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Abstract

Objectives The susceptibility of CT imaging tometallic objects gives rise to strong streak artefacts and skewed information about

the attenuation medium around the metallic implants. This metal-induced artefact in CT images leads to inaccurate attenuation

correction in PET/CT imaging. This study investigates the potential of deep learning–based metal artefact reduction (MAR) in

quantitative PET/CT imaging.

Methods Deep learning–based metal artefact reduction approaches were implemented in the image (DLI-MAR) and projection

(DLP-MAR) domains. The proposed algorithms were quantitatively compared to the normalized MAR (NMAR) method using

simulated and clinical studies. Eightymetal-free CT images were employed for simulation ofmetal artefact as well as training and

evaluation of the aforementioned MAR approaches. Thirty 18F-FDG PET/CT images affected by the presence of metallic

implants were retrospectively employed for clinical assessment of the MAR techniques.

Results The evaluation of MAR techniques on the simulation dataset demonstrated the superior performance of the DLI-MAR

approach (structural similarity (SSIM) = 0.95 ± 0.2 compared to 0.94 ± 0.2 and 0.93 ± 0.3 obtained using DLP-MAR and NMAR,

respectively) inminimizingmetal artefacts in CT images. The presence ofmetallic artefacts in CT images or PET attenuation correction

maps led to quantitative bias, image artefacts and under- and overestimation of scatter correction of PET images. The DLI-MAR

technique led to a quantitative PET bias of 1.3 ± 3% compared to 10.5 ± 6% without MAR and 3.2 ± 0.5% achieved by NMAR.

Conclusion The DLI-MAR technique was able to reduce the adverse effects of metal artefacts on PET images through the

generation of accurate attenuation maps from corrupted CT images.

Key Points

• The presence of metallic objects, such as dental implants, gives rise to severe photon starvation, beam hardening and

scattering, thus leading to adverse artefacts in reconstructed CT images.

• The aim of this work is to develop and evaluate a deep learning–based MAR to improve CT-based attenuation and scatter

correction in PET/CT imaging.

•Deep learning–basedMAR in the image (DLI-MAR) domain outperformed its counterpart implemented in the projection (DLP-

MAR) domain. The DLI-MAR approach minimized the adverse impact of metal artefacts on whole-body PET images through

generating accurate attenuation maps from corrupted CT images.
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Abbreviations
18F-FDG 18F-Fluorodeoxyglucose

CNNs Convolutional neural networks

CT Computed tomography

DLI-MAR Deep learning–based MAR in

the image space

DLP-MAR Deep learning–based MAR in

the projection space

LI Linear Interpolation

MAR Metal artefact correction

NMAR Normalized metal artefact correction

PET Positron emission tomography
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PET/CT Positron emission tomography/

computed tomography

SUV Standardized uptake value

TOF Time of flight

VOI Volume of interest

WB Whole body

Introduction

A large number of patients referred for whole-body PET/CT

examinations present with metallic objects, such as coiling,

dental implants/filling and hip/shoulder prostheses. These

highly attenuating metallic objects give rise to severe photon

starvation, beam hardening and scattering, thus leading to ad-

verse artefacts, including streak, star-shape and voids in the

reconstructed CT images. The presence of metallic objects in

CT imaging commonly leads to severe deterioration of image

quality by causing strong bright and dark streak artefacts, not

only in the site of the metallic object but also in the surround-

ing regions. Metal-induced artefacts could skew the CT signal

(depending on the size and material of the metallic object) or

generate artificial signals, which might adversely impact the

interpretation of CT images and hence potentially clinical di-

agnosis. In addition to the adverse impact of metal-induced

artefacts on the visual assessment of CT images, the quantita-

tive accuracy of the CT signal in the vicinity of metallic ob-

jects could be affected [1]. The quantitative analysis of CT

images in the vicinity of the metallic object revealed large

under/overestimation of tissue densities due to the distortion

of the CT signal [2].

In addition to diagnostic imaging applications with contrast

enhancement of CT in radiology, this imaging modality is also

employed in quantitative positron emission tomography

(PET) imaging in the framework of CT-based attenuation cor-

rection (AC) of the PET data [3]. Any issues or image artefacts

affecting CT images would be reflected in the attenuation-

corrected PET images, potentially leading to misdiagnosis

and/or quantitative errors [4, 5]. Moreover, CT images com-

monly serve as standard of reference for the evaluation of

MRI-guided attenuation correction [6–8] and MRI-only treat-

ment planning in radiation oncology [9].

The presence of metallic objects in PET imaging itself does

not cause any signal loss/distortion; however, the incorrect CT

values (due to metal artefacts) could lead to inaccurate PET

attenuation and scatter corrections. Noticeable over/

underestimation of the activity concentration would be ob-

served in the vicinity of metallic objects. Moreover, strong

streak artefacts in CT images may distort genuine PET signal

and may also cause factitious signals in the PET image (e.g.

false abnormalities). When metallic objects in CT-based PET

attenuation map cause inaccurate scatter correction, its impact

will not be confounded to the site of the metal artefact and

would affect the entire PET volume [4]. Metal artefacts are

easily detectable through visual inspection of CT images;

however, radiotracer uptake bias in PET images affected by

incorrect AC maps owing to metal artefacts is not easily rec-

ognized without reviewing the attenuation map. Hence, metal

artefact correction in PET imaging is as important as in CT

imaging.

To address this issue, a number of metal artefact reduction

(MAR) approaches have been proposed in the literature [3,

10]. However, none of them was widely adopted as standard

of reference, and, as such, MAR still remains one of the major

challenges in CT and PET/CT imaging [11].

A state-of-the-art MAR approach based on the prior image

is the normalizedMAR (NMAR), wherein thresholding-based

image/tissue classification is applied on the original/affected

or linear interpolation (LI)–corrected image to generate a prior

image [12]. This approach tends to extract as much as possible

information from unaffected regions in the original or partly

corrected images in order to predict/correct/estimate the miss-

ing or affected regions in the original image. Iterative image

reconstruction approaches tend to suppress metal artefacts

through reconstruction of CT images from the unaffected or

preliminary corrected projections/bins [13–16]. Despite these

efforts, it is challenging to achieve acceptable/satisfactory out-

comes for all metal artefacts using a single MAR framework

owing to the high variety of sizes, materials, locations and

background structures of metal implants. In this light, several

attempts have been made to combine two or three MAR

methods to devise a hybrid approach [17]. Hybrid approaches

have shown superior performance compared to each of the

MAR techniques alone [3]. These methods tend to provide a

more realistic/accurate modelling of metal artefacts by taking

beam hardening and Poisson noise into account [13] or

employing a preprocessing step (for instance using other

MAR techniques), which results in a case-specific prior

knowledge for the problem at hand [17]. Hence, these

methods combine the prior knowledge and/or conventional

MAR technique with an iterative image reconstruction algo-

rithm fine-tuned for MAR.

Deep learning–based algorithms emerged as promising

approaches for solving a variety of image analysis and

pattern recognition problems and have been successfully

implemented in the context of metal artefact reduction in

CT imaging [18–23]. Deep learning–based MAR tech-

niques could be categorized as the 4th type of MAR ap-

proaches, wherein the correction for metal-induced beam

hardening is applied in either the projection [22] or image

domain [19]. MAR methods based on beam hardening

correction, such as NMAR, have limited capability in

the presence of high attenuating metal implants. Deep

learning–based MAR approaches have demonstrated the

ability to refine the performance of the NMAR algorithm,

either in the projection or image domain, to eliminate the
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residual errors or new artefacts introduced by NMAR

[24].

The aim of this work is to develop and evaluate a deep

learning–based MAR to improve CT-based attenuation and

scatter correction in PET/CT imaging. To this end, CT images

affected by metallic artefacts were processed by the deep

learning–based MAR to assess the impact on the resulting

PET images. The proposed approaches were also compared

to the NMAR, serving as baseline technique for comparison.

Materials and methods

Data acquisition

Two clinical databases were utilized in this work, including a

simulation dataset used for training and assessment of the

deep learning–based MAR approaches and whole-body 18F-

FDG PET/CT images used for clinical evaluation. The simu-

lation dataset consisted of 80 metal-free whole-body CT im-

ages acquired on a Biograph mCT PET/CT scanner (Siemens

Healthcare) using the following parameters: effective tube

current = 100 mAs, tube voltage = 110–120 kVp, slice thick-

ness = 3 mm, automated tube voltage selection, automated

tube current modulation, pitch factor of 1, mean CTDIvol =

5.8 mGy and DLP of 65 mGy·cm (average BMI = 29.5).

Eighty patients selected from whole-body CT scans with no

metal artefact (metal artefact–free) were included in the sim-

ulation dataset for the training of the network.

The PET/CT dataset used for clinical evaluation consists of

30 patients (mean age ± SD = 60 ± 8 years and mean weight ±

SD = 70 ± 8 kg) presenting with substantial dental fillings

(24), hip (3) and shoulder joint prostheses (3). For clinical

evaluation, 30 patients presenting with substantial dental fill-

ings, hip and shoulder joint prostheses were selected from

whole-body PET/CT scans. Whole-body PET/CT scans were

performed on the same Biograph mCT scanner (using the

same CT acquisition protocol) about 1 h post-injection of

250±45 MBq of 18F-FDG for an average acquisition time of

25±5 min. The study protocol was approved by Geneva

Cantonal Research ethics committee.

Metal artefact simulation

The training of the deep learning–based MAR approaches

involved the use of 80 metal-free CT images where metals

were artificially inserted to create a metal artefact–affected

dataset with known ground truth. These data contained met-

al-free, metal-inserted (ground truth images) and metal-

affected CT images. Metal-free images are the original CT

images whereas the metal-inserted images were generated by

inserting metallic implants in the metal-free images. These

metallic implants included dental fillings, spine fixation

screws and hip and shoulder joint prostheses with linear atten-

uation coefficients of iron, copper, gold and titanium. The

algorithm proposed in [19] was employed to simulate metallic

artefacts in CT images (metal-affected images), wherein the

metal-inserted images were segmented into soft tissue, bone

and metal using a weighted thresholding-based approach [25]

followed by assignment of the corresponding attenuation co-

efficients. Subsequently, the metal-affected CT images were

reconstructed through a combination of forward projection

and filtered backprojection approach. The adopted metal arte-

fact simulation approach is briefly described below [19].

Further details about the simulation process are provided in

Supplemental materials.

The simulation dataset consisted of 80 clinical CT images

(45 men and 35 women, age 51 ± 12 years) with no metal

implants. On this dataset, 8 different metal shapes were sim-

ulated using 4 different materials (namely iron, gold, titanium

and copper) in the different regions of the body. For each case

(shape and material), 25 metal artefact simulations were con-

ducted resulting in 25 (realizations) × 8 (shapes) × 4

(materials) metal artefact–affected images/samples. Given

the 800 simulated cases, 660 were employed for the training

and 140 for the evaluation of the different methods, equally

sampled from the different metal shapes, materials and ana-

tomical regions. Mass attenuation coefficients of the metal

inserts, bone and soft tissue were obtained from the XCOM

photon cross section library [26]. The metal-free and metal-

inserted images underwent a polychromatic Radon transform

(following the algorithm described in [19]) and were recon-

structed using a filtered backprojection (FBP) algorithm to

generate standard of reference images (for evaluation of

MAR techniques) and the metal-affected images, respectively.

An X-ray source with 120 kVp tube potential and equi-

angular fan-beam geometry was simulated. One thousand an-

gular projections over 920 detector bins were calculated for

each CT slice.

Metal artefact reduction strategies

Normalized metal artefact correction

The normalized MAR (NMAR) approach relies on prior

knowledge obtained from a threshold-based image classi-

fication of the metal-affected or LI corrected image. In the

first step, the metal implant is segmented from the input

image followed by forward projection and the identifica-

tion of the metal trace in the projection space. Prior

knowledge is used to normalize the metal-affected data

in the projection space before applying interpolation to

the trace of the metal implant [12].

The NMAR approach was applied on both real (clinical)

and simulated metal-artefacted images, providing a baseline

for evaluation of the deep learning–based MAR approaches.
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Moreover, the outcome of the NMAR approach was

employed as prior knowledge or auxiliary image to be fed into

the deep learning model.

Deep learning–based MAR in the image domain

Deep learning–based MAR can be implemented in either the

projection or image domains (or any combination of them).

MAR in the image domain is considered as an end-to-end

image transformation or regression from metal-affected to

artefact-corrected (or artefact-free) CT images. To implement

MAR in the image domain, three different strategies were

explored: (i) the input image to the deep learning model is

restricted to the metal-affected image to estimate the

artefact-corrected CT image, (ii) the input image is the metal

artefact–corrected CT image using the NMAR technique (CT-

NMAR), (iii) the input to the deep learning model consist of

both metal-affected and CT-NMAR images fed in two differ-

ent channels (Fig. 1a). Visual inspection and preliminary

quantitative analysis revealed the superior performance of

the third scenario. Hence, in the rest of this work, we focus

only on this approach.

Two-hundred metal-free, simulated metal-inserted and

metal-affected volumetric CT images were employed to train

the deep learning model in the image domain. To this end, a

dilated convolutional neural network with residual connec-

tions (HighResNet) [27] was adopted and configured in the

open-source NiftyNet deep learning platform [28]. Overall,

10,000 2D simulated metal-affected and metal-inserted CT

images were used for the training whereas 2000 2D CT im-

ages were used for evaluation of the model. The model

consisted of two entry channels of 400 × 400 voxels taking

metal-affected and CT-NMAR images as input and one output

channel of 400 × 400 voxels. The HighResNet network is

composed of 20 residual convolutional layers regulated by

3 × 3 × 3 kernels dilated by factors two and four at the differ-

ent layers (Fig. 1a). To train the model, an L2 loss function

was adopted using the Adam optimization and learning rate

from 0.06 to 0.01 following the procedure recommended in

[29].

Deep learning–based MAR in the projection domain

To implement the deep learning–basedMAR in the projection

domain, the same three strategies explored in the image do-

main were adopted, except that image-to-image regression

was carried on 2D CT projection data after applying the

Radon transform. Contrary to the image domain, none of the

three strategies exhibited superior performance. However, the

first strategy, wherein the input to the deep learning model is

the metal-affected projections to generate the artefact-free pro-

jections (Fig. 2b), was selected owing to its higher robustness

and computational efficiency. The same deep learning model

and training procedure described in the previous section were

used to implement MAR in the projection domain. The

resulting artefact-free projections were reconstructed using

the FBP algorithm with 1000 angular projections over 920

detector bins.

Fig. 1 Architecture of the HighResNet model used for (a) deep learning–based metal artefact reduction in the image domain (DLI-MAR) and (b) deep

learning–based metal artefact reduction in the projection domain (DLP-MAR)
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MAR in PET/CT imaging

To evaluate the impact of MAR in whole-body PET/CT

imaging, a clinical database consisting of 30 patients pre-

senting with severe metal artefacts in CT images was col-

lected. The metal implants are dental fillings (24), hips (3)

and shoulder joint prostheses (3). The raw PET data were

corrected for attenuation using the original CT images

(before MAR), CT images corrected by NMAR algorithm

and CT images corrected by the deep learning approaches.

The quality and quantitative analysis of PET images

corrected for attenuation using CT images before and after

MAR was assessed to put into perspective the potential

impact of MAR in PET imaging.

The PET raw data were reconstructed using 3D ordinary

Poisson-ordered subset expectation maximization (OP-

OSEM) algorithm with 2 iterations and 21 subsets in 400

× 400 matrix with a voxel size of 2 × 2 × 3 mm. CT-based

scatter correction, time-of-flight (TOF) information and

point spread function (PSF) modelling were considered

during PET image reconstruction using the offline e7 tool

(Siemens Healthcare).

Evaluation strategy

Evaluation of MAR techniques was carried out on CT and

PET images corrected for attenuation using CT images before

and after applying MAR. For quantitative evaluation of CT

images, peak signal-to-noise ratio (PSNR), root mean square

error (RMSE) and structural similarity (SSIM) index were

calculated before and after MAR using Eqs. (1)–(3), respec-

tively.

PSNR dBð Þ ¼ 10log10
Pk2

MSE

� �

ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

vxl
∑
vxl

v¼1

CTMAR ið Þ−CT ref ið Þð Þ2

s

ð2Þ

SSIM ¼
2AverefAveMAR þ k1ð Þ 2δref ;MAR þ k2

� �

Ave2ref þ Ave2MAR þ k1
� �

δ
2
ref þ δ

2
MAR þ k2

� � ð3Þ

In Eq. (1), Pk indicates the maximum intensity of either

CTref or CTMARwhereasMSE denotes the mean squared error

between reference CT images (metal-inserted) and CT images

Fig. 2 Representative examples

of metal artefacts simulation and

correction showing a CT images

after inserting metallic implants

(standard of reference). b Metal-

affected CT images. CT images

after applying MAR using (c)

NMAR, (d) deep learning algo-

rithm operating in the projection

domain (DLP-MAR) and (e) deep

learning algorithm operating in

the image domain (DLI-MAR)
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after MAR. In Eq. (3), Averef and AveMAR are the mean values

of CTref and CTMAR images, respectively. δref and δMAR stand

for the variances and δref,MAR denotes the covariance of CTref
andCTMAR images. The constant parameters (k1 = 0.01 and k2
= 0.02) were sought to avoid division by very small values.

The metal-inserted CT images with no artefacts (generated by

the simulation) were considered as reference.

Thirty clinical whole-body PET/CT images with noticeable

metal artefacts were examined before and after applyingMAR

to CT images. The evaluation focused on artefacts induced on

PET images by metal artefact present in the attenuation maps

as well as PET quantification bias in the vicinity of the metal-

lic implants before and after MAR. Moreover, the impact of

MAR on scatter correction and consequently on PET quanti-

fication was assessed using whole-body 18F-FDG PET/CT

studies. To this end, standardized uptake values (SUVs) were

calculated within volumes of interest (VOIs) drawn on the

affected regions before and after applying MAR using the

different techniques. The VOIs were defined in such a way

to cover a sufficiently large volume encompassing the entire

metallic object, the surrounding affected/disturbed tissues and

the residues of the metal artefacts. Larger VOIs were drawn

for hip and shoulder joint prostheses with a maximum size of

950 cm3 whereas smaller VOIs were drawn for dental fillings

with a minimum size of 55 cm3.

The significance of the differences between the different

MAR techniques (quantitative metrics) was assessed using

the paired t test method. P values smaller than 0.05 were

regarded to reflect statistical significance.

Results

In the first part of the “Results” section, we report the evalu-

ation of MAR techniques solely on CT images using the sim-

ulated metal artefacts dataset. Subsequently, the impact of

metal artefacts (in CT images) and the different MAR tech-

niques are assessed on the corresponding attenuation-

corrected PET images.

Figure 2 (complete set of images is presented in

Supplemental Figure 1) illustrates four examples of metal ar-

tefacts and the outcome of different MAR techniques from the

simulation dataset. The metal-inserted images (artefact-free

CT images inserted with metal implants) are regarded as stan-

dard of reference. Deep learning–based MAR in the image

(DLI-MAR) and projection (DLP-MAR) domains were

assessed along with NMAR techniques, which provides a

yardstick for comparison. Visual inspection revealed the su-

perior performance DLI-MAR compared to NMAR and DLP-

MAR techniques.

Table 1 summarizes the performance metrics of the differ-

ent MAR techniques on the simulation dataset. In agreement

with visual inspection (Fig. 2), quantitative evaluation of the

MAR techniques demonstrated the superior performance of

DLI-MAR techniques. The p values in Table 1 were calculat-

ed between the results obtained from DLI-MAR and DLP-

MAR (reported in the same table) techniques to examine the

statistical significance of the differences between these two

techniques.

The validation dataset consisted of 140 samples of simu-

lated metal artefacts generated from the different metal shapes,

materials and anatomical regions. A separate analysis of the

results associated with a specific metal shape, material or an-

atomical region revealed no significant differences and varia-

tions among them. Hence, we concluded that the performance

of the evaluated techniques is not correlated/linked to any

specific anatomical region, metal shape or material. The aver-

age values over the entire validation cases are reported for

each technique in Table 1. A similar observation was made

in the clinical study wherein the different techniques per-

formed similarly in the different regions of the body.

Although the evaluation ofMAR techniques on CT images

demonstrated the superior performance of DLI-MAR over

DLP-MAR, there was no proof of statistically significant dif-

ferences when the resulting CT images were used for PET

attenuation correction. Therefore, only the results obtained

from NMAR and DLI-MAR methods were presented when

assessing the impact of MAR techniques on PET images.

Figures 3 and 4 present metal artefacts in CT images due to

shoulder joint and hip prostheses, which gave rise to image

artefacts in the corresponding PET images. The image arte-

facts are clearly visible around the site of metallic implants.

MAR techniques, particularly DLI-MAR, eliminated notice-

ably the streak and dark bands from CT images, consequently

reducing the artefacts around the site of the implants. The

horizontal profiles drawn on PET images illustrate clearly

the degree of PET signal alteration before MAR and recovery

by the MAR techniques.

Figures 5 and 6 depict two examples of impaired scatter

estimation during PET image reconstruction owing to the

presence of metallic artefacts in CT images. In Fig. 5, metal

Table 1 RMSE, SSIM and PSNR calculated on metal-affected (prior to

MAR) CT images and after application of NMAR, deep learning–based

MAR in the projection domain (DLP-MAR) and deep learning–based in

the image domain (DLI-MAR) techniques on the simulation dataset.

p values were calculated between the results obtained from DLP-MAR

and DLI-MAR techniques

RMSE SSIM PSNR

Metal-affected 169 ± 84 HU 0.58 ± 0.8 25.1 ± 2.5

NMAR 47 ± 33 HU 0.93 ± 0.3 35.8 ± 2.1

DLP-MAR 33 ± 21 HU 0.94 ± 0.2 37.6 ± 2.0

DLI-MAR 29 ± 17 HU 0.95 ± 0.2 38.2 ± 2.0

p value < 0.02 < 0.05 < 0.05
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artefacts led to underestimation of the head contour due to the

weak signals at the boundary of the head, which resulted in

overestimation of the scatter fraction when using model-based

scatter correction [30]. The scatter fraction for this bed posi-

tion for PET-CTAC was 58% while scatter fractions of 33%

and 24% were observed when using PET-NMAR and PET-

DLI-MAR, respectively. Horizontal profiles drawn on PET

images show the differences between PET images before

and after applying the different MAR techniques.

Supplemental Figure 2 depicts an example wherein metal

artefacts in CT images led to significant underestimation of

scatter fraction during PET/CT image reconstruction. The

scatter fraction in PET-CTAC was 11%, while scatter

fractions of 19% and 25% were observed in PET-NMAR

and PET-DLI-MAR images, respectively.

Figure 6 depicts an example wherein the lesion near the site

of metal artefact was significantly overestimated in the PET-

CTAC image. Application of MAR techniques on the CT

image or attenuation map significantly reduced the seemingly

artificial high SUV of the lesion.

Table 2 summarizes the quantitative impact of MAR tech-

niques on PET images. Thirty VOIs were drawn at the site of

metal artefacts on both clinical and simulation datasets. For

the simulation dataset, the mean SUV bias (percentage of

SUV under-/overestimation after MAR averaged across all

patients) was measured within the VOIs considering the

Fig. 3 Representative example of image artefacts apparent on PET

images from shoulder joint prosthesis in CT images. Original CT image

before correction (a) and after MAR using NMAR (b) and DLI-MAR (c)

methods. The corresponding attenuation-corrected PET images are

displayed in d, e and f, respectively. Horizontal profiles drawn on the

shoulder area of PET images show the impact of metal artefacts and their

reduction on the resulting PET signals
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metal-inserted images (CT images with metal implant without

artefacts) as standard of reference attenuation maps. For the

clinical dataset, the bias (or change in tracer uptake) was cal-

culated against the PET-CTAC before applying the MAR

techniques owing to the lack of ground truth attenuation

map. Overall, the simulation studies demonstrated that metal-

lic artefacts in CT images led to significant overestimation of

the SUV in the proximity of the metallic implant, while MAR

techniques, in particular DLI-MAR, were able to reduce the

adverse impact of the metallic artefacts on PET images. The

large negative bias observed in the clinical studies confirmed

the observations in the simulation dataset.

Discussion

Different strategies for deep learning–based metal artefact re-

duction (MAR) of CT images were explored either in the

image or projection domains [18–22]. The evaluation of CT

images after MAR demonstrated the superior performance of

the deep learning–based MAR in the image domain (DLI-

MAR) when additional information (prior knowledge) in the

form of CT images corrected by the normalized MAR ap-

proach was also fed to the network (Fig. 1a). Similar observa-

tions were reported in other studies [19] wherein the deep

learning model configured in the image domain performed

better when the output of other MAR methods was employed

as prior knowledge (additional input channels). Though deep

learning–based MAR in the projection domain (DLP-MAR)

outperformed NMAR approach, it lagged behind the DLI-

MAR approach. Upgrading the DLP-MAR approach (Fig.

1b) through assigning an extra input channel to take the prior

knowledge in the form of CT projections corrected by the

NMAR approach did not improve the overall performance

of the DLP-MAR approach. Since the anatomical information

present in the image domain is more discernible and extract-

able for deep learning models, DLI-MAR resulted in more

accurate estimation of the artefact-free CT images.

Fig. 4 Representative example of image artefacts apparent in the PET

image from the hip prosthesis in CT images. Original CT image before

correction (a) and after MAR using NMAR (b) and DLI-MAR (c)

methods. The corresponding attenuation-corrected PET images are

displayed in d, e and f, respectively. Horizontal profiles drawn on the

pelvis area of PET images show the impact of metal artefacts on PET

signals
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The major focus of this study was on the impact of MAR

techniques on CT-based attenuation correction in PET to in-

vestigate the quantitative bias and potential image artefacts.

Nevertheless, the evaluation of MAR techniques was carried

out on CT images alone using the SSIM and PSNR metrics,

which reflect the perceived quality of corrected CT images

and an approximation to human perception, respectively.

These parameters reveal the quality or resemblance of the

predicted CT images to the originals (ground truth),

representing the quality of CT images for visual inspection.

Moreover, the RMSE reflects the accuracy of the predicted

CT numbers, which is relevant for quantitative analysis of CT

images and CT-based attenuation correction in PET.

Despite the superior performance of DLI-MAR compared

to DLP-MAR when the evaluation is performed on CT im-

ages, no significant differences were observed on the quanti-

fication of PET images when the output of these approaches

were utilized for PET attenuation correction. One possible

explanation of this observation is that (i) for PET AC, CT

images are commonly downsampled to the resolution of the

PET images (e.g. from 0.97 mm CT resolution to 4 mm PET

resolution) and smoothed using a Gaussian filter. Thus, many

Fig. 5 Example of scatter correction overestimation due to metallic

artefacts. Original CT image before correction (a) and after MAR using

NMAR (b) and DLI-MAR (c) methods. The corresponding attenuation-

corrected PET images are displayed in d, e and f, respectively. Horizontal

profiles drawn on PET images compare the PET signals before and after

application of MAR methods
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nuances and small defects would disappear in the generated

AC maps. (ii) The sensitivity of PET image reconstruction to

attenuation correction is not up to the level where any defects

in the AC maps are fully reflected on PET images [31–33].

Fig. 6 Overestimation of tracer uptake (SUV) in a malignant lesion due

to metallic artefacts. Original CT image before correction (a) and after

MAR using NMAR (b) and DLI-MAR (c) methods. The corresponding

attenuation-corrected PET images are displayed in d, e and f, respective-

ly. Horizontal profiles drawn on the lesion on PET images compare the

PET signals before and after application of MAR methods

Table 2 Mean SUV bias within the 30 VOIs drawn at the site of

metallic artefacts on the clinical and simulation studies. For the

simulation dataset, the metal-inserted CT images (artefact-free) were con-

sidered as reference. For the clinical dataset, the SUV bias for MAR

techniques was calculated against PET-CTAC images before applying

MAR owing to the absence of ground truth. p values calculated between

the results obtained from NMAR and DLI-MAR techniques are also

shown

PET-CTAC PET-NMAR PET-DLI-MAR p value

Clinical data - −5.8 ± 4% −7.6 ± 5% < 0.05

Simulation data 10.5 ± 6% 3.2 ± 5% 1.3 ± 3% < 0.01
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The assessment of deep learning–based MAR approaches

in the literature focused mostly on evaluating the impact on

the quality of CT images [34]. Metal artefacts in CT-based

attenuation maps give rise to skewed information about the

attenuating medium in regions far away from the sites of me-

tallic implants. Metal-induced streak artefacts commonly

cause overestimation of attenuation factors, consequently

leading to inaccurate quantification and/or image artefact in

PET images. Metal artefacts in PET AC maps lead to image

artefacts and/or overestimation of tracer uptake in PET images

(Figs. 3, 4 and 6). SUV changes of up to 11% have been

reported in comparative studies assessing the impact of differ-

ent MAR techniques on PET quantification [35, 36].

However, in very few cases, metal artefacts resulted in the

overestimation or dilation of the body contour which misled

the scatter correction algorithm, resulting in the underestima-

tion of the scatter fraction. The single-scatter simulation algo-

rithm, implemented on the Biograph mCT PET/CT scanner,

takes into account only single Compton scatterings and relies

on a tail fitting approach to estimate the total scatter faction

[30, 37]. As a result of this tail fitting, overestimation of the

body contour would lead to underestimation of the scatter

fraction (Fig. 5) and vice versa (Supplemental Figure 2). It

should be noted that these signal differences are not only

due to scatter correction (or scatter fraction) since CT images

or attenuation maps are also different after applying the MAR

techniques. Scatter correction in PET imaging is not very sen-

sitive to variations of the voxels intensity in the attenuation

map [38, 39]. However, estimation of the scatter fraction

through the tail fitting approach is highly sensitive to the

boundary of the attenuation map to differentiate the genuine

uptake signals from scattered events.

Although recent studies have demonstrated the superior

performance of deep learning methods [20], a hybrid method

would be able to provide more dependable MAR solutions

having the merits of maximal signal recovery and low likeli-

hood of introducing new artefacts. The deep learning

methods, which incorporate/rely on an analytic model–based

technique as prior knowledge, would be able to offer an opti-

mal solution for MAR, enabling efficient recovery of under-

lying structures and tissue densities. The deep learning–based

MAR, as a decision support tool, would be able to prevent

gross errors and/or misdiagnosis in PET/CT imaging.

Due to the lack of ground truth in clinical studies, accu-

rate quantitative analysis of MAR approaches is very chal-

lenging if not possible at all [40]. Nevertheless, the simu-

lation studies demonstrated that metal artefacts in CT im-

ages lead to overall overestimation of local tracer uptake in

PET images (Table 2). The results of the clinical studies

confirmed the observations made on the simulation dataset

wherein PET-CTAC images before MAR exhibited higher

local activity concentration compared to either PET-

NMAR or PET-DLI-MAR images.

One of the major limitations of deep learning–based solu-

tions in general and the MAR algorithm proposed in this work

in particular is the dependency of performance on the training

dataset. Metal artefacts could occur in various anatomical

sites. Hence, developing a comprehensive deep learning–

based MAR model requires the creation of a large training

dataset including potential diversity of metal shapes, materials

and anatomical variability. This study tended to focus on the

major/most probable metal artefact cases normally occur due

to dental implants, hip, shoulder and spine fixations.

However, a comprehensive/versatile model should involve

all metal artefact manifestations. Moreover, the proposed

MAR model is trained and optimized for a specific CT scan-

ner and acquisition protocol, which might perform sub-

optimally when using CT images with different noise levels

or image characteristics. Transfer learning could be an effi-

cient solution to this issue wherein fine-tuning of the devel-

oped model could be carried out using a training dataset from

a different CT scanner or acquisition protocol. Last but not

least, the proposed deep learning–based MAR technique re-

quires slight intervention by the user to define/window the site

of the metal artefact to feed the deep learning–based MAR

model with the extracted sub-volume of the image. This

may be considered as a practical limitation of this model com-

pared to fully automated MAR algorithms.

It can be concluded that we evaluated the potential of

deep learning–based metal artefact correction in PET/CT

imaging. Deep learning–based MAR in the image domain

(DLI-MAR) outperformed its counterpart implemented in

the projection (DLP-MAR) domain. Metal implants gave

rise to image artefacts, quantitative bias, and under- or

overestimation of scatter correction in PET imaging. The

DLI-MAR approach was capable of minimizing the ad-

verse impact of metal artefacts on whole-body PET images

through generating accurate attenuation maps from

corrupted CT images.
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