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ABSTRACT Two-dimensional ultrasound scanning (US) has become a highly recommended examination

in prenatal diagnosis in many countries. Accurate detection of abnormalities and correct fetal brain standard

planes is the most necessary precondition for successful diagnosis and measurement. In the past few

years, support vector machine (SVM) and other machine learning methods have been devoted to automatic

recognition of 2D ultrasonic images, but the performance of recognition is not satisfactory due to the wide

diversity of fetal postures, shortage of data, similarities between standard planes and other reasons. Especially

in the recognition of fetal brain images, the features of fetal brain images such as shape, texture, color and

others are very similar, which presents great challenges to the recognition work. In this study, we proposed

two main methods based on deep convolutional neural networks to automatically recognize six standard

planes of fetal brains. One is a deep convolutional neural network (CNN), and the other one is CNN-based

domain transfer learning. To examine the performance of these algorithms, we constructed two datasets.

Dataset 1 consists of 30,000 2D ultrasound images from 155 subjects between 16 and 34 weeks. Dataset 2,

containing 1,200 images, was acquired from a research participant throughout 40 weeks, which is the entire

pregnancy. Experimental results show that the proposed solutions achieve promising results and that the

frameworks based on deep convolutional neural networks generally outperform the ones using other classical

deep learning methods, thus demonstrating the great potential of convolutional neural networks in this area.

INDEX TERMS Medical image processing, CNN, transfer learning.

I. INTRODUCTION

Ultrasound Scans (US) are now widely used in many

countries as highly recommended examinations in prenatal

diagnosis because they are painless, low-cost, and possible

without harmful radiation, and they can be carried out at

any stage of pregnancy [1]–[3]. In most countries, guid-

ance for how to select and examine these standard planes is

defined in the fetal standard plane (FSP) handbook. Those

standard planes contain detailed information such as bio-

metric measurements and possible abnormalities. Biomet-

ric measurement results such as head circumference on

The associate editor coordinating the review of this manuscript and
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the trans-ventricular head view may indicate fetal develop-

ment and detect dysplasia; possible abnormalities such as

lesions in the posterior skin edge on the standard sagittal spine

view may provide early warning for physicians and pregnant

mothers to make future plans [4].

During the development of fetal formation, doctors

may observe ventricular dilatation, intracranial hematoma,

enhanced echo of brain tissue, intracerebral calcification,

hydrocephalus, congenital brain atrophy, sub ependymal

cyst and other notable features by ultrasound examina-

tion [5], [6]. These abnormalities require a high level of

attention because they may represent the manifestations of

intracranial hemorrhage, intracranial infection and ischemic-

hypoxic encephalopathy. If these indicators are observed
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during pregnancy, it will be of great and far-reaching sig-

nificance to discover the causes of death and disability of

immature infants in order to assist clinicians in choosing

appropriate diagnostic and therapeutic schemes in time and

to evaluate the health and disease status of fetuses. There-

fore, the objective accurate recognition of the fetal brain

standard plane plays a key role in the diagnosis of fetal

brain diseases [7]. Currently, physicians make diagnoses and

determine therapies through visual means. The 2D ultra-

sound images of each patient are reviewed by independent

reviewers, with disagreements resolved by the senior author.

In this way, human error caused by fatigue or other reasons

will be effectively prevented. However, because of different

display parameters, poor signal to noise ratio and image

artifacts such as shadowing, digital medical images present

different display states in different section offices of different

hospitals. Second, guiding the ultrasound probe to a correct

standard plane through the complex anatomical structure is

a highly sophisticated task which requires years of learning

and training for an experienced physician. Furthermore, if the

fetal position is not perfect, it can be difficult for physicians

to obtain a clear image of a desired view. Hence, it is a

challenging task to select the fetal standard plane, especially

for automatic recognition algorithms.

To accurately detect fetal brain standard planes and obtain

correct measurements, correct fetal brain standard planes

must first be acquired, which requires high-level expertise

in fetal anatomy and intensive manual labor by sonogra-

phers. Therefore, in the past few years, considerable efforts

have been devoted to automate recognition of B-ultrasonic

images [8], [9]. Typical methods include feature extrac-

tion, feature selection, feature encoding and classification.

Traditional methods mainly used hand-crafted visual features

[10]–[12], such as morphological features and textural fea-

tures. The morphological features, also called shape features,

are among the most important empirical classification criteria

to detect tissue in ultrasound images. Almost twenty signifi-

cant shape features [13], [14], such as scale-invariant feature

transform (SIFT), Dense-SIFT (DSFT), Haar-like features,

and histogram-of-gradient (HOG), and other combinations

of these feature representations with intensity and edges

as image descriptors are utilized to represent the images.

Textural features are features that are based on image texture.

More than ten kinds of textural features, including gray-

level histogram (HIS) [15], gray-level co-occurrence matrix

(GLCM) [16], [17] andGaborwavelets-based spectral texture

features are higher-level image representations in some sense.

Not all of these features can be used in the classification

system. Some features are selected by researchers based

on experience, while some are selected by the laws texture

energy (LTE) [18], which represents the laws that empirically

determine that several masks of appropriate sizes were useful

for discriminating between different kinds of texture. The

method is based on applying such masks to the image and

then estimating the energy within the pass region of fil-

ters. These selected features are then encoded by algorithms

FIGURE 1. Samples showing the six fetal brain standard planes.

including bag of visual words (BoVW), vector of locally

aggregated descriptor (VLAD) [19], Fisher vector (FV) [20],

and multi-layer Fisher vector (MFV) to enhance the effec-

tiveness of classification. Finally, support vector machine

(SVM) [21], [22] and other machine learning methods are

applied to classify these features [5], [16], [23]. Compared

with the traditional manual method, automatic recognition of

fetal standard planes can not only reduce the visual fatigue

for physicians but also enhance the precision of diagnosis.

However, these types of methods exhibit some shortcom-

ings: first, the recognition performance is still unsatisfactory

due to the wide diversity of fetal postures and the high

degree of visual similarity between standard fetal planes and

others; second, they are ad hoc solutions, i.e., a specific set

of hand-crafted features is needed for each standard plane;

third, the final result and accuracy hinge on whether the

hand-crafted feature is suited for this specific SVM or other

machine learning algorithm, which is an uncertain factor for

the whole algorithm.

In the past few years, neural networks have been proven

to be very successful in solving image classification tasks

because of the available large-scale labeled datasets, powerful

representation ability of deep neural networks, especially

convolutional neural networks (CNN) [24], and distributed

workstations with powerful computing power. Deep neural

networks for AI have been successfully applied to the fields of

fetal standard planes [25]–[27], such as image classification,

contour detection, nidus localization, object measurement,

and target segmentation. However, automatic recognition of

fetal brain standard planes from the data acquired by the color

Doppler ultrasonic diagnosis apparatus is still a challenge

because of practical factors such as low image resolution,

motion-caused blur and different fetal positions.

Consequently, to overcome these problems, we proposed

four more generic methods to automatically recognize stan-

dard planes of the six fetal brain standard planes shown

in Fig. 1, which are the horizontal transverse section of

thalamus, horizontal transverse section of lateral ventricle,

transverse section of cerebellum, midsagittal plane, paracen-

tral sagittal section, and coronal section of the anterior horn

of the lateral ventricle. The conventional machine learning

solutions using clustering and support vector machine are
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first proposed; then, to extract more representative latent

features and to increase the recognition accuracy, we further

proposed two frameworks based on deep convolutional neural

networks.

To evaluate the effect of thesemachine learning algorithms,

large sets of fetal brain standard plane images were acquired

from free-living pregnant woman using a HITACHI ALOKA

ARIETTA 70 colored Doppler ultrasonic diagnosis appa-

ratus. 30000 fetal brain standard plane images and other

fetal images containing six standard planes and other planes,

which formed Dataset 1, were constructed from 155 subjects.

Dataset 2 contained 300 images and was acquired from one

research participant throughout 40 weeks, which represents

the entire pregnancy. It is worth mentioning that the images

in Dataset 2 do not intersect with Dataset 1.

The rest of the paper is organized as follows. Section 2

introduces the methodology of the proposed deep learning

algorithm. Experimental results and analysis are provided in

Section 3. The positive and negative aspects of our proposed

method are articulately listed and compared in Section 4.

Finally, in Section 5, we conclude the paper and discuss the

future work.

II. METHODOLOGY

In image analysis problems, the descriptiveness and

discriminative power of extracted features are critical to

achieve good analysis performance. The remarkable advan-

tage of deep learning is that this type of algorithm can

be extended to difficult problems with relatively com-

plex features, because the features for recognition can be

automatically extracted via training.

A. CONVOLUTIONAL NEURAL NETWORK

Deep learning technology for AI has attracted great atten-

tion as it constantly breaks records in a variety of common

benchmark tests [28]–[31]. As one type of method that sat-

isfies the requirements of deep learning, CNN [28] is now

a state-of-the-art deep learning structure applied to a wide

range of fields, such as automatic machine translation, com-

puter vision, and speech recognition. Great performance in

object detection or classification from images [32], [33] has

been shown because CNN networks provide a faster, more

robust and more convenient algorithm than traditional neural

networks. In CNN, image pixels could be directly used as

input to the standard feed-forward neural networks. Although

thousands of pixels from even small image patches result in

a very large number of connection weight parameters to be

trained, CNN models combine weights into much smaller

kernel filters that dramatically simplify the learning model.

The convolutional layer is the key component of CNN.

The process to compute a single output matrix is defined as:

Aj = f

(

∑N

i=1
Ii ∗ Ki,j + Bj

)

(1)

where Ii is the input matrix, which is convoluted with a

corresponding n × n kernel Ki,j (n < input size). The sum

FIGURE 2. The framework of CNN architecture.

of all convoluted matrices is then computed, and a bias value

Bj is added to each element of the resulting matrix. f is a non-

linear activation function that is applied to each element of the

previous matrix to produce one output matrix Aj.

Thepooling layer performs down-sampling by dividing the

input into rectangular pooling regions in order to reduce

the number of output neurons in the convolutional layer.

Commonly used pooling algorithms includemax-pooling and

average-pooling.

Activation function. To solve more complex problems

and to converge quicker, an activation function is used to

add non-linear factors to the neural network. Commonly

used activation functions such as the sigmoid and hyper-

bolic tangent functions are saturating non-linear functions for

which the output gradient drops close to zero as the input

increases. Some recent studies suggested that non-saturating

non-linear functions, such as the rectified linear function

f (x) = max(0, x) (ReLU), improve both learning speed

and classification performance in CNN applications [34].

The overall framework design is illustrated in Fig. 2.

B. TRANSFER LEARNING

Although the CNN offers the advantage of learning pow-

erful feature representations, there are limits on the actual

implementation of these networks in the field of application.

The application of deep learning in medical image process-

ing is developing slowly. The small amount of training data

is the main limitation. With limited training data in many

medical applications, the fully supervised deep architectures

may overfit the training data and degrade the learning per-

formance, and hence limit the development of deep learning

in the area of medical image processing. [35] shows that

transfer learning is a powerful tool to reduce over-fitting by

first training a base network on a similar dataset and task, and

then transferring the learned architecture and features of the

base network to a new target network to be trained on a target

dataset and task.

In this paper, we use fine-tuning as the strategy of transfer

learning. We used the proposed DCNN network which was

already pretrained on Dataset 1, and then trained all layers

on the target dataset, Dataset 2. The reason why we chose to

fine-tune the whole network is that although the images in

the two datasets are similar, the details are slightly different.

If we only train the last few layers and freeze the first few

layers, the detailed features will not be learned adequately.

Moreover, the structure and parameters of our proposed
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FIGURE 3. Flowchart of transfer learning.

DCNN in this paper are not complicated. The experimental

results show that this learning strategy has not resulted in

overfitting.

In this study, it is a challenge to transfer the knowledge

acquired from the CNN trained by Dataset 1, which consists

of 30,000 2D ultrasound images acquired from 155 subjects

between 16 and 34 weeks, to Dataset 2, which contains 300

images acquired from one research participant over 40 weeks.

Although the source dataset and target dataset both consist of

fetal brain US images, we were curious regarding whether

the feature similarities will confuse the deep learning system

and bring about errors. The flowchart of transfer learning is

shown in Fig. 3.

III. EXPERIMENTAL SETUP

A. PROPOSED DCNN MODEL

Appropriate network architecture design can improve

network performance significantly. Our DCNN model con-

tains five convolutional layers and five average-pooling lay-

ers between convolutional layers, followed by three fully

connected layers, as shown in Table 1. C represents the

convolutional neural network, P represents the pooling layer

(average pooling layer in this structure), and F represents the

fully connected layer. Initial values of the feature maps in

convolutional neural networks are randomly generated by the

system.

Once the proposed CNN is trained, the probability

weight, also referred to as the feature map, can be calcu-

lated by the gradient descent method during forward and

TABLE 1. Architecture of proposed DCNN model.

back propagation. The feature map rolls with a sliding win-

dow method. During the window sliding, the stride of sliding

is according to the difference between two adjacent layers.

To make the training processing fast and efficient, we choose

the average pooling layers to down-sample the image. The

stride of pooling, also called the down-sampling rate, is cho-

sen to fit the size of two adjacent layers. At last, a final one-

dimensional probability vector is obtained. After obtaining

the final probability vector, we further smooth it and use

bilateral filtering to eliminate noise. The final score of the

image is the highest value of the smoothed probability vector.

Finally, when the detection score is higher than the threshold,

the highest detection US image with the highest detection

score is identified as the brain standard plane.
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FIGURE 4. Samples showing results of four methods transformed from
the original image. (A-G) respectively represent rotation, reflection,
Gaussian white noise, flip, zoom, cubic spline interpolation and bilinear
interpolation.

B. DATASET 1 AND DATA AUGMENTATION

A total of 19,142 fetal brain standard planes and other fetal

plane images, which were constructed from 155 subjects

containing 6 standard planes and other planes, were acquired

by a Hitachi ARIETTA 70 B-mode ultrasonic apparatus with

probe frequency of 4-6 MHz to form Dataset 1. Since the

ultrasonic apparatus recorded images as an image sequence in

one pregnancy examination, adjacent images in the sequences

were usually similar. Therefore, we down-sampled the image

sequences by a factor of 12. Even after this down-sampling,

some images were still quite similar. Doctors at Zhangjiakou

Maternal and Child Health Care Hospital helped us to select

fetal brain standard planes and further deleted similar ones

manually to keep the number of images recorded from the

same event to less than 15. The images which were too blurry

were also removed. All private information was removed

from the images. All the images were annotated to provide

the ground truth (such as horizontal transverse section of

thalamus, horizontal transverse section of lateral ventricle,

and transverse section of cerebellum) and some detailed

information, such as thalamus (T), lateral ventricle (LV), and

Sylvian fissure (SF).

Although CNN presents the advantage of learning power-

ful feature representations, the fully supervised deep archi-

tectures may overfit the training data in the case of limited

training data in many medical applications. When the dataset

is small, excessive parameters fit all characteristics of the

dataset, rather than the commonalities between data. This

makes the generation of the network perform terribly on

the test dataset. Therefore, in order to prevent overfitting,

data augmentation is increased. In this paper, we use the

following methods to extend Dataset 1, as shown in Fig. 3.

(1) Rotation: random rotation of the image at a certain angle;

(2) Reflection: changing the orientation of the image content;

(3) Gaussian white noise: adding random noise with normal

distribution and the same energy density at all frequencies to

the image; (4) Flip: flipping the images horizontally or verti-

cally; (5) Zoom: zooming in or out of an image in a certain

proportion; (6) Cubic spline interpolation: constructing a new

image by the cubic spline interpolation method; (7) Bilinear

interpolation: constructing a new image by bilinear interpo-

lation. Figure 4 shows these four image transformations for

augmentation.

After all the processing of the original dataset, a total

of 30,000 1020 × 1020 fetal brain standard planes (includ-

ing horizontal transverse section of thalamus, horizontal

transverse section of lateral ventricle, transverse section of

cerebellum, midsagittal plane, paracentral sagittal section,

and coronal section of the anterior horn of the lateral ven-

tricles) and other fetal plane images formed Dataset 1.

In Dataset 1, there are 4,000 images for each standard plane

and 6,000 images for other planes. We set the ratio of

training set, validation set and testing set as 6:2:2, result-

ing in 18,000 images, 6,000 images and 6,000 images,

respectively.

C. DATASET 2 AND SYSTEM IMPLEMENTATION

After Institutional ReviewBoard (IRB) approval, we recorded

a set of images corresponding to a complete pregnancy.

With the permission of the pregnant woman, her US video

during the whole pregnancy was recorded and kept. Since

the adjacent images in the video change little, we down-

sampled the image sequences by a factor of 10, so that the

resulting images were separated by 12-15 seconds. Even after

this down-sampling, some images were still quite similar.

Due to this persistent similarity in the images, doctors helped

us to further manually delete similar images, blurry images

and excessively dark images to keep the number of images

from the same event to less than 10. Finally, we collected

1,200 images to form Dataset 2. In Dataset 2, there are

150 images for each of the standard planes and 300 images

for other planes. We set the training set, validation set and

testing set ratio as 6:2:2, resulting in 720 images, 240 images

and 240 images, respectively. The images in Dataset 2 do not

intersect with those of Dataset 1.

Overfitting of the learning performance due to the small

amount of image data was considered. In recent years, many

studies have demonstrated that transfer learning is a powerful

tool which can reduce overfitting by first training the basic

network on the basic datasets and tasks, then transferring the

learning features of the basic network to the new target net-

work, and then training the target datasets and tasks. Inspired

by these studies, we attempt to investigate whether the knowl-

edge acquired from Dataset 1 formed by 155 subjects can be

transferred to a dataset formed from one subject during the

entire pregnancy, where the training dataset is limited and

directly using CNN on Dataset 2 may lead to some extent

of overfitting.

Noting that all ultrasonic scan images are converted into

gray images, the input of CNN is thus single channel.

To transfer the knowledge from Dataset 1, we construct a

CNN-based on the proposed DCNN as mentioned earlier.

Then, the pretrained convolutional layers are implanted to

the same positions. Meanwhile, the parameters in fully con-

nected layers are randomly initialized with Gaussian distri-

bution. The strategy of dropout is applied for regularization

to improve the generalization ability. This means that only

the structures of CNN and pretrained convolutional layers are

transferred from the proposed DCNN trained by Dataset 1,
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while other information including pooling layers and fully

connected layers is trained as usual.

IV. RESULTS

We carried out the experiment based on the HP Z640

Workstation, Intel Xeon E5-2620 v4 2.1 2133 8C CPU and

the GPU, NVIDIAQuadroM4000 8GBGeForce. The frame-

work we used to establish the CNN architecture is Tensor-

Flow. Our system was also implemented with the mixed

programming technology of MATLAB. The running time for

detecting one fetal brain standard scan plane in a testing set

from the image flow is approximately 1.2 s.

A. QUANTITATIVE PERFORMANCE EVALUATION

AND COMPARISON

We quantitatively evaluated the performance of our method in

two experiments. In the first experiment, in order to determine

the effectiveness of the proposed DCNN classifier, we com-

pared the performance of four methods for detecting standard

planes from Dataset 1, including three classical machine

learning methods which perform outstanding with respect to

automatic recognition, such as K-means clustering, support

vector machines and radial component-based model (RCM)

methods. K-means clustering is a method of vector quanti-

zation. In machine learning, it aims to divide n observations

into k clusters, each of which belongs to the clustering with

the nearest mean. In addition to k-means, support-vector

machine (SVM) is a supervised learning model. It maps the

points in space in order to divide the examples of individual

categories into an obvious gap which is as wide as possible.

RCM [14] is a novel method that was incorporated in the

detection procedure to improve the performance.

To compare the differences between different algorithms,

we computed the following statistical indices: Accuracy (A),

Precision (P), Recall (R) and F1-measure (F1).

A =
TP+ TN

TP+ TN + FP+ FN
(2)

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)

F1 =
2RP

R+ P
(5)

Here, TP, TN, FP and FN represent the number of true

positives, true negatives, false positives and false negatives,

respectively.

The precision-recall (PR) curves and receiver operating

characteristic (ROC) curves are used to evaluate the clas-

sification performance of machine learning algorithms for

a given dataset. Each dataset contains a fixed number of

positive and negative samples. There is a deep relationship

between ROC curve and PR curve:

For a given dataset containing positive and negative sam-

ples, there is a one-to-one correspondence between ROC

plane and PR plane; i.e., if recall is not equal to 0, the planes

TABLE 2. Results of fetal brain standard plane recognition for dataset 1.

contain completely identical obfuscation matrices. We can

convert an ROC curve into a PR curve. For a given number

of positive and negative sample datasets, one curve has an

advantage over another curve in the ROC plane if and only if

the first curve has an advantage over the second curve in the

PR plane. (Here, ‘‘a curve has advantages over other curves’’

means that all parts of other curves coincide with or are below

this curve.)

In the precision-recall plane, the more convex the ROC

curve, the better the effect it exhibits. In comparison with the

left upper convexROC curve, the right upper convex PR curve

is superior.

Area under curve (AUC) refers to the proportion of the

area under the ROC curve to the total square value. Some-

times, the ROC curves of different classification algorithms

intersect, so the AUC value is often used as the criterion to

judge the performance of the algorithm. The larger the area,

the better the classification performance.

1) EVALUATION OF DATASET 1

In this experiment, the image is classified as a certain

category when its final vector score is the highest. As shown

in Table 2, the accuracy, precision, recall, and F1-measure

values of the proposed DCNN on the testing data were

0.910, 0.855, 0.901 and 0.900, respectively, which signifi-

cantly outperformed the other methods. The precision-recall

and receiver operating characteristic (ROC) curves were also

shown in Fig. 6. The areas under the ROC curve (AUC)

obtained by the proposed DCNN, RCM, SVM and cluster

methods are 0.90, 0.87, 0.75 and 0.71, respectively. The

DCNN method we proposed in this paper achieved the best

performance.

Also, we compared classification results between the

proposed DCNN that includes data augmentation and the

DCNN that without using data augmentation.

Table 3 shows that simple image data augmentation meth-

ods such as rotation and stretching have little impact on the

output effect of SVM method, with the accuracy increased

by only 1.2% from 77.1% to 78.0%. This is because SVM

method is very sufficient for the feature extraction of small

sample image data, and the image deformation of training

set and testing set is unified. However, the accuracy of K-

means clustering method decreased by 13% from 70.1% to

60.7%. This is because K-means clustering algorithm use

the Euclidean distance of vector to measure the similarity

between pixels. When the Euclidean distance is greater than

a certain threshold, it is an unsupervised learning method

to allocate the pixels to similar image areas. This method
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FIGURE 5. A: Precision recall plane. B: ROC curve.

TABLE 3. Comparison of K-means, SVM and CNN on dataset 1 with data
augmentation and without data augmentation.

is easy to be interfered by image deformation. When the

clustering center changes, the clustering effect will be quite

different. This change will not improve the accuracy of image

classification, but will mistakenly classify the input image

due to the interference of image deformation, thus affecting

the classification effect.

Because the local receptive field of the convolutional neu-

ral network can obtain some basic features of the image, such

as the edge and angle in the image, the maximum pooling has

the consistency of expression, which makes the convolutional

neural network have a certain degree of relative invariance

to geometric transformations such as image displacement,

TABLE 4. Results of fetal brain standard plane recognition for dataset 2.

stretching and rotation. The data augmentation method used

in this paper raised the output accuracy of the convolutional

neural network by 40.0%.

2) EVALUATION OF DATASET 2

In the second part of the experiment, we used the same rules

to evaluate the performance of the transfer learning-based

method on Dataset 2.

As shown in Table 4, the accuracy, precision, recall, and

F1-measure values of the proposed transfer learning-based

method for the testing data were 0.891, 0.853, 0.864 and

0.901, respectively, which significantly outperformed the

other methods. The precision-recall and receiver operating

characteristic (ROC) curves were also shown in Fig. 7. The

areas under the ROC curve (AUC) obtained by the proposed

transfer learning method, DCNN, RCM, SVM and cluster

methods are 0.90, 0.83, 0.79, 0.87 and 0.69, respectively. The

DCNN method we proposed in this paper achieved the best

performance. Additionally, we found that the SVM method

can extract image features more comprehensively on a small

dataset, and so its performance is relatively good.Meanwhile,

an inappropriate use of DCNN on the small dataset causes

network out-fitting on the testing set, resulting in relatively

poor performance. Even after data augmentation, the CNN

system is still difficult to extract enough features via the small

data sample.

V. DISCUSSION

In this paper, we proposed two CNN-based deep learning

methods for automatic recognition of fetal brain standard

planes from US image sequences. In fact, inaccurate recog-

nition results are mainly caused by the following reasons:

(1) the differences between features in different planes

are very small, and the sizes of feature areas are small;

(2) there are fewer data to be trained. Based on these reasons,

we selected small feature maps and manipulated the data

by extending the depth of the CNN to make the network

more sensitive to small features. Meanwhile, we proposed

image transformation and domain transfer learning to solve

the problem of overfitting caused by the lack of training data.

In fact, the main challenge of using CNN-based deep

learning in medical applications is the lack of training data.

Generally, the availability of data from medical applications

is much less than that in other areas, and the underlying

reason for this is that collecting data from patients requires the

approval of ethics committees, which requires long periods
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FIGURE 6. A: Precision recall plane. B: ROC curve.

of time. In fact, many pregnant women refuse to share their

private US data for scientific research. Therefore, the over-

fitting problem caused by limited training datasets will affect

the performance of the learning system and bring difficulties

to clinical application, which is a major challenge faced in the

medical computing community. Currently, investigating new

therapies through the analysis of massive amounts of data has

become the next frontier of modern medicine. Deep learning

models represent a breakthrough over traditional methods in

solving long-term computing problems, and they have been

applied for various applications. Our proposed data augmen-

tation and domain transferred learning methods will help the

medical computing community to solve the challenges of

limited size of datasets and promote the application of CNN

in the medical field.

VI. CONCLUSION

To assist doctors in improving automatic diagnosis efficiency

and accuracy, we proposed a novel deep CNN-based method

and a domain transferred CNN model for automatic recog-

nition of the fetal brain standard planes from US image

sequences. Data augmentation and knowledge transfer were

also adopted to reduce the overfitting for improvement of

recognition performance. To elaborate the proposed methods

and investigate their effectiveness, we collected and estab-

lished two datasets. Numerous experiments have been carried

out on the fetal brain plane dataset collected by our group,

which proves that our method is superior to the traditional

classification model. In addition, our experiments showed the

effectiveness of data augmentation, especially in the case of

insufficient training data. The proposedmethod demonstrated

great prospects for deep learning in clinical application.
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