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Abstract: Breast cancer is one of the precarious conditions that affect women, and a substantive
cure has not yet been discovered for it. With the advent of Artificial intelligence (AI), recently, deep
learning techniques have been used effectively in breast cancer detection, facilitating early diagnosis
and therefore increasing the chances of patients’ survival. Compared to classical machine learning
techniques, deep learning requires less human intervention for similar feature extraction. This study
presents a systematic literature review on the deep learning-based methods for breast cancer detection
that can guide practitioners and researchers in understanding the challenges and new trends in the
field. Particularly, different deep learning-based methods for breast cancer detection are investigated,
focusing on the genomics and histopathological imaging data. The study specifically adopts the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), which offer a
detailed analysis and synthesis of the published articles. Several studies were searched and gathered,
and after the eligibility screening and quality evaluation, 98 articles were identified. The results
of the review indicated that the Convolutional Neural Network (CNN) is the most accurate and
extensively used model for breast cancer detection, and the accuracy metrics are the most popular
method used for performance evaluation. Moreover, datasets utilized for breast cancer detection
and the evaluation metrics are also studied. Finally, the challenges and future research direction in
breast cancer detection based on deep learning models are also investigated to help researchers and
practitioners acquire in-depth knowledge of and insight into the area.

Keywords: deep learning; artificial neural network; breast cancer; cancer detection; breast cancer
diagnosis

1. Introduction

One of the common cancers identified globally among women is breast cancer, which
has become the leading cause of death [1–3]. Based on the recent findings by the American
cancer society, over 40,000 women and about 600 men died as a result of breast cancer
disease [3]. There are four basic forms of breast cancer: benign, normal, in situ carcinoma
and invasive carcinoma [1]. A benign tumor slightly alters the breast’s anatomy, it is not
toxic and does not fit the description of dangerous cancer [4]. In situ carcinoma, on the
other hand, only affects the system of mammary duct lobules and does not spread to other
organs [5]. This kind of cancer is not very harmful and is treatable if detected early. The most
severe type of breast cancer is invasive carcinoma, which has the potential to spread to all
other organs [6]. Over many years, breast cancer can be identified through several methods
such as mammography, X-ray, ultrasound (US), Portion Emission Tomography (PET),
Computed Tomography, temperature measurement and Magnetic Resonance Imaging
(MRI) [2,7,8]. Usually, the golden standard approach for breast cancer diagnosis is a
pathological process. In order to maximize visibility, the extracted tissue is stained in the
lab before being subjected to imaging analysis. The staining procedure frequently employs
Hematoxylin and Eosin (H&E) [9]. In most cases, Histopathological image analysis and
genomics can both be utilized to identify breast cancer [4,10]. A histopathological image is a
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microscopic picture of breast tissues and is very helpful in the early treatments of cancer [11].
The genomics field is primarily concerned with multi-scale connections between data on
gene expression and medical imaging [4]. A more accurate diagnosis can be achieved with
the use of radio-genomics [10]. In order to predict and identify cancer early, molecular
analyses of tissues can be performed.

Recently, Computer-Aided Design (CAD) has been introduced [12,13] to simplify
breast cancer identification. However, traditional computer-aided design systems generally
depend on manually created features and therefore weaken the overall performance [13].
With the advent of machine learning and AI methods, deep learning-based techniques
were recently studied for breast cancer detection [14,15]. Representation learning is the
basis of deep learning techniques, which come from several layers. The representation is
transformed from the lower to the higher levels at each end by combining the non-linear and
simple modules, in which the lower-level features are more comprehensible and the higher-
level features more abstract [14]. Compared to the ML methods [10,16], deep learning is
more effective and requires fewer human interventions for the related pattern recognition
schemes. This makes it capable of effectively solving complex problems in various areas
such as image analysis [17], pattern recognition and natural language processing.

Following its successful applications in breast cancer detection, the number of research
works on deep learning-based approaches has increased exponentially recently. This begs
for a systematic review and summary of the existing works to help successive researchers
and practitioners gain better insight into and understanding of the field. In the past,
several literature reviews on breast cancer detection have been published. For instance,
Yassin et al. [2] investigated the existing ML-based methods for breast cancer diagnosis.
The authors comprehensively assessed different image modalities as well as the different
ML-based classifiers used for breast cancer detection. The authors in [18] reviewed various
deep learning-based methods for classifying breast cancer based on image processing.
However, this work focuses on shallow feed-forward networks, while other deep learning-
based methods were not emphasized. A study in [19] summarized recent studies that used
deep learning (DL) methods to detect breast cancer disease based on different imaging
approaches. The authors specifically focused on the three breast cancer imaging approaches,
namely, MRI, mammography and ultrasound.

The authors in [20] examined several DL- and traditional ML-based methods for breast
cancer prediction by reviewing a total of 8 papers and 27 papers in DL and ML, respec-
tively. The authors discovered that most of the reviewed literature employed the imaging
process; however, only a few of the reviewed articles applied genetics. The authors in [21]
reviewed several imaging methods based on mammography for breast cancer diagnosis.
Gupta et al. [22] presented a brief survey of different systems and methods for the early
detection of breast cancer. In this study, various imaging methods which comprise radar-
based imaging and microwave tomography were examined. Oyelade et al. [23] examined
different deep learning-based methods for breast cancer diagnosis from digital mammogra-
phy. Husaini et al. [15] examined the application of ML techniques and thermography for
detecting breast cancer problems. In this method, various ML methods were investigated
to process the breast cancer thermographic images.

Considering the above-mentioned several reviews on the deep learning-based methods
for breast cancer detection, it could be seen that most of the existing review works particu-
larly focus on the image-based methods for breast cancer detection problems. It can be seen
that most of the existing studies emphasize the traditional ML-based approaches, while
those focused on the deep learning-based techniques particularly covered very limited
studies, with no clear comprehensive and systematic analysis of the existing approaches.

Therefore, this SLR aims to provide a comprehensive SLR to systematically analyze
the existing literature in the area of deep learning techniques for breast cancer detection and
to have more in-depth knowledge that is required for the early detection of breast cancer
and proper treatments. The SLR is mainly focused on methods based on histopathological
images and genomics. To provide more recent developments in breast cancer diagnosis,
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we consider studies conducted from 2010 to 2021. We also investigate the challenges and
provide recommendations for future research to help researchers and practitioners in this
area. The main contributions of this study are as follows:

• Summarizing the deep learning-based methods popularly applied for breast cancer
detection.

• Identifying the deep learning-based methods with the best performances for breast
cancer diagnosis.

• Investigating the datasets generally applied in the deep learning-based methods for
breast cancer diagnosis.

• Summarizing the evaluation metrics used for breast cancer diagnosis using deep
learning-based methods.

• Analyzing the research gaps and future direction for deep learning-based breast cancer
detection.

The rest of the article is designed as follows: Section 2 describes the background of
the deep learning-based methods. Sections 3–5 present the research methods, the research
questions and the synthesis results. Finally, Sections 6 and 7 summarize the limitations of
the study and the conclusion of the paper.

2. Background of Deep Learning Methods

Deep learning, in simple terms, is referred to as a machine learning method that
employs learning representation to automatically determine feature representations from
input data [11,24]. Unlike traditional learning (such as support vector machine (SVM),
K-nearest neighbors (KNN), random forest (RF), etc.), deep learning does not need a human-
engineered feature to optimally perform [10,12]. Several deep learning methods have been
introduced in the past decades [25,26], which include the convolutional neural network
(CNN), Restricted Boltzmann Machine (RBM), Recurrent Neural Network (RNN), Deep
Autoencoder (AE), multi-layer perceptron and Generative Adversarial Network (GAN).
These models have been applied and proved to be successful in several areas, including
natural language processing [27], recommender systems [28], computer vision [29], medical
imaging [30], etc. Brief explanations of these models are given in the following paragraphs:

RBMs: RBMs are generative deep learning-based methods that use blocks in a greedy,
layer-by-layer form of network training and feature learning [31]. For the model to generate
unbiased estimates of maximum likelihood learning, contrastive divergence (CD) is used
during training. One of the popular examples of the RBM is the Deep Belief Network
(DBN) [32]. By stacking many RBMs to data, the Deep Belief Network deep learning
approach is learned in a greedy-wise, layer-by-layer style [33,34]. The top layer of the Deep
Belief Network contains an undirected connection, which models the observed distribution
between the hidden layer and vector space layer [13]. The lower layers of the Deep Belief
Networks have direct connections. Similar to this, weight fine-tuning during training is
carried out layer by layer via Contrastive Divergence (CD) [26]. Figure 1 illustrates the
structure of the DBN technique.

Autoencoder (AE): The autoencoder technique replicates the copy of the input values
as the output through the use of encoder and decoding units [35]. By reducing the dimen-
sions of the data, autoencoder algorithms obtain the most discriminative features from
unlabeled data [32]. In order to reduce error rates, the encoder converts the input data into
hidden features that are further reconstituted using the decoder [36]. The method provided
learning feature extraction techniques for avoiding handcrafted feature issues [35]. To
generate a lower dimensional discriminative feature, the training of the auto-encoder is
performed in such a way that the hidden layers are smaller than the inputs/outputs. [36].
A typical example of the autoencoder model is illustrated in Figure 2.
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Figure 2. An illustration of the deep autoencoder.

CNN: CNN is a neural network that has an interconnected structure. A CNN method
is one of the popular deep learning methods that form convolutional operations on raw
data [37]. It has been applied in various applications such as speech recognition, sentence
modeling, image classification and, recently, medical imaging, including a breast cancer
diagnosis. Basically, three layers make up the CNN: a convolutional layer, a pooling layer
and a fully connected layer. These layers are stacked to create a deep architecture for
automatically extracting the features [37]. Recently, several of the CNN models have been
introduced by different researchers: VGG [38], AlexNet [39] and GoogleNet [40]. Figure 3
illustrates the structure of the CNN technique.
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RNN: RNN is a supervised deep learning-based technique used for sequential data [41].
The hidden unit of the recurrent cell is used by RNN to learn complex changes by inte-
grating a temporal layer for capturing sequential information [5]. Depending on the
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information accessible to the network, which is automatically updated to represent the
network’s current state, the hidden unit cells may change [41]. However, the model suffers
from vanishing or exploding gradients and is difficult to train, which limits its application
for modeling temporal dependencies and longer sequences in a dataset [42]. To mitigate
the issue of the vanishing and exploding gradients of RNN, new models such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were introduced [36]. As a
way to manage the flow of information into the network, LSTM included memory cells to
store relevant data [34]. The LSTM can represent temporal dependencies and effectively
capture the global features in sequential data to improve the speed [42]. However, one of
the problems of the LSTM is the issue of the numerous parameters that are required to be
updated in the course of the model training [34]. To reduce the parameter update, the GRU
with fewer parameters, which makes it faster and less complicated, is introduced. The next
hidden state’s updating process and contents exposure technique are different for LSTM
and GRU [25]. While GRU updates the subsequent hidden states based on the correlation,
subject to the amount of time required to maintain such information in the memory, the
LSTM updates the hidden states using the summing operation. The basic structure of the
RNN model is shown in Figure 4.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 3. An illustration of the CNN model. 

RNN: RNN is a supervised deep learning-based technique used for sequential data 

[41]. The hidden unit of the recurrent cell is used by RNN to learn complex changes by 

integrating a temporal layer for capturing sequential information [5]. Depending on the 

information accessible to the network, which is automatically updated to represent the 

network’s current state, the hidden unit cells may change [41]. However, the model suffers 

from vanishing or exploding gradients and is difficult to train, which limits its application 

for modeling temporal dependencies and longer sequences in a dataset [42]. To mitigate 

the issue of the vanishing and exploding gradients of RNN, new models such as Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were introduced [36]. As a 

way to manage the flow of information into the network, LSTM included memory cells to 

store relevant data [34]. The LSTM can represent temporal dependencies and effectively 

capture the global features in sequential data to improve the speed [42]. However, one of 

the problems of the LSTM is the issue of the numerous parameters that are required to be 

updated in the course of the model training [34]. To reduce the parameter update, the 

GRU with fewer parameters, which makes it faster and less complicated, is introduced. 

The next hidden state’s updating process and contents exposure technique are different 

for LSTM and GRU [25]. While GRU updates the subsequent hidden states based on the 

correlation, subject to the amount of time required to maintain such information in the 

memory, the LSTM updates the hidden states using the summing operation. The basic 

structure of the RNN model is shown in Figure 4. 

 

Figure 4. An illustration of the RNN model. 

Multilayer Perceptron (MLP): The MLP technique for feed-forward neural networks 

employs additional layers and nonlinear activation functions [43]. The simplest deep 

learning architecture is considered to be the multilayer perceptron [25]. It consists of a 

minimum of one hidden layer that is coupled in a feed-forward manner. For the most part, 

deep learning architectures are basically built using this framework [43]. The model’s lin-

ear approach can be changed into nonlinear models for neural performance using MLP. 

Figure 4. An illustration of the RNN model.

Multilayer Perceptron (MLP): The MLP technique for feed-forward neural networks
employs additional layers and nonlinear activation functions [43]. The simplest deep
learning architecture is considered to be the multilayer perceptron [25]. It consists of a
minimum of one hidden layer that is coupled in a feed-forward manner. For the most
part, deep learning architectures are basically built using this framework [43]. The model’s
linear approach can be changed into nonlinear models for neural performance using
MLP. Consequently, they have been applied in different applications including natural
language processing, a recommendation system and medical imaging. Figure 5 illustrates
the structure of the MLP.
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Generative Adversarial Network (GAN): One recently introduced deep learning
technique is the GAN, which was first discussed in [44]. For the maximum likelihood
estimation technique, GAN offers an alternate approach. In a zero-sum game involving
two neural networks, it uses both supervised and unsupervised learning techniques. It
particularly aims to train a generative method that seeks to infer the distribution of the target
data from the training data. Additionally, it makes use of the discriminative model, which
provides an approximation of the likelihood that a sample of data is drawn from actual
training data as opposed to the output. The learning rates and other parameters, such as
the structure of the model, have a significant impact on how the GAN is trained. Numerous
ad hoc methods are frequently needed to achieve effective convergence so as to increase
the fidelity of the data generated. In addition, several extensions of the GAN methods were
also devised to ease the complexity and improve the training process convergence. The
Wasserstein Generative Adversarial Network and Loss Sensitive Generative Adversarial
Network (LSGAN) are examples of this [45]. Research on the GAN is still in its early stages,
though. Studies published recently suggested that GAN might be used for supervised
learning applications. In the cases of recommender systems and information retrieval
applications, using GAN’s unsupervised learning capabilities seems exciting [46]. An
illustration of the GAN model is given in Figure 6.
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The various deep learning techniques discussed above have made state-of-the-art
methods in breast cancer detection. The main benefit of the deep learning-based method is
its ability to automatically learn from unlabeled raw data. Such methods offer diverse capa-
bilities for the detection of breast cancer. Table 1 summarizes the descriptions, weaknesses
and strengths of each deep learning-based technique.

Table 1. Comparison of the deep learning techniques.

Techniques Description Weakness Strength

DBN
Comprises two top-layer undirected
connections and a directed connection at the
lower layer.

The lengthy parameter initialization
method makes it hard to train.

Able to extract hidden features from
multiple data with great power.

DBM Deep neural network with undirected
connections between layers.

Due to the extensive parameters
adjustment, the computation took a
long time.

Enhances feature extraction using
unsupervised training.

MLP Models the data which have a
simple correlation.

Delayed convergence and
high complexity. Nonlinear transformation.

AE
A neural network that has been trained to
reconstruct the inputs under
certain restrictions.

Lower ability to scale to
high-dimensional data. Relies on high
parameter tuning and numerical
optimization.

Using an unsupervised learning
strategy, it can learn more complicated
feature representation.

CNN Interconnected structural design motivated
by the biological visual cortex.

Requires high parameterization
tuning.

Highly effective for feature extraction
with contextual data.

RBM Undirected, bipartite graph with visible and
hidden layers.

Although not tractable, the contrastive
divergence can be utilized to learn
the parameters.

Suitable for simple representation
learning.

GAN Deep neural network with a generator
and descriminator.

Difficulty in convergence. Unstable
learning process.

Appropriate for both supervised and
unsupervised learning.
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3. Methods

This study employs the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guiding principles for conducting systematic reviews [47]. PRISMA
provides a replicable and consistent method for identifying, selecting and critically examin-
ing the existing studies. It also offers direction for choosing, recognizing and evaluating
the studies. Figure 7 displays the PRISMA process of the SLR. Details of the review process
are given in the following subsection.
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3.1. Data Sources and Search Strategy

To gather more relevant studies, eight different bibliographic databases were con-
sidered for conducting the search process. The searched digital libraries include Scopus,
Google Scholar, IEEE Xplore Library, Web of Science, SpringerLink, ScienceDirect, ACM
Digital Library and PubMed. To obtain the latest and most comprehensive reviews, 2010
to 2021 was considered the timespan for the review. The search string comprised “breast
cancer” or “cancer” or “((Artificial Neural Network)” or “((deep learning) AND (breast
cancer))” AND (breast cancer))” or “((Artificial Intelligence) AND (breast cancer) AND
(detection techniques))” or “breast cancer diagnosis”)). Figure 8 demonstrates the search
strings used in the searching process.
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3.2. Selection Criteria

In addition to the search string applied in the automatic search, we also conducted a
manual search to comprehensively identify the relevant articles. In the identification stage,
a total of 1267 studies were obtained from both automatic and manual searches. In the
screening stage, 1060 published papers were chosen after filtering duplicate, unsuitable
and irrelevant papers. A total of 774 articles were discarded after the removal criteria were
applied to the remaining ones, and 286 articles were obtained. Finally, 98 research articles
were designated for review after the quality assessment of the selected articles. Exclusively,
papers utilizing genetic expression and imaging were included, and we narrowed down the
number of publications by concentrating on journal and conference papers only. In addition
to several kinds of gene expression and gene sequencing, the imaging modalities we took
into consideration included ultrasound, magnetic resonance imaging (MRI), mammography
and radiography. In this study, we concentrated on publications that employ deep learning-
based approaches to implement the detection of breast cancer, as well as the publications
that focused on breast cancer detection using both image and gene data. The exclusion and
inclusion principles for the systematic reviews are stated in Table 2.

Table 2. Inclusion and exclusion.

Inclusion Exclusion

Studies involving experimental results only Studies without experimental results were not
considered

Studies published from 2010 to 2021 Studies published before 2010 were excluded
Studies involving breast cancer detection only Studies involving other cancer detections
Papers focusing on deep learning-based breast
cancer detection

Papers focusing on other techniques used for
breast cancer diagnosis

Studies written in English only Studies written in other languages

Only journals and conferences are used Other sources such as books, theses and
magazines were excluded

3.3. Quality Assessment

Analyzing the data contained in an SLR and evaluating the quality of the evidence it
contains is equally significant. A bias resulting from a methodology may affect the results
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of a poorly conducted research work and therefore requires careful interpretation. Such
articles must be explicitly excluded or at least identified as such in the systematic review.
It is also necessary to select the correct criteria for assessing the quality of the evidence
and any inherent biases in each study. To ensure the quality of the selected publications,
the standard quality checklist questions (SCQ) designed in [48] are applied. To this end,
following [49], we choose the articles that replied “yes” to at least seven questions. To
ensure the findings significantly contribute to the review, the quality assessment will be
taken into account alongside the data extraction [50]. Table 3 shows the SCQ used in
the SLR.

Table 3. Quality Checklist.

No Quality Question

SCQ1 Is the report clear and coherent?
SCQ2 Is the aim of the research clearly specified?
SCQ3 Is the data collection method obviously described?
SCQ4 Have the diversity contexts been well explored?
SCQ5 Are the findings of the study reliable?
SCQ6 Are there links between the data, interpretation and conclusion?
SCQ7 Are the methodology and experimentation process clear?
SCQ8 Are the research procedures documented adequately?
SCQ9 Are they important, if credible?
SCQ10 Could the research findings be replicated?

3.4. Data Extraction and Synthesis

Firs, we took note of the key details, including the title of the paper, its publication year,
an author list and the publisher. Afterward, we added some data for running the SLR, such
as the deep learning method used, the reported accuracy and the evaluation metrics. The
data synthesis stage particularly examines the associated findings from the data extraction
process, which can be used to answer the research questions. After gathering the data, we
visualize and analyzed the data through different visualization techniques and tools, such
as a bar chart, a pie chart, histograms, etc.

4. Research Questions

Choosing RQs is very important in defining the overall purpose and expected out-
comes of a study. Therefore, to achieve the main purpose of our SLR, we design the
following RQs:

• RQ1: What are the most common deep learning-based methods applied for breast
cancer detection?

• RQ2: What is the most effective deep learning-based method for breast cancer detection
in terms of performance?

• RQ3: What are the commonly used performance evaluation metrics for deep learning-
based breast cancer detection?

• RQ4: What are the common datasets used for deep learning-based breast cancer
detection?

• RQ5: What are the challenges and future directions of the deep learning-based methods
for cancer detection?

5. Results and Metanalysis

This section presents the metanalysis of the searched results of our SLR. It begins by
presenting descriptions of the selected articles in this SLR and subsequently answers each
of the RQs specified.
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5.1. Description of the Selected Studies

The number of publications regarding deep learning-based breast cancer detection
methods from 2010 until 2021 is illustrated in Figure 9, which shows a chronological
summary of the studies that were selected for this SLR. The illustration on the graph reveals
a growing trend of studies in this field over recent years, especially from 2013 to 2015, when
the number of published papers started to show a significant increase. The number of
articles considered for the study mostly increased after 2013. Specifically, the years 2019
and 2020 saw the highest number of published articles (24) within a study year, followed
by 16 papers in 2018 and 4 papers in 2021. As only 1 paper was examined in the year 2010,
it can be seen that there was a decreased rate of relevant publications in that year. Figure 9
depicts the different journals and the total number of relevant articles used in the review.
Similarly, the different names of the journals and the number of their corresponding papers
used in the study are shown in Figure 10. It should be noted that, due to the space limit,
only 70% of the reviewed articles and their corresponding journal names are shown in
Figure 10.
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5.2. RQ1: What Are the Common Deep Learning Methods for Breast Cancer?

To better provide effective cancer detection, a system needs to process 200 to 300 cells
per frame, which is impossible through manual tracking [51]. Therefore, the develop-
ment of effective technologies for breast cancer detection becomes necessary. In contrast,
deep learning can be utilized to find patterns in unprocessed data. In recent times, deep
learning is a common tool used to detect breast cancer. Deep learning methods have been
demonstrated to be capable of diagnosing breast cancer up to 12 months earlier than those
using conventional clinical procedures [16]. In addition, the techniques can be used to
learn the most pertinent features to best tackle the issue. In recent times, different deep
learning-based methods have been introduced for breast cancer diagnosis, which include
CNN-, DNN-, RNN-, DBN- and AE-based approaches.
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CNN is the most popular deep-learning technique that has been utilized in several
studies for breast cancer detection [16]. The CNN is a deep learning model which repre-
sents hierarchical abstraction and consists of various layers which accept features as raw
data [24]. The CNNs used for breast cancer diagnosis can be grouped into two: the transfer
learning-based model and the de novo trained model [19]. The kinds of CNN models
that were generated and trained from the scratch are referred to as “de novo models”. In
contrast, the CNN techniques using previously trained neural networks such as AlexNet,
residual neural network (ResNet), visual geometry group (VGG), etc. are called “transfer
learning (TL)-based methods” [16]. Several methods used CNN-based methods for breast
cancer diagnosis. The studies basically used the CNN model to extract various features
based on the validated gene expression data in order to detect clinical outcomes in breast
cancer [52,53]. Some authors use CNN to detect the mitosis process for the inversive breast
cancer diagnosis based on histopathological imaging [54]. Others used the deep CNN
method to classify and identify tumor-related stroma for breast cancer diagnosis [55–58].
In [59], a CNN-based method was utilized in combination with linear discriminative
analysis and ridge regression based on image processing for breast cancer detection.

DNN has been shown to be effective for breast cancer detection [25,35,41]. The layers
that make up a DNN include an output layer, a convolution layer, a fully connected
layer and a pooling layer. Among these layers, a convolution layer is used for learning
high-level characteristics. The purpose of a fully connected layer is to learn pixel-level
features. The size of the convolved features can be decreased by a pooling layer, which
lowers the amount of computation needed. This layer is capable of performing average
pooling and maximum pooling operations [25]. Several DNN-based methods have been
introduced for breast cancer detection. For example, Che et al. [60] used an attentive-based
model for breast cancer diagnosis. The authors utilize multi-NNF DNN based on multi-
modality information to improve the performances of breast cancer detection and prognosis.
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Lu et al. [61] applied a DNN technique for cancer detection. The authors used the deep
learning-based feature representation of tumor-infiltrating lymphocytes in the cancer of the
breast based on histopathological imaging for improving the detection process. Several
other studies used the DNN model for detecting the subtypes of cancer by combining
several types of transcriptomics data on breast cancer using deep learning techniques [62]
and Identifying Differentially Expressed (DE) Biomarkers [63].

Another important deep learning-based method used for breast cancer detection is
the RNN, which comprises many versions such as LSTM and GRU. RNN is a supervised
deep learning method that is specifically used to process sequential data because it uses the
loops and memories to keep track of previous computations when processing sequential
inputs. Therefore, processing 3D volumetric images specifically as MRI image slices has
been reported to be very helpful. Recently, several methods have applied the LSTM and
GRU [64] for breast cancer detection. Some methods used the RNN technique for breast
cancer detection. For example, a study in [64] introduced a gene-subcategory deep learning-
based method that uses interaction-based learning for feature representations to improve
the breast cancer subcategorical analysis based on gene expressions.

Autoencoders (AE) have also been applied for breast cancer detection [34]. A decoder
rebuilds the images using the learned features to capture the essence of the raw features,
and AE employs an encoder to properly transfer each image into a latent space. Several
studies utilize AE for breast cancer detection. For example, Zhang et al. [65] used AE for
improving deep learning for breast cancer detection. The authors employed Integrates
Feature Selection and Feature Extraction to Predict the Clinical Outcome of Breast Cancer.
In another study, Toğaçar, et al. [59] used the autoencoder-processed invasive breast cancer
images to combine the CNN with linear discriminant analysis and ridge regression for
breast cancer diagnosis. Xu et al. [66] introduced an approach based on histopathological
images using a stacked sparse autoencoder (SSAE) to improve the model performances for
breast cancer detection. A similar approach was introduced by Xu et al. [67], which used
the SSAE model consisting of two SAEs for the detection of nuclei patches on breast cancer
histopathology images to enhance breast cancer diagnosis.

GAN, which is a deep-learning-based generative model, has also been utilized for
breast cancer detection. Shams et al. [68] designed a deep generative multi-tasking based
on the combination of the GAN and CNN for reducing the death rate in breast cancer.
The model uses strategies for achieving better accuracy in mammography diagnoses.
Singh et al. [69] designed a GAN-based method for segmenting breast tumors inside the
region of interest on a mammogram. The generative model creates a binary mask that
defines the tumor region after learning to detect it. It motivates the generative network to
produce binary masks that are as realistic as feasible. Additionally, GAN has been applied
as image-augmentation methods recently to address the issue of limited data. Digital breast
tomosynthesis data were used by the authors of [70] to detect anomalies and complete an
image using GAN. The detection method described in this study produced encouraging
results because it could locate suspicious areas without the need for training photos with
anomalies. Fan et al. [70] used a generative adversarial technique with an improved deep
network, bicubic interpolation and other techniques to create super-resolution images.
GAN was employed by Guan and Loew [71] as a new mammographic image generator
from the DDSM datasets, while CNN was utilized as GAN’s discriminator. Compared to
other image-augmentation methods, GAN performed better.

DBN comprises a stack of RBMs, which are seen as the visible layer, and multiple
hidden layers (the top two hidden layers contain random relationships), from which the
deep features of the visible layer are extracted using a model of the generative probability
union distribution [34,38]. Several studies used DBM for breast cancer detection; for
example, Smolander et al. [33] introduced a deep learning-based approach for classifying
gene expression data from complicated diseases by comparing DBN with SVM. Salma
used a metaheuristic approach based on the DBN for breast cancer classification. Table 4
illustrates the deep learning-based methods used for breast cancer detection.
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Table 4. The summary of the deep learning methods reviewed in this SLR.

Model Description References Frequency

CNN It uses convolution and pooling
operations for feature extraction. [52–59,61,72–85] 23

DNN

It is trained to construct posterior
distributions for all possible values,
using the input distribution’s
encoding as a model distribution.

[60–63,86–89] 8

DBN
Includes directed connections at
the lower layers and undirected
connections at the two top layers.

[33,90] 2

RNN
An RNN version that incorporates
a memory block to overcome the
backpropagation problem.

[64] 1

MLP
A deep feed-forward network that
produces a collection of outputs
from a set of inputs.

[64,77,84,91–100] 13

AE
The generative model that
recreates the input data in the
output layer.

[59,65–67,101,102] 6

GAN Deep learning technique that is
generatively semi-supervised. [68–71,103–105] 8

5.3. RQ2: Which Deep Learning Models Perform Most Effectively?

This section summarizes the performances of the different deep learning-based meth-
ods for cancer detection identified in this SLR. Table 5 demonstrates the summarized
performances of different methods. Essentially, deep learning-based methods used two
different approaches to classify breast cancer: multiclass and binary classification, which
involve two instances and multiple subtypes, respectively. From the table, it can be seen
that the use of the multiclass classification generally leads to lower performances compared
to the binary classification. From Table 4, it can also be noticed that the majority of the used
binary classifications performed better in most of the methods. In Table 5, the best accuracy
for multiclass categorization was indicated to be 95.7% accuracy [52]. Regarding the task of
classifying breast cancer subtypes, the author of the research essentially compared deep
learning with machine learning. There have been numerous models employed, including
CNN, DNN with the attention mechanism and many other DL techniques.

Table 5. Models used for gene sequencing data in selected papers.

DL Used Brief Description of the Method Classification Method Accuracy Reference

FFNN Uses negative and positive classes for the breast
cancer diagnosis Binary Genomic 95% [87]

FFNN Uses negative and positive classes for the breast
cancer detection Binary Genomic 92% [106]

CNN Provides breast cancer subtype classification based
on the feature extraction Multiclass Genomic 95.6% [52]

DNN Uses miotic and non-miotic processes for
identifying the breast cancer Binary Genomic 87% [60]

DNN Identifies risk categories based on the four classes Multiclass Genomic 94% [86]

MLP Axillary prediction of the lymph node status in
breast cancer Multiclass Genomic 84% [91]

FFNN Breast cancer detection based on the
cancer subtypes Binary Genomic 98.3% [107]

CNN Breast cancer detection based on the presence or
absence of a tumor Binary Genomic 96.7% [53]
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Table 5. Cont.

DL Used Brief Description of the Method Classification Method Accuracy Reference

CNN Subtype identification based on the seven
cancer types Multiclass Genomic 84.7% [72]

AE Predicts clinical outcomes of breast cancer Binary Genomic 84% [65]

CNN Breast cancer detection based on multiple
categories of cancer Multiclass Genomic 76.4% [73]

CNN Mitotic and non-mitotic Binary Genomic 73.6% [54]

CNN
Identification and classification of
tumor-associated stroma in diagnostic
breast biopsies.

Binary Genomic 92% [55]

CNN Epithelial and stromal Binary Genomic 88% [56]
DNN Breast cancer molecular subtype classification Multiclass Genomic 87% [108]

MLP It uses the feature selection method for
the detection Binary Genomic 98% [109]

PNN Breast cancer early diagnosis Binary Genomic 96% [110]
MLP Breast cancer prognosis detection Binary Genomic 96% [93]

CNN Breast cancer survival according to
different features Multiclass Genomic 90% [74]

CNN Uses the feature selection method for
the detection. Binary Genomic 98.7% [59]

CNN Breast cancer image classification based on
epithelial and non-epithelial Binary Genomic 94% [75]

DNN Uses nuclei probability for the breast cancer
tumor detection Binary Genomic 93% [88]

MLP Uses malignant/benign classification for
the detection Binary Genomic 96.5% [96]

CNN Uses malignant/benign classification to determine
the breast cancer Binary Genomic 94.5% [76]

CNN It determines the low risk and high risk for
breast cancer Binary Genomic 98% [58]

MLP Uses multiclass based on the malignant, benign
and other subclasses Binary Genomic 98% [77]

MLP Uses malignant/benign classification to determine
the breast cancer Binary Genomic 97% [97]

MLP It uses the clustering method to identify breast
cancer tumors Binary Genomic 96% [98]

DBN It uses multi-categories for the breast cancer gene
classification Binary Genomic 90% [33]

DNN It uses the clustering method to identify breast
cancer tumors Binary Genomic 84% [89]

MLP Identifies risk categories based on the four classes Binary Genomic 95% [89]

FNN Uses malignant/benign classification to determine
the breast cancer Binary Genomic 94% [90]

CNN It identifies breast cancer lymph nodes Binary Genomic 84% [79]
MLP It identifies breast cancer tumors Multiclass Genomic 95% [100]
CNN It identifies breast cancer tumors Binary Genomic 93% [80]
RNN It identifies breast cancer tumors Multiclass Genomic 82% [64]

CNN Uses feature selection for the breast
cancer detection Multiclass Genomic 94.5% [81]

CNN Uses feature selection for the breast
cancer detection Binary Genomic 95.6% [52]

DNN It uses negative/positive classification to detect
breast cancer tumors Multiclass Genomic 92% [61]

CNN Uses multiple categories based on A Luminal
B HER2 Multiclass Imaging 70% [82]

CNN Predicts breast tumors and responses to
chemotherapy Multiclass Imaging 88% [57]

CNN Uses negative and positive to diagnose the
breast cancer Binary Imaging 97% [83]
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Table 5. Cont.

DL Used Brief Description of the Method Classification Method Accuracy Reference

MLP Breast cancer subtype classification based on
different categories Multiclass Imaging 90% [84]

CNN Uses negative and positive to diagnose the
breast cancer Binary Imaging 71% [85]

DBN Uses the unsupervised method Binary Imaging 98% [111]

GAN Uses the generative unsupervised method for the
breast cancer detection Multiclass Imaging 80% [105]

It should be noted that, because not all of the published works in the reviewed articles
adopted the confusion matrix parameters, only the accuracy metrics were considered for
analysis in the reviewed articles. Based on the results from Table 5, CNN-based techniques
seem to be most popular for both multiclass and binary classification. Generally, it can be
seen that a high performance is obtained when imaging data are used for breast cancer
based on binary classification [83]. However, when it comes to subtypes classification
(multiple classifications), genetic sequencing exhibits better results than imaging data. It
can also be observed that, generally, the use of CNN results in outstanding performances for
both gene expression and imaging data. An example of this is paper [83], which produced
99% accuracy for binary classification. The models used hybrid models that combine deep
learning methods and machine learning as well as standalone deep learning models.

In conclusion, the studies made extensive use of different algorithms. However, in both
gene sequence and image data, MLP and CNN were the most often utilized algorithms. The
majority of the articles employed CNN and MLP with different parameters and properties;
however, several other algorithms, including DNN, were also used.

5.4. RQ3: What Are the Evaluation Measures Commonly Used for Deep Learning-Based Breast
Cancer Detection?

The evaluation metrics are essential for evaluating the models’ performances. How-
ever, deep learning methods are not rigorously evaluated using any specific set of met-
rics. Specifically, many performance evaluation metrics, which include recall, precision,
F1-measure, accuracy, area under the curve (AUC), false-negative rate (FNR), etc., have
recently been used by various researchers. We outline the evaluation metrics used in the re-
viewed papers based on the chosen publications in this section. The different performance
measure formulas are displayed in Table 6.

The precision assesses the accuracy of the model’s positive predictions, whereas the
accuracy indicates how many of the model’s overall predictions were correct. The recall
of a classifier, sometimes referred to as sensitivity, is the proportion of positive cases that
the classifier correctly detects. The ratio of successfully identified negative samples to all
negative samples serves as a proxy for the classifier’s specificity. Although it makes sense
to improve both precision and recall, there is an adverse relationship between the two
metrics. By enforcing a higher precision, a lower recall may occur, and vice versa. This
is often known as a trade-off for recall/precision measures. The harmonic mean of the
recall and precision, which is referred to as the F-score, is a preferable metric to maximize.
By adjusting the decision threshold value for a classifier, it is conceivable to observe the
performance change in terms of the trade-off between particular metrics such as recall and
precision. Parametric evaluation is the procedure of examining all confusion matrices that
may emerge from altering the decision threshold.
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Table 6. Performance evaluation measures.

Metrics Description Formula References Frequency

Accuracy

This is calculated by dividing the
percentage of accurate predictions
by the total number of predictions
made by the model.

(TN+TP)
(TN+FN+FP+TP)

[33,52–54,56,57,59–
62,65,72–

77,79,81,82,87–
91,93,95,97,98,100,106–

110,112–116]

42

Precision
This is calculated by dividing the
actual positive results by the true
positive results.

TP
(TP+FP)

[54,59–62,72,73,75–
77,79–81,88–

90,96,97,100,109,114]
21

Recall/Sensibility

This is calculated as the ratio of
actual positive samples that
should have been discovered to
true positive results.

TP
(TP+FN)

[33,54,59–62,72,75,79–
81,89–91,96,97,100,109] 18

F1-score This is measured as the model’s
accuracy in each class. 2× Recall×Precision

(Recall+Precision)

[33,53,54,59,61,62,65,72,
74,75,77,78,80,81,88–
91,96,97,100,109,117]

23

Specificity (TNR)
This is how well the prediction
model predicts the percentage of
negative tuples.

1− FP [53,57,59,61,65,72,75,78,
80,81,96,97,116,117] 14

AUC-ROC
It indicates the trade-off between
the false positive rate (FPr) and the
true positive rate (TPr).

Area under the ROC
curve

[57,60,75,79,81,84,90,97,
108,113,114,116,117] 13

The other metrics comprise precision and recall and the ROC curves. Classifiers can
be compared based on the area under the ROC curve (AUC), with perfect models having
an AUC value equal to 1 and fully random classifiers having an AUC equal to 0.5. The
performance measure formulas, the references and the number of studies are shown in
Table 5 for each metric. For the FPR and FNR, the lower the value of the performance
metrics, the better the ability of models to generalize. The TP, FP, TN and FN in this table
represent the true positive, false positive, true negative and false negative, respectively.

5.5. RQ4: What Datasets Are Available for Breast Cancer Diagnosis?

Generally, deep learning methods require a large amount of data for training the model
and achieving improved performance. Consequently, a major barrier to using deep learning
algorithms for medical diagnosis is the lack of data. Recently, several datasets have been
published for breast cancer diagnosis. These datasets can either be private or public. The
private datasets can be acquired through different academic-comprising universities across
the world [118]. There were hardly any freely accessible public datasets. The accessible
datasets for both imaging and gene sequencing are included in Tables 7 and 8 under public
and private. We discovered different public and private databases that contained gene
expression data for healthy and sick individuals, even though gene expression data are less
prevalent than imaging data.

Genome Atlas [119] includes the most popular datasets used for breast cancer analysis;
it aims to detect the complete set of DNA changes in various kinds of cancer-related
problems. It offers a large number of instances for researchers. Each participant’s clinical
data are provided, along with some generic data. Understanding these modifications could
aid the study into how various cancer types develop [57]. For a variety of cancer types,
including breast cancer, the Genome Atlas dataset contains gene data. The METABRIC
dataset, which comprises the clinical characteristics, SNP genotypes, CNV profiles and
expression derived through breast cancers acquired from participants in the METABRIC
study, is the second most widely used dataset [3]. Additionally, for the purpose of studying
and researching cancer, NCI Genomic Data Commons (GDC) [120] offers scholars a vast
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collection of gene-related data. Genome and DNA sequencing information from studies on
cancer detection can be found in the GEO database [118].

Compared to genetic data, imaging data are more readily available as datasets. The
Wisconsin breast cancer (WBC) dataset, available from the UCI repository, is the most
used imaging dataset [121]. It has features that were determined from a digital image
of a breast mass which was sampled with a fine needle aspiration (FNA). A total of
11 attributes are listed for each of the 699 cases in this dataset. Clumps’ thickness, uniform
cell size and shapes, marginal adhesion, the size of a single epithelial cell, the absence
of mitoses, naked nuclei, bland chromatin, normal nucleoli and marginal adhesion is the
independent properties.

Another popular breast cancer dataset for imaging is the DDSM dataset [122], which
can be used on its own. CBIS-DDSM, an enhanced and condensed version of the DDSM
dataset for the evaluation of breast cancer diagnosis, was just published by Clark et al. [123].
It includes improved ROI-segmented images in addition to a readily usable dataset. The
dataset contains 891 mass cases and 753 microcalcification instances, respectively.

Another widely used dataset is the Mammographic Image Analysis Society Digital
Mammogram Database (MIAS) [124]. The MIAS database contains 322 digitized MLO
images and 161 cases with a variety of findings, including benign and malignant tumors as
well as regular images. Another well-liked dataset for the detection of breast cancer is IN
breast, which contains mammography pictures from cases involving screening, diagnosis
and follow-up. The work’s most distinctive aspect is the expertly annotated ground truth
that has been carefully associated with it. Tables 7 and 8 summarize the datasets, and
Figure 11 visualizes the distribution of the datasets for the cancer detection.

Table 7. Genomic Datasets used for breast cancer diagnosis.

Datasets Description Links Accessibility Type Instances Reference

The Cancer
Genome Atlas

It offers clinical data for every
participant, along with some
general data.

http://cancergenome.
nih.gov Public Genomic 11,429 [86]

METABRIC

Clinical characteristics,
expression and SNP genotypes
derived from breast cancers
are included in the databases.

https://ega-archive.
org/datasets/EGAD0
0010000268

Public Genomic 543 [3]

Array Express
Database

A database for
high-throughput functional
genomics data.

NA Private Genomic NA [125]

Geo Database

Data from high-throughput
functional genomics
investigations are stored in the
functional genomics collection.

https://www.ncbi.
nlm.nih.gov/geo/
info/download.html

Public Genomic 404 [118]

STRING and
BIOGRID

A proteomic database
involving the networks and
interactions of proteins in a
wide array of species.

NA Private Genomic NA [114]

GDC

It offers many gene-related
data to researchers for use in
the study and analysis of
cancer.

https:
//gdc.cancer.gov/ Public Genomic 9114 [120]

Spark Dataset
A public dataset which uses
gene sequence data for breast
cancer diagnosis.

https:
//drive.google.com/
file/d/1yd1gwk2o

Public Genomic 106 [112]

http://cancergenome.nih.gov
http://cancergenome.nih.gov
https://ega-archive.org/datasets/EGAD00010000268
https://ega-archive.org/datasets/EGAD00010000268
https://ega-archive.org/datasets/EGAD00010000268
https://www.ncbi.nlm.nih.gov/geo/info/download.html
https://www.ncbi.nlm.nih.gov/geo/info/download.html
https://www.ncbi.nlm.nih.gov/geo/info/download.html
https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://drive.google.com/file/d/1yd1gwk2o
https://drive.google.com/file/d/1yd1gwk2o
https://drive.google.com/file/d/1yd1gwk2o
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Table 8. Imaging-based datasets used for breast cancer diagnosis.

Datasets Description Links Accessibility Type Instances Reference

WBCD

It comprises 699 records
from the FNA of human
breast tissue. Each record
has nine attributes.

https:
//archive.ics.uci.edu/
ml/datasets/Breast+
Cancer+Wisconsin+

Public Imaging 569 [121]

Helsinki
University

A customized private
dataset designed by the
Cancer Institute and
Helsinki University.

NA Private Imaging NA [56]

MRI Data

The datasets are collected
provisionally under an
HIPAA-compliant approval
from the institutional board.

https://wiki.
cancerimagingarchive.
net/display//Public/
RIDER+Breast+MRI#22
51275749b786f1af5747c3
9abd8eda0d12e2b7

Public Imaging 1500 [6]

University of
Vermont
Medical
Center

A customized private
dataset designed by the
University of Vermont
Medical Center.

NA Private Imaging NA [9]

DDSM

It is a combination of
digitalized benign without
callback, benign, normal and
cancer volumes that were
carefully chosen.

https://wiki.
cancerimagingarchive.
net/display/Public/
CBIS-DDSM#2251662

Public Imaging 10,239 [122]

Stanford
Tissue
Microarray
Database

A database that offers tools
for tissue microarrays,
design, image scoring and
annotation to researchers.

NA Private Imaging -NA [126]

MIAS
It is available on a 2.3 GB
8 mm (Exabyte) tape and has
322 digitized films.

http://peipa.essex.ac.
uk/benchmark/
databases/index.html

Public Imaging 322 [124]

IN breast

It consists of images
captured between 2008 and
2010 at the Breast Center in
CHSJ, Porto.

http://medicalresearch.
inescporto.pt/
breastresearch/index.
php/Get_INbreast_
Database

Public Imaging 410 [127]

CBIS-DDSM

It provides better
ROI-segmented images in
addition to a readily useable
dataset.

https://wiki.
cancerimagingarchive.
net/display/Public/
CBIS-DDSM

Public Imaging 1644 [123]

5.6. RQ5: What Are the Research Gaps, Challenges and Future Directions?

This section aims to answer RQ5 by presenting the research gaps and the future
direction of deep learning-based methods for breast cancer detection. Although the existing
studies have substantially contributed some basis for the deep learning-based methods for
breast cancer detection, there are some gaps and future research directions in the field. The
future research directions in this area and some of the important problems that have yet to
be resolved are outlined as follows:

5.6.1. Balanced Dataset

Deep learning methods have been demonstrated to be effective and promising in
data mining. However, the evaluated datasets are virtually imbalanced for the deep
learning-based method in the breast cancer area. First, there are not enough publicly

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display//Public/RIDER+Breast+MRI#2251275749b786f1af5747c39abd8eda0d12e2b7
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#2251662
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#2251662
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#2251662
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM#2251662
http://peipa.essex.ac.uk/benchmark/databases/index.html
http://peipa.essex.ac.uk/benchmark/databases/index.html
http://peipa.essex.ac.uk/benchmark/databases/index.html
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
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available imaging and genomes databases that comprise the pathological heterogeneity
and coexisting benign malignancy in different populations. Additionally, private datasets
are arbitrary in terms of size, number and format. The work of annotation, which can be
labor- and time-intensive, is another major difficulty for which clinical radiologists are not
always available. An uneven breast cancer diagnosis is caused by an imbalanced training
network dataset. In addition to creating adequate public breast cancer databases, future
work will also focus on creating private datasets, which will primarily address issues with
insufficient medical images, complex annotations and gene sequencing data. Moreover, to
solve the problem of imbalanced data, some works applied oversampling methods [128,129].
However, it was shown in [130] that the oversampling method can lead to choice-based
sample biases. Additionally, SMOTE (Synthetic Minority Oversampling Technique) was
the only oversampling technique that was used [131]. This led to the conclusion that future
studies might take into account using both under- and oversampling methods.

Diagnostics 2023, 13, x FOR PEER REVIEW 20 of 28 
 

 

Stanford Tis-

sue Microarray 

Database  

A database that offers tools for tis-

sue microarrays, design, image 

scoring and annotation to research-

ers. 

NA Private Imaging -NA [126] 

MIAS 

It is available on a 2.3 GB 8 mm (Ex-

abyte) tape and has 322 digitized 

films. 

http://peipa.es-

sex.ac.uk/bench-

mark/databases/in-

dex.html 

Public Imaging 322 [124] 

IN breast 

It consists of images captured be-

tween 2008 and 2010 at the Breast 

Center in CHSJ, Porto. 

http://medicalre-

search.ines-

cporto.pt/breastre-

search/in-

dex.php/Get_IN-

breast_Database 

Public  Imaging 410 [127] 

CBIS-DDSM  

It provides better ROI-segmented 

images in addition to a readily 

useable dataset. 

https://wiki.cancerim-

agingarchive.net/dis-

play/Public/CBIS-

DDSM 

Public  Imaging 1644 [123] 

 

Figure 11. Distribution of the datasets for the cancer detection. 

5.6. RQ5: What Are the Research Gaps, Challenges and Future Directions? 

This section aims to answer RQ5 by presenting the research gaps and the future di-

rection of deep learning-based methods for breast cancer detection. Although the existing 

studies have substantially contributed some basis for the deep learning-based methods 

for breast cancer detection, there are some gaps and future research directions in the field. 

The future research directions in this area and some of the important problems that have 

yet to be resolved are outlined as follows: 

5.6.1. Balanced Dataset 

Deep learning methods have been demonstrated to be effective and promising in 

data mining. However, the evaluated datasets are virtually imbalanced for the deep learn-

ing-based method in the breast cancer area. First, there are not enough publicly available 

imaging and genomes databases that comprise the pathological heterogeneity and 

0

1

2

3

4

5

6

7

8

9

10

Imaging Gnomes

Public Private

Figure 11. Distribution of the datasets for the cancer detection.

5.6.2. Interpretable Deep Architecture

Designing deep models that are appropriate for the medical data would be challenging
in addition to the complex radiological images. Hence, deep learning networks that are
difficult to interpret pose a common problem in the detection of breast cancer. Along with
diagnostic and histological reports, the ability of deep learning to handle heterogeneous
datasets increases the possibilities for interpretable DL in breast cancer. Additionally,
image captioning, which combines CV and NLP, has made significant progress [132]. The
paradigm basically uses a standard encoder–decoder architecture to provide descriptions
of given images based on RNN using visual attributes derived by CNN. The automatic
creation of medical imaging reports appears in the medical domain, inspired by picture
captioning [133]. This hybrid deep learning architecture can more accurately understand
breast cancer diagnostic data because it uses text features to express radiomic features [134].
The first step is to pay attention to the learning model’s attributes and weights on the breast
cancer images. The second is to allow for the understanding of the factors impacting the
learning process involved within images of breast cancer.

5.6.3. Clinical Application

For the management and treatment of patients, medical decisions are crucial. There
is a need to put more emphasis on the deep learning-based method’s value in real-world
applications in order to increase the accuracy of medical reports. Despite their best efforts,
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most studies did not fully utilize the relevant data that were available, despite the fact that
they aimed to enhance the ultimate performance. There is a need to take breast cancer’s
characteristics into account when using various imaging techniques (such as detailed
malignant lesion features on ultrasound, hypoechogenicity, angular margin, posterior
shadowing and internal vascularity). Additionally, there are several risk factors for breast
cancer, such as age, family history and genetics, that are often taken into account by
doctors but are overlooked in deep learning-based models. It can be another direction we
can explore.

As a result, there is a need to pay closer attention to the deep features obtained using
DLR, which might be used as information or data for additional research. In addition,
multitask learning is a promising future direction. Through many tasks that gather the
shared learning features one at a time, radionics features in a deep neural framework can
reduce overfitting.

6. Limitations of the Study

In this SLR, various deep learning-based methods for breast cancer detection are
identified. By developing our protocols, we aim to maximize both internal and external
validity while addressing the RQs. There are still some restrictions and challenges to the
validity of this argument, which can be encountered and explained in this section.

• This SLR is solely restricted to journal and conference materials that discuss breast can-
cer detection in DL. Several irrelevant research publications were found and eliminated
from this review in the early stages of the study by using our search method. This
guarantees that the chosen research papers met the requirements for the investigation.
However, it is believed that incorporating other sources—such as extra sourcebooks,
for instance—would have improved this review.

• We limited our search to items written in English. Due to the possibility of related
publications in this area of study existing in other languages, this leads to linguistic
bias. Thankfully, all of the papers gathered for this study were written in English. We
are not language-biased as a result.

• Although the primary databases were considered when looking through the study
articles, it is possible that other digital libraries with pertinent studies were disregarded.
To overcome this limitation, we compared the search phrases and keywords to a well-
known collection of research studies. However, when looking for the keywords,
certain synonyms might be missed. To solve this issue, the SLR protocol has been
updated to make sure no crucial phrases are omitted.

7. Conclusions

In this research work, we presented the SLR to systematically review the existing
research works on breast cancer diagnosis based on the deep learning-based methods
involving genetic sequencing or the histopathological imaging process. The SLR specifically
adopts the PRISMA approach. Particularly, the applicability of various techniques in
deep learning-based methods for breast cancer detection is studied. Several studies were
searched and gathered, and after the eligibility screening and quality evaluation, 95 articles
were identified. The results of the systematic review showed that the Convolutional Neural
Network (CNN) is the most accurate and widely used model for breast cancer detection,
and the accuracy metrics are the most popular method used for performance evaluation.
Moreover, the datasets used for breast cancer diagnosis and the performance of different
algorithms are also explored. Finally, the challenges and future research directions on breast
cancer detection using deep learning techniques are also investigated to help researchers
and practitioners acquire in-depth knowledge of and insight into the area. The widespread
application of the CNN algorithms to data on both MRI images and gene expressions is
a significant breakthrough. Comparing these models with other algorithms, they often
produce positive results. It could be interesting for researchers to carry out additional
research and apply more hybrid algorithms with CNN.
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In addition, it was found that most of the studies on classifying images have not
properly utilized the attention mechanism. This has provided researchers with the oppor-
tunity to employ attention mechanisms in the future to increase the precision of the deep
learning methods. Given that this field is broad and that there is always the potential for
more research and findings, researchers have recently been focusing on gene sequence
data. Future researchers will have various chances to make a further contribution by
combining different gene sequencing datasets to predict more results with larger datasets.
More studies should emphasize deriving important aspects from gene expression data to
improve outcomes and improve accuracy by employing confusion matrix parameters. This
opens up the prospect for future studies to address a range of related issues, including
determining risk levels and predicting the likelihood of recurrence. Future studies could
focus on leveraging genetic data to create multiclass predictors, for example. Breast cancer
detection and survival likelihood were the main focuses of the majority of studies, which
only used genetic sequencing data with binary categorization. Furthermore, large-scale,
thorough and fully labeled WSI datasets are currently lacking. Consequently, the creation
of sizable public databases is crucial for future research.
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