analyzing the network data of a user, an AI model can detect multiple attacks,
such as the DDoS, access control, and many more. Once it ensures that the user does
not possess malicious intent, the second level of security, analyzing smart contracts for
vulnerabilities, is executed. This shall lead to enhanced security because the main two
concerns of security concerning blockchain are addressed. To tackle the above-mentioned
security issues, this paper presents an Al-based malicious smart contract (using deep
learning (DL)) and intrusion detection system for blockchain-enabled IoT systems. First,
the proposed system examines the user’s network attributes to predict if the user may
possess malicious intent or not. Different Al-based algorithms are incorporated, such as
decision trees, logistic regression, random forest, multi-layer perceptron, and Naive Bayes,
that efficiently predict the user’s behavior, i.e., malicious or non-malicious, by utilizing
the features of the standard dataset. In the next stage, the proposed system model collects
smart contracts from non-malicious users that want to store their sensitive IoT-based data
in the blockchain; for that, this paper used DL-based algorithms that classify the smart
contracts, i.e., a malicious and non-malicious smart contract. If the smart contract is safe,
it can deploy (validate the IoT data) on the blockchain. Finally, this paper evaluates the
performance of the proposed system model using various performance parameters, such
as the training accuracy, classification measures, and blockchain scalability.

1.1. Motivation

A smart contract helps business owners conduct their business and trade securely and
privately without third-party services. This reduces the operating cost for maintaining the
authenticity and legitimacy of the IoT applications. The present research has primarily
focused on static smart contract analysis, code issues or bug identification, and intrusion
detection, with little attention to the Al-based classification of smart contracts (malicious or
safe). However, a combined work of intrusion detection for malicious users and DL-based
smart contract classification has yet to be discussed. Thus, there is a need to design a
system which first detects malicious users through intrusion detection, followed by the
smart contract classification i.e., malicious and non-malicious.
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1.2. Novelty

In recent years, there has been a major rise in the use of blockchain technology across
various domains, such as the IoT, to offer significant advantages, such as transparency,
decentralization, immutability, and security. Moreover, DL is a subfield of Al that uses
neural networks to learn patterns and make decisions based on that learning. Using
blockchain, we can tackle data injection attacks in IoT systems, where the attackers cannot
tamper with the data. The scientific community has given many indispensable solutions to
tackle security threats, where first smart contracts validate the roles and permissions and
then the data are forwarded to the blockchain immutable ledger. However, it is observed
from the literature that many researchers have not explored the malicious behavior of
users and their deployed smart contracts. For example, a malicious user (intruder) can
deploy their malicious smart contract in the blockchain to deteriorate the performance of
IoT systems. This research gap is not yet fully explored by the global research community.
Therefore, there is a stringent requirement for a secure architecture that first classifies
malicious users and their deployed smart contracts. Toward this aim, this paper proposed
an Al and blockchain-based architecture where the first ML classifier classifies the malicious
users using an intrusion detection system dataset. Then, a malicious smart contract dataset
is used, where DL algorithms are trained to bifurcate malicious and non-malicious smart
contracts. So, the proposed architecture allows only non-malicious smart contracts to store
their data in the public blockchain.

1.3. Contributions
The following are the major contributions of this paper.

¢  This paper proposes an Al-based system model that first classifies the IoT users as
malicious and non-malicious from their respective IoT environments. Only the data of
the non-malicious user are dispatched to the IoT application, which is associated with
blockchain technology to offer tamper-proof storage.

¢  This paper utilizes DL models to efficiently predict a malicious and non-malicious
smart contract before it validates or authenticates the data of non-malicious users.
The dual objective of the proposed system model improves the security and privacy
of the IoT systems.

*  The proposed system model is evaluated using different performance assessment mea-
sures, such as the training accuracy, classification measures, and blockchain scalability,
to substantially improve the simulation results for the proposed system model.

1.4. Organization

The organization of this paper is as follows. Section 2 discusses the related work
comprised of a recent literature review. Section 3 shows a brief introduction to the system
model and the objective function formulated for the proposed work. Section 4 shows a
detailed description of our multi-layered system model. Section 5 presents the performance
analysis of our proposed system model. Lastly, Section 6 concludes the proposed work by
highlighting the research findings.

2. Related Works

The research community makes several solutions with their insightful viewpoints to
mitigate the security issues of the IoT ecosystem. For example, Xiao et al. in [15] proposed
an Al and blockchain-enabled secure and intelligent model for smart city applications, i.e., a
natural gas IoT system. The authors used the long short-term prediction (LSTM) model
to predict the deliverability of natural gas. Further, blockchain allows buyers and sellers
to maximize the chances of obtaining transaction contracts. Their results outperformed
the prediction and transaction matching; however, the security aspect on the natural gas
IoT system was not explored. Next, Das et al. in [16] presented an Al and blockchain-
based key management protocol for cyber-physical systems. Here, they acquired the data
using fog servers from the smart device, then verified it with the blockchain miners to
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add it to the blockchain’s decentralized ledger. They employed the benefits of Al in the
private blockchain to secure IoT devices from potential cyber-physical system attacks. Their
results showed that the proposed scheme has less computational complexity than other
state-of-the-art works. Then, the authors in [17] studied issues such as trustworthiness and
authentication in wireless sensor network-based IoT systems. Toward this challenge, they
employed public and private blockchain that maintains the authentication between the
IoT-IoT node and the IoT node and cluster head. Moreover, Al algorithms were utilized
to confront denial-of-service (DoS) attacks that target the cluster head to exploit the au-
thentication and registration of the IoT nodes. Nevertheless, both [16,17] did not consider
security threats, such as man-in-the-middle, data integrity, and session hijacking attacks.
Moreover, there was no security provision for smart contracts. Although, a few researchers
have given solutions to deal with smart contract shortcomings. For instance, Li et al. in [18]
reviewed a few smart contract deployment issues, such as a low-speed updating mech-
anism, recompilation, and redeployment. For that, they proposed a new smart contract
deployment architecture and optimization technique using the application-oriented instruc-
tion for blockchain-based IoT systems. The results showed that their proposed model has
an efficient update latency and reduces the ledger size and gas consumption compared to
the existing baseline works.

Then, ref. [19] presented a smart contract static analysis tool called SmartCheck to
comprehensively classify solidity code issues using XML-based representation that ana-
lyzes XPath patterns in the solidity code. However, their solution is not adaptable to the
new vulnerabilities introduced in recent years. The authors in [20] dealt with reentrancy
bugs in Ethereum-based smart contracts using a fuzzy-based analyzer. It focused on one
of the most common bugs encountered in Ethereum smart contracts; however, they have
not incorporated Al models, due to which there is no bifurcation between malicious and
non-malicious data. So, a smart contract has to process both malicious and non-malicious
data, resulting in high computational overhead to the system. The authors of [21] classified
smart contracts into four classes, such as greedy, suicidal, prodigal, and safe. Then, they
implemented a symbolic analysis-based tool, i.e., “"MAIAN", that validates and exhibits
real-time exploits in the smart contract. The result showed that their proposed solution
efficiently finds the real exploit at a true positive rate of 89%. However, the solution was
limited to source code vulnerabilities. It does not discuss the passive attacks that jeopardize
the performance of the entire system. In [22], the authors presented a novel definition of
lightweight smart contracts that provides a high level of confidence, even in the absence of
blockchain. By separating requirement specifications from smart contract implementations
using special objects, referred to as historical objects, the approach provides transparency,
immutability, and protection against corrupted or erroneous smart contracts. The authors
proposed a framework that enables the creation of smart contracts using an imperative,
executable language. Adding a new object, named the history object, it stores the history of
transactions pertaining to the contract, i.e., the messages for method calls and method re-
turns, which offers a runtime verification of a contract’s defined behavioral features, as well
as control over the safety, security, and privacy, as well as a trusted asset transfer. However,
their work entirely depends on blockchain technology, where they have not utilized the
essential properties of Al algorithms, which can significantly improve the performance of
IoT systems. For instance, if the blockchain-based smart contract has malicious code, then
there is no checkpoint that classifies the smart contract as “malicious” or “non-malicious”.
This also implies that the blockchain has to store malicious data in its immutable ledger,
degrading the applications” performance. Liao et al. [23] demonstrated a vulnerability
assessment approach, termed SoliAudit. SoliAudit uses machine learning and fuzz testing
to check for vulnerable smart contracts. The results of their experimentation are up to
90% in terms of vulnerability identification. They have not considered intrusion detection
attacks for their system. Further, Alkadi et al. [24] presented a deep blockchain framework
(DBF) built to provide a privacy-based blockchain with smart contracts and security-based
distributed intrusion detection in IoT networks. They utilized a DL technique, namely
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BiLSTM (Bidirectional long short-term memory) to train a model for the UNSW-NB15 and
BoT-IoT datasets. Their analysis provides a thorough architecture and highly accurate
results on the respective datasets. However, they do not consider the vulnerability of smart
contracts themselves. Similarly, Gupta et al. [3] presented a malicious smart contract detec-
tion system to analyze the vulnerability of smart contracts using DL. They used the LSTM,
GRU, and ANN for experimentation purposes which result in a accuracy close to 99%.
However, they did not explore the possible intrusion attacks on the IoT network. Table 1
shows the comparative analysis of the proposed system model with the state-of-the-art
work approaches.

Table 1. Comparing the existing works with the proposed work by considering different parameters.

Author Year Objective Pros Cons
Xiao 2021  Blockchain and Al-powered secure nat- Results that outperform predic- Security of this system is un-
etal. [15] ural gas IoT system tion and transaction matching explored
Das 2022 Al and blockchain-enabled key man- Less complexity than other Security aspect from vari-
etal. [16] agement for industrial cyber physical works ous attacks is unexplored
systems
Ismail 2022  Secure authentication for wireless sen-  Security and authentication is ex- Security from various at-
etal. [17] sor networks in IoT using blockchain ~ plored tacks is unexplored
Lietal. [18] 2022 Proposed a new smart contract deploy- Better results for update latency, Deals only with shortcom-
ment architecture to overcome certain  reduced ledger size and gas con- ings of smart contracts
smart contract shortcomings sumption
Tikhomirov 2018  Presented a smart contract static analy- SmartCheck helps improve secu- Unable to predict unknown
etal. [19] sis tool called SmartCheck to provide rity by detecting code issues in  vulnerabilities
a comprehensive classification of code  solidity
issues in solidity
Chao Liu 2018 Presented ReGuard to detect reen- Focuses on most common secu- Only single attack vector is
et al. [20] trancy bugs in Ethereum smart con- rity bug in smart contract explored; cannot predict un-
tracts known vulnerabilities
Nikolic 2018 Proposed a system classifying smart A tool called MAIAN was devel- Not detected IDS attacks
etal. [21] contracts as greedy, prodigal, suicidal, oped to classify the smart con-
and safe tracts into four categories
Owe 2022  Proposed a new type of smart contract ~Preserves trust in blockchain sys- Computationally expensive
etal. [22] known as lightweight smart contract tem (AT is not incorporated)
Liao 2019  SoliAudit: Smart Contract Vulnerabil- Utilizes machine learning and Security from intrusion at-
etal. [23] ity Assessment fuzz testing to analyze smart con-  tacks is not explored
tract
Alkadi 2020 A deep blockchain framework with Uses DL to secure the IoT net- Vulnerability of smart con-
etal. [24] secure intrusion detection in IoT net- work from intrusion attacks tracts is not explored
works
Gupta 2022  DL-based malicious smart contract de- DL-based vulnerability assess- Intrusion detection in IoT
etal. [3] tection in IoT network ment of smart contracts network is not explored
Proposed 2022  To secure blockchain-enabled IoT sys- Explores security aspects of -
System tems using Al blockchain-enabled IoT systems

against various attacks and vul-
nerable smart contracts

3. System Model and Problem Formulation

In this section, we formulate our objective function that has two objectives, i.e., to
secure the IoT ecosystem from intrusion attacks and to enhance the security and privacy of
blockchain-based smart contracts. Then, based on the formulated problem, a systematic
system model is designed, which briefs the proposed solution to tackle the security threats
of the IoT environment. In the IoT environment, there are numerous devices, which are
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remotely managed by the users to complete the shared task. Let us consider a user entity
set {uy,up, us, ..., uy} € U that controls IoT devices, such as {dy,dy, ..., dn} € D, where a
user uq has one or many d;.

{d1,d3,...,dn} € D where, (1)
u; €d; or, )
u; € {dl,...,di} 3)

Here, an intruder (u,) frames a malicious packet to exploit an authenticated IoT device
(d;); further, u, can also place an already compromised IoT device (d,) to deteriorate the
performance of loT environment.

malicious packet

Ug ——————— d; 4)

s.t. up & {uq, U, us, ..., Un} (5)
o PR g I ) ©)
st dy ¢ {dy,da, ..., dy) @)

To confront the intrusion attacks, researchers have adopted Al and blockchain-based
security solutions where Al uses classification algorithms to bifurcate malicious and non-
malicious data packets. On the other hand, blockchain securely stores the non-malicious
data packets in the decentralized immutable ledger. For that, the non-malicious data
packet has to first pass the smart contract security (authenticate the data using various
authentication conditions) where, based on certain predetermined conditions, the data
get stored in the blockchain ledger. In the proposed system, we assume the user entity
set {uy,up, u3, ..., uy} € U that develops and deploys the different smart contracts (S)
for their respective IoT applications. Each u; € U are easily tracked by their unique
ID; € {ID1,ID,,ID3,...,IDy}. Every user is passed through the malicious user detection
layer, where each user is classified n times, i.e., malicious and non-malicious. A counter
{x1,x2,x3,...,x,} € X is associated with ID of each user, i.e., ID; : X;, which signifies
number of times a user u; is detected malicious.

IX € {uy,up,uz,...,uy} €U (8)

Assume x = 0, the user is classified p times. If the count of user detected “malicious”
is x; > p/2, then that user is suspended and would not able to deploy smart contract.

x; > p/2 user is suspended

ID; : x; )
x; < p/2 user can deploy smart contract

The safe users {suy, suy,sus, ..., su,} € SU after passing through the user detection

layer can safely deploy smart contracts {5]1, 5/2, 5]3, e, s]t} € S. Now, safe users su; create the

contract s; and forward it to the data preparation layer to prepare it for training purposes.
After that, the smart contract is compiled into two entities, i.e., bytecode (B) and opcode
(O), which are encoded by utilizing one-hot encoding which on compilation formed feature
vector (FV;) for given contract s;. The opcodes are part of a machine-language instruction
that specifies the action to be taken. There are 256 types of opcodes, such as addition,
multiplication, division, store, etc. As opcodes contain categorical data, we cannot directly
give inputs to the Al models, so the one-hot encoding technique is used. It converts
categorical data into binary vectors where 1 represents the feature’s existence. We prepared
our dataset by encoding these opcodes using a one-hot encoding technique. Categorical
variables are transformed through this procedure into numeric variables that Al algorithms
can use to make predictions more accurately. The maximum number of possible different
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opcodes generated from smart contracts can be 256. The one-hot encode vector (Vé‘o ;) of size
256 x 1 is prepared for each opcode, where 1 represents the existence of that instruction
and the rest of all the values are 0.

17 [0] [0
0 0 0
0 1 0

vEi =1 ||| (10)
o] loJ |1

After that, the one-hot encoding vector (V) is created by adding all the instruction
vectors V;’fo ;

t
Vier =Y VE, (11)
256 x 1 k=1

17 [0 [07 87

0 0 0 5

0 1 1 3
Viee=1|-|+ |- |++|.|= |- (12)

10] 10 10 L7 ]

256 x 1

where t depends on length of opcode (O). The term V},; is represented as the input feature
vector. The feature vector contains the frequency of each opcode. Training dataset is
prepared by obtaining V},,; vector of each smart contract. The prediction probability (P)
provides the probability of the smart contract being malicious or not.

P = o(WE+b) (13)

where W is weight, b is bias, and ¢ is a sigmoid function. A threshold value, i.e., 0.5, is set,
where P < 0.5 is considered as safe contract or else a malicious contract.

S safe P <05 (14)
vulnerable P > 0.5

Based on the P, i.e., P < 0.5, the smart contract is not malicious; this allows the smart
contract to deploy and securely store the IoT data in the immutable blockchain ledger.
The two-way security of intrusion detection and smart contract classification using feature
vectors with the help of DL-based models helps to improve the security of the IoT ecosystem.
Based on the aforementioned security requirements, we formulated our objective functions,
i.e., to maximize the security of user and smart contracts in the IoT systems.

n
O = max ) _ Secure(U + S) (15)
i=1
where U + S is the user and its associated smart contract.

4. The Proposed System Model

In this section, we present the proposed system model consisting of four layers,
i.e., deployment, malicious user detection, blockchain layer, and application layer, that
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confronts different security threats to improve the security and privacy of IoT applications.
Figure 1 shows an exemplary illustration of the proposed system model. A detailed
description of each layer of the proposed system is as follows.

Deployment layer Malicious user detection layer Blockchain Layer

Hei:?:cr;re 1 2 3 4 Hesa:?:cr;re N
usef 1 usef 2usef 3 usel L 5 — g g? g
=8k ’l QQ e
i Disassembler

user1 °

Application Layer

User Network Data

: 0o One hot
Preprocessing o| [o o ; A 4 i
ol | o encoding Smart City
[Trammg data] [Testmg data] = P9
user 2 ol ol Lt T fY[%Y
= l l Testing data Ed]b
— =
o . Training data
i 5[=]= L'_]
3 B|ERB|8 % Smart @
user Smart ; Home [Yf\f ®
Home Random No e I [YPKY
Q |:| Forest . v
Classifier a
\ 5.5 . Vo
8 oo
>
user 4
l Suspend
user 3 and
smart
user 1 suspended user 3 contract

Figure 1. Proposed system model.

4.1. Deployment Layer

The deployment layer is the first layer presented in our architecture, which is the initial
system of the Internet of Things (IoT). Here, we considered any IoT-based application,
such as smart healthcare, smart homes, and smart cities, where our security system may
be applied. This layer facilitates the data exchange between different components of the
IoT ecosystem. In the IoT environment, there are numerous devices which are remotely
managed by the users to complete the shared task. Let us consider a user entity set
{uy,up,u3,...,u,} € U that controls IoT devices, such as {dy,dy,...,dn} € D, where a
user 11 has one or many d;.

{d1,da,...,dn} € D where, (16)
u; €d; or, (17)
u; € {dl,...,di} (18)

The layer also comprises malicious users trying to jeopardize the operation of the
IoT environment. Using various IoT-based attacks, they can exploit the IoT systems for
personal benefit and cause major disruptions. Attacks, such as denial-of-service (DOS),
privilege escalation, probing, and session hijacking attacks, are used to disrupt the overall
performance of IoT systems. In order to avoid such nefarious attacks, there is a need for
an automated and intelligent system that bifurcates the malicious behavior, i.e., malicious
and non-malicious user from the IoT systems. To accomplish this task, this layer takes
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the network data for malicious user detection and passes them on to the malicious user
detection layer.

T,S — malicious user detection layer (19)

The deployment layer is the one that has first contact with the malicious user. There
may be three cases, the first being that a user is safe and is also deploying a safe smart
contract. This is the ideal case where a user should be safely allowed to deploy a smart
contract on the blockchain. Secondly, it may be that the user is safe but deploys a malicious
smart contract that should not find a way into the blockchain. Lastly, it may be possible
that the user has malicious intent, so they should not be allowed to deploy a smart contract.
The case where a user has malicious intent and deploys a vulnerable smart contract would
not occur under ideal situations because the layer for malicious user detection would
detect it and suspend the user. This system proposes to secure the blockchain from the
last two cases. First, there is a check for the malicious user, and if the user is predicted
to be safe by the system, it allows them to store their data in the blockchain’s immutable
ledger. By the final layer, the user and the smart contract would have been checked for
unwanted activities.

4.2. Malicious User Detection Layer

This layer is the first security layer that activates as soon as a user requests. It checks
the credibility of the user to ensure if the user is malicious or not. This is achieved by
passing the user’s network information to a machine learning model. This machine learning
model is trained for the purpose of predicting whether the user is malicious or not.

4.2.1. Dataset Description

The dataset used for the simulation of malicious user detection is X-IIoTID [25].
X-IIoTID is a dataset specifically for IloT (Industrial Internet of Things) systems. The het-
erogeneous nature and interoperability requirements of IIoT systems are well suited by
its connectivity- and device-agnostic capabilities. Deep packet inspection tools were used
to extract the essential characteristics from the network and system logs. With its inno-
vative and extensive capabilities, X-IloTID provides a unique perspective on the dangers
and assaults that IIoT networks and systems are subject to. It has 820,834 instances and
59 features (without labels). The labels are of three sorts, one being a binary classification
of “Attack” and “Normal”, second being a multi-class classification of 9 attacks, and third
being another multi-class classification of 18 attacks.

4.2.2. Data Preprocessing

This dataset is used to distinguish the connections based on network parameters (7),
and to predict whether the system is being attacked or not, and if the system is being
attacked. The dataset was distributed and had the feature and class variables put separately.
Considering the application, we use the binary classification labels that distinguish between
a “Normal” or “Attack” request. Hence, we get rid of the other two class columns of multi-
class classification. We also get rid of set of unnecessary features, such as IP addresses and
ports. The dataset had multiple values missing or null, and hence needed to be replaced.
We replaced each missing value in a column by the median. Once the presence of null
values and missing values was dealt with, we needed to convert the categorical features to
numeric values. For example, the values of column “Protocol” were either “tcp”, “udp”,
or “icmp”. They were mapped to 0, 1, and 2, respectively. Next, we proceeded to scale
the dataset in 0 to 1 so as to avoid any feature having bias. Finally, we split the data into
training and testing set for experimentation. The training set to testing set ratio is 70:30
(574,583 training instances and 246,251 testing instances).
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4.2.3. Prediction

We trained our data with multiple Al models to make prediction between safe or bad
connection. On basis of the features present, the model is able to identify whether the user
has a malicious intent. Because the features contain fields such as “duration”, “protocol”,
and different rates between source and target, it is possible that a single prediction may not
be completely accurate. Hence, this prediction should be made for p counts, depending

upon the capacity of the system being used where p is any odd number.
p =2k+1wherek >0 (20)

The single prediction on data may not be accurate, so prediction should be made more
than one time. To avoid situations when there are an equal number of safe and vulnerable
predictions, the value of prediction p is taken an odd number of times, depending upon
the capacity of the system. This odd number is given by k whose value is greater than or
equal to 0. The value of k would be less than half of the system’s capacity. So, by predicting
p times if the count of user predicted malicious will be greater than count of user predicted
safe, then it will be suspended, and they will not be able to deploy smart contract. Now, in
order for safe users to deploy smart contracts, they are passed through malicious smart
contract detection layer to detect for any vulnerable contract.

4.3. Blockchain Layer

The blockchain layer is one where the smart contracts play a major role. For any
task, there will be smart contracts issued by the user to be validated. This layer receives
the list of safe users {suy,suy,sus,...,su,} € SU and their respective smart contracts

{s]1‘, sh, sé, ...,8}} € S from deployment layer and malicious user classification layer. These
contracts at their base are programs written by developers. Solidity is one of the most
popular languages used to deploy contracts in Ethereum blockchain [26].

4.3.1. Dataset Collection

To obtain sample data for simulation in this problem, multiple smart contracts were
taken from repository by smartbugs-wild [27]. There were 47,398 contracts on given
repository. Before passing it to preprocessing, it was still necessary to classify them as
vulnerable or non-vulnerable. The results of the ICSE 2020 paper [28] were used to obtain
classified contracts. This paper compared working of different tools used to analyze smart
contracts such as slither, MAIAN, and mythril. Another set of smart contracts were gathered
from Google’s bigQuery database [29]. These contracts were not classified into vulnerable
and non-vulnerable. Hence, slither tool was used to classify some of the contracts and use
for simulation. Finally, we were able to acquire 650 non-vulnerable smart contracts and
131 vulnerable smart contracts.

4.3.2. Data Preprocessing

The contracts written in solidity undergo certain steps before being viable for use as
data for training and testing. The solidity code is first converted to “bytecode” by a solidity
disassembler. This bytecode is now converted to opcodes that were predefined and can be
found in the Ethereum yellow paper [30]. The original solidity codes were converted into
opcodes, and they can now be used for prediction using DL algorithms. These opcodes are
categorical in nature and hence cannot be directly in an algorithm. To use them efficiently
for training and prediction, one-hot encoding process is used. This process creates specific
frequencies for each opcode possible. On basis of these frequencies, now DL algorithms
can be used. These frequencies act as vectors and are passed on to the layer, that is, the
Malicious Smart Contract Prediction layer.
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4.3.3. Smart Contract Prediction

The Malicious Smart Contract Prediction layer acts as the second layer of security that
checks the smart contract for vulnerability. The trained model is able to make a binary
classification, which is if the smart contract is vulnerable or safe. In this layer, the smart
contracts are classified as vulnerable or non-vulnerable using DL models (e.g., long short-
term memory (LSTM), artificial neural network (ANN), and gated recurrent units (GRUs)).
The internal working of LSTM is shown as

far = (Why- (B, 2] + bsy)
} iny = U’(Whl' . [h‘t’il,zt} + bsi)
Cr = tanh(Whc - [1}_;, 2] + bsc)
Cl=fi*Ci1+irxC
opr = o(Why - [H9_1,z¢] + bs,)
hY = oy * tanh(C})

The sigmoid function is represented by sigma, while the hyperbolic tangent function is
represented by tanh. The symbol in is input gate, op is output gate, and fg is forget gate of
the LSTM model. Wh stands for weight matrices, while bs stands for biases. The candidate
state and the new state are denoted by the letters C, CL. 1 is the output, z is the input, and ¢
is the input time.

GRU model is an updated form of LSTM having 2 gates rather than 3, namely reset and
update gate. The internal calculation formula of the GRU neural network is given below:

upy = 0 (Why - [h]_1,z¢] + bsy)

rsp = o (Why - [h)_1,z¢] + bsy)

he = tanh(Wh - [rsy = h{_1,z¢] + bsc)
W = (1 —upy) * h9_y + upe Iy

Here, up; denotes the update gate, which chooses which information to delete and
which to add fresh. The reset gate, abbreviated as rs;, controls the degree to which prior
data are deleted. ¢ is the sigmoid activation function as seen above; Wh is the weight
matrix and h{ is the output.

There will be N number of safe users, {suy,suy, sus,...,suy} € SU, having M num-
bers of smart contacts,{s1,52,53,...,5m} € U, to deploy on the blockchain. The generated
feature vector after one-hot encode of opcodes obtained from the smart contracts are passed
through DL models. The data were randomly split into 70, 15, 15 ratio as train size, test
size, and validate data, respectively. The optimal number of epochs for training were
found using Keras Earlystopping callback function. The early stopping function is defined
as stopping the training when the monitored metric has stopped improving. Then, the
training dataset transits through LSTM, GRU, and ANN models as shown in Figure 2.
As shown in these figures, we have used embedding layer with input length equal to
shape of training dataset followed by spatial dropout layer, which randomly sets input to 0,
which overcomes the problem of overfitting. As it is a binary classification of vulnerable or
non-vulnerable, we used sigmoid activation function for transformation of output signal.
As described in Algorithm 1, it returns set of classified smart contracts as vulnerable or
non-vulnerable. Algorithm 2 depicts the whole procedure for the classification of malicious
smart contract.

If the model predicts a certain smart contract is vulnerable, it shall be discarded and
would not be allowed to proceed further to IPFS hash and into the blockchain. This way,
no vulnerable contract shall find its way into the blockchain. An example of prediction is
displayed in Figure 3 that shows the probability of a smart contract being malicious using
DL algorithms.
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Figure 2. Sequence model for LSTM, GRU, and ANN.

input: | [(None, 130)] input: | [(None, 130)] i input: | [(None, 130)]
input | InputLayer input | InputLayer . input | InputLayer .
output: | [(None, 130)] P Py I put | [(None, 130)] 1“"""‘ [(None, 130)
l l denset | Dense input: | (None, 130)
. input: (None, 130) input: None, 130 tput: | (None, 64
embedding | Embedding embedding | Embedding inpu (None, 130) output: | (None, 64)
output: | (None, 130, 128) output: | (None, 130, 128)
input: | (None, 64
l l dropoutl | Dropout input: | (None, 64)
output: | (None, 64)
input: | (None, 130, 128) input: | (None, 130, 128)
Istm | LSTM gru | GRU
output: (None, 64) output: (None, 64)
dense? | Dense [P | (None 64
l l output: | (None, 32)
input: | (None, 64) input: | (None, 64)
dropout | Dropout dropout | Dropout -
output: | (None, 64) output: | (None, 64) dropout2 | Dropout input: | (None, 32)
l l output: | (None, 32)
input: | (None, 64) input: | (None, 64) Pa—
output | Dense output | Dense P ouput | Dense input: | (None, 32)
output: [ (None, 2) output: | (None, 2) output: [ (None, 2)
(a) LSTM. (b) GRU. (c) ANN.

Algorithm 1 Algorithm for detecting malicious users

Input: U, M
Initialization : U = {uy,up, u3, ..
M = Model for classification
Output : SU (Set of safe Users)

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

procedure MALICIOUSUSERS(U)

foru; € Udo
count =n

arr = empty array
while count # 0 do

Label < M.classify(F)

arr.add(Label)
count < count — 1

end while

CountSafe = arr.count(0)

., un} (Set of safe users)

> users present in U set
> classifying n times

> classification of smart contract
> appending result into array

CountVulnerable = arr.count(1)
if CountSafe > CountVulnerable then
SU.add(u;)

end if
end for
return SU
end procedure

> data of safe users

Bytecode : 68866848523480615610016

Opcodes : @8 82 84 85 @6 87 88 BB eC 18

810166848525160005560C7806186

11 12 14 15 17 18 1B 1C 1D 1E 1F 21 22 2

Figure 3. Probability of a smart contract being vulnerable by ANN, GRU, and LSTM.
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Algorithm 2 Algorithm for malicious smart contract detection.

Input: U,S,M

Initialization :

U : {uy,up, us...u,} (Set of safe users)

S: {s1,52,83...5,} (Set of smart contract)

M : Model for classification

Output : SC

M : Map containing smart contract and its label
1: procedure CLASSIFY(U, S) :
2 foru; € Udo > users present in U set
3 if ~MaliciousUsers then > checks user behavior from MUD Layer
4 for sj. € S’ do
5: O<«o pcode(s;:) > generates opcode from its function
6 F « encode(O) > through one-hot encoding
7 Label < M.classify(F) > classification of smart contract
8 SC.put(sj«, Label)
9: end for

10: end if

11: end for

12: return SC > data of classified smart contract

13: end procedure

4.4. Application Layer

The final layer is the blockchain layer which obtains a safe smart contract after it has
passed through the previous layers and is ready to be hashed by IPFS. Once the hashing
process is carried out, it is then deployed on the blockchain.

5. Results and Discussion

In this section, we discuss the evaluation of the proposed system architecture by
considering different assessment metrics, such as the classification measures (e.g., training
accuracy, training loss, recall score, precision score, and F1 score), receiver operating charac-
teristic (ROC), and blockchain scalability. Further, we also elaborate on the experimentation
setup and different tools utilized in implementing the proposed system model.

5.1. Experimental Setup and Tools

The proposed system model is implemented on a system with specifications such as
12 GB RAM, 1 TB HDD, 512 GB SSD, and Intel (R) Core(TM) i7-9750H CPU @ 2.60 GHz
processor. The system has a 64-bit Windows 11 operating system. In addition, we also
enabled an NVIDIA-based graphics processing unit (GPU), i.e., GeForce GTX 1650 with
4 GB memory, for the Al processing and classification. Moreover, the proposed system
model is implemented in an open source software utility, i.e., Jupyter Notebook from
Anaconda distribution. In addition, different libraries are used to implement the proposed
system model, for example, Pandas is used for the data analysis and manipulation of the
data columns in the dataset. Specific Pandas functions, such as pd.read.sv(), df.isna.sum(),
and df.column.valuecounts(), are used to analyze the columns of the dataset. Further,
the Numpy library is used to convert the Pandas dataframe into multidimensional array
objects that are helpful in performing faster calculations. Matplotlib and SciPy library
are used for visualization, where we illustrate a few graphs on the accuracy, training loss,
confusion matrix, and ROC curve for the proposed system model. In addition, this paper
utilized TensorFlow and the Keras library to import DL algorithms, such as the LSTM, GRU,
and ANN, where we not only used built-in functions but also framed out a few user-defined
functions that enhance the performance of the above-mentioned algorithms. Table 2 shows
the simulation parameters used while developing the proposed system model.
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Table 2. Simulation Parameters.

Hyperparameters Values
Epochs 20
Batch size 256
Dropout 0.6
Activation sigmoid

5.2. Evaluation Metrics

The Al models can be evaluated using metrics such as the training loss and accuracy
and classification measures (i.e., the precision, F1 score, and recall score). In this section,
we discuss the performance metrics that are used to evaluate the proposed system model.

5.2.1. Confusion Matrix

A confusion matrix is a table used widely to determine the binary prediction ability of
an Al model. It consists of predicted and actual values segmented by positive and negative
samples, i.e., true and false positives and true and false negatives. In addition, various
other evaluation metrics can be formed using these values, such as the accuracy, precision,
recall, and F1 score. In the context of smart contract security, true positive means safe smart

contracts according to the ground truth (sﬁ) ; false positive is where malicious contracts are
misclassified as safe ( pﬁ) ; true negative is where an Al model correctly predicts the malicious
smart contracts (vi) ; and false negative is where smart contracts that are safe according to

the ground truth are classified as malicious (m{ ). According to the aforementioned values,
the evaluation metrics help in evaluating the performance of the proposed system model.

5.2.2. Accuracy

The accuracy of a prediction model is the fraction of total samples correctly identified
by the model. It is the ratio between positive samples (s{ + v{:) and all the samples of the
prediction (s{ + vg + p{ + m{:).

J oo
s; + v

T 1)
s; +u; +p; +m;

Accuracy =

5.2.3. Precision

Precision is defined as the fraction of positive samples that are actually positive. It

is the ratio between the positive samples correctly predicted by the model (55) to all the
positive samples (sé + p?).

s

Precision = —+— (22)

si+p!

i

5.2.4. Recall
Recall is the fraction of all positive samples correctly predicted as positive by the Al

model (s{: ) to both positive and negative samples (sf + m{ )-
s/
Recall = — ; (23)

]
sl-—l—ml-
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5.2.5. F1 Score

The F1 score comes into the picture when both the precision and recall values are
similar. It depends on the § value; the higher the value of §, the more significant the
importance of precision. The lower value of j signifies a higher recall value. It is the
combination of precision and recall, which takes the harmonic mean of both the precision
and recall values.

j
2*51.

Flscore = ———F——
2 % sé + pé + mi

(24)

5.3. Analysis of User Detection Layer

In this subsection, this paper utilized different AI models to classify malicious and
non-malicious users from the IoT environment. AI models, such as decision trees, random
forest, logistic regression, and Naive Bayes, were used and compared with each other
using the evaluation metrics. Table 3 shows the evaluation metrics of all the Al models in
classifying the user, i.e., malicious and non-malicious. Figure 4 shows the testing accuracy
of each Al model used for the simulation. It is evident from Table 3 and Figure 4 that
the random forest and decision tree show the highest accuracy compared to the other
models. Among these, the random forest shows the highest accuracy, i.e., 99.72%, because it
narrows down the dataset samples into individual decision trees. Then, it applies the
decision-making approaches to each tree. Further, based on the voting criteria, the best
decision tree is selected iteratively; this improves the overall accuracy of the random forest
model. We use n = 100 estimators to fit the dataset samples on various decision trees,
yielding a higher accuracy. The random forest classifier not only shows the highest accuracy
but also a high value of 99.72% as the precision and recall and F1 score.

Table 3. Evaluation metrics of malicious user detection models.

Model Accuracy Precision Recall F1 Score
Gaussian NB 56.75 70.06 70.06 49.49
Logistic Regression 94.99 95.11 95.11 94.97
Random Forest Classifier 99.72 99.72 99.72 99.72
Decision Tree 99.57 99.58 99.57 99.57

1.0 1

0.8 1

o
o
!

Accuracy

o
S
L

0.2 1

0.0 -

Random Forest Decision Tree GaussianNB Logistic Regression
Al models

Figure 4. Accuracy graph for Al models.

The experimentation in this paper for the intrusion detection in the IoT network can be
compared to the experiments on the same dataset (X-IIoTID) by the authors of [25]. Their
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accuracy, precision, and recall for the decision tree classifier are 99.54%. For the results
obtained by using a decision tree on the same dataset, we obtain the accuracy, recall, and F1
score as 99.57% and the precision as 99.58%. The data preprocessing performed for our ex-
perimentation consisted of important steps, such as removing unnecessary features, filling
in missing values, and converting the data types of the features. To fill the missing values,
the median of all the values is considered. According to our experimentation, the best
classifier is a random forest classifier. A random forest classifier is a culmination of multiple
decision trees. By experimenting with different hyperparameters, we observed the highest
evaluation results for the random forest with a 99.72% accuracy, recall, precision, and F1
score. On the other hand, Gaussian Naive Bayes that follows the Gaussian distribution
has the least accuracy of 56.75% in classifying the malicious and non-malicious IoT user.
This happens because it could not find the intuitive patterns inside the feature space of the
dataset; it merely relies on the conditional probabilities of each feature. It also gives the
least precision and recall values of 70.06% and 49.49% as the F1 score. The major reason
for the low performance of the Naive Bayes classifier is that it considers every feature as
independent. The logistic regression is a statistical Al model that offers a solution to the
binary classification problem using the activation function (e.g., the sigmoid function). It
works efficiently when the independent variable (target) is categorical in nature. However,
it assumes a “linear” relationship between the dependent and independent variables of
the dataset. With the default number of iterations for the logistic regression, which is 100,
the line search algorithm does not reach convergence. That is why we set the max iterations
as 500 to tackle this, which increased the accuracy significantly to 94.99%, as shown in
Table 3.

In addition, decision trees are used to build a small subset from the dataset. Then, each
subset is trained using effective decision rules emanating from the features. It is similar to
the random forest; however, the random forest uses numerous decision trees to improve its
accuracy. Here, the decision tree uses splitting criteria to split the entire tree from root to
leaf, where the testing attribute is evaluated at each split node.

It is clear from Table 3 that the random forest has the highest accuracy. However,
accuracy cannot be considered the only evaluation metric to compare; it is better to validate
the accuracy result with another evaluation metric. Hence, to depict the model’s overall
performance, we consider the ROC curve, which is a performance statistic for classification
at various threshold levels. It works based on the area under the curve (AUC) that indicates
the degree or measure of separability. It indicates how well the model can discriminate
between classes. The better the model predicts 0 courses as 0 and 1 class as 1, the higher the
AUC [31]. The ROC curve is shown in Figure 5, which depicts the AUC for all four models.

1.0

0.8 1

0.6 1

0.4 1

0.2 —— GaussianNB (AUC = 0.82)
LogisticRegression (AUC = 0.98)

— RandomForestClassifier (AUC = 1.00)

0.0 — DecisionTreeClassifier (AUC = 1.00)

True Positive Rate (Positive label: Normal)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: Normal)

Figure 5. ROC curve for Al models.
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5.4. Analysis of Malicious Smart Contract Detection

In this subsection, we evaluate the performance of the Al-based smart contract detec-
tion layer using the training and loss curves. First, to predict whether a smart contract is
malicious or not, we trained Al-based DL models, such as the ANN, GRU, and LSTM. Then,
we compared these models based on various performance evaluation metrics, such as the
training accuracy, loss, and ROC curve. Furthermore, the confusion matrix is generated
by applying the above-mentioned Al models to the standard curated dataset, i.e., mali-
cious and non-malicious smart contracts. Figure 6 shows the confusion matrix of all the
Al models.

GRU ANN

416

True label

Vul Non-vul Vul Non-vul Vul Non-vul
Predicted label

Figure 6. Confusion Matrix.

Figure 7 shows the training curve of all the Al models (LSTM, GRU, and ANN),
compared at different epochs (training iterations) with the different optimizers, such as
Adam, Nadam, and RMSProp. These optimizers help in optimizing the weights and
reducing the training loss. From the graph (Figure 7), it is clear that the GRU has a better
training accuracy, i.e., 0.99 at the 20th epoch, compared to the LSTM and ANN, which have
accuracies of 0.979 and 0.904, respectively. This is because the GRU has better competency
than the LSTM model as it resolves the vanishing gradient problem and is a faster, less
resource-constrained algorithm than the LSTM. A vanishing gradient problem is where a
change in the weights of the neurons in a network is orders of magnitudes lower so that
it effectively shows no change. The GRU consists of two gates, i.e., the update and reset
gates, that help the algorithm retain information from further back. Contrarily, the LSTM
requires more resources to train and overfit to random weights initialization.

Figure 8 shows the training-loss curve between different AI models and optimizers at
different epochs. The loss curve depicts the change in the deviation of the predicted values
from the model and the ground truth presented. A model should have a decreasing loss
curve which eventually tends to zero at each successive iteration. The same is corroborated
by the graphs presented in Figure 8. The GRU model has a small loss with all the optimizers
because it has a better training accuracy and is more effective than the other AI models.
To validate the result of the smart contract detection layer, we also utilized the ROC curve
that measures the classification at different thresholds. From Figure 9, it is clear that
the GRU and LSTM have better results than the ANN because of their ability to retain
old information.

Gupta et al. [3] have similarly performed experiments for a malicious smart contract
analysis. The results presented in this paper supersede the results presented in [3]. This
can be confirmed by comparing the ROC curve in this paper, Figure 9, and the ROC curve
in their paper, Figure 10. From Figure 10, the AUC obtained for the LSTM, GRU, and ANN
is 0.93662, 0.93551, and 0.93440, respectively. Similarly, from Figure 9, the AUC obtained
for the LSTM, GRU, and ANN is 0.99, 0.99 and 0.97, respectively, which are significantly
greater than the existing works.
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Figure 7. Comparison of LSTM, GRU, ANN training accuracy with different optimizers.
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6. Conclusions

This paper proposed an Al-based intrusion and malicious smart contract detection
system model for the IoT ecosystem. First, Al-based algorithms, such as the random forest,
decision tree, logistic regression, MLP, and Bayesian model, were considered to efficiently
detect malicious users (intruders) from the IoT ecosystem. Here, malicious users are
discarded from the IoT environment; only non-malicious users are allowed to forward
their data to the intended recipient. To protect the data from security threats, it is stored
inside the blockchain immutable ledger where it first authenticates via smart contracts.
Further, we strengthened the security of the smart contracts by utilizing DL algorithms,
such as the LSTM, GRU, and ANN, that bifurcate malicious and non-malicious smart
contracts. Only non-malicious smart contracts are allowed to authenticate the IoT data.
The proposed system model efficiently detects the intruders in the IoT system with an
accuracy of 99.72% and predicts the smart contracts, i.e., malicious or non-malicious,
with an accuracy of 99.27%.

In the future, we will improve the security performance of the AI model by analyzing
it with adversarial attacks on the IoT system.
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