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C
ryogenic-electron microscopy (cryo-EM) is used to image 
biological macromolecules in a near-native state and is 
capable of resolving structures to near-atomic resolution. 

However, most macromolecules possess substantial conformational 
and/or compositional variability as part of their biological function. 
In single-particle reconstruction (SPR), a micrograph contains a 
snapshot of many macromolecules, each frozen at a random point 
on its conformational and/or compositional landscape. This pres-
ents the difficulty that the features visible in any single structure 
solved using cryo-EM data will be limited by the conformational 
variability among the particles making it up. With more complete  
analysis, the presence of these variations can be turned into an 
advantage, as the individual data intrinsically explore a large  
portion of the conformational landscape of the system.

Many methods have been developed to address the heterogene-
ity problem in SPR1–3. Perhaps the oldest and most commonly used 
method is multi-model refinement/three-dimensional (3D) classifi-
cation, in which multiple volumes are used as references and each 
particle is iteratively compared to the projections of each reference4–7. 
Focused classification is a variant of this method in which variability 
is explored only inside a user-defined mask8. These methods often 
work well when the system falls into a small number of discrete 
states, such as the two states associated with ligand binding. However, 
to work well, the number of discrete states should be small, and the 
quality of the initial seed volumes often has an impact on the results.

Another common practice is to perform multi-model refine-
ment, then rely on a human to discard particles representing states 
judged to be ‘bad’9,10. This process is typically iterated multiple 
times until a single map with improved resolution is achieved. This 
method produces one structure at high resolution representing 
the most populous state in the data, by simply ignoring contradic-
tory data. This has the disadvantage of imposing human bias on 
the results, and while the resulting map has improved resolution,  
it clearly presents an incomplete picture of the macromolecule 
being studied.

In addition to 3D classification, multi-body refinement can be 
used to resolve local structural variability caused by conformational 
changes11. This technique relies heavily on researchers’ previous 
knowledge of structural domains in protein and requires the regions 
of interest to be large enough to provide sufficient signal for local 
orientation assignment.

Finally, we have seen the recent emergence of manifold embed-
ding techniques to address the problem of structural variability12–16. 
These methods are fairly new and varied in their mathematical 
methods. While they have shown promising results, they also face 
difficulties in mapping the manifolds to biological interpretation, 
and the process of interpreting the structure at a point on the mani-
fold is often time consuming.

In this paper, we present a strategy leveraging deep learning 
technology to map two-dimensional (2D) data directly to a 3D 
Gaussian mixture model (GMM). This produces a representation 
where conformational and compositional variations can be directly 
and intuitively related back to the data representation. A point on 
the manifold represents a specific Gaussian configuration that can 
be instantaneously visualized without needing to first reconstruct 
large subsets of particle data.

Results
The e2gmm method. One of the difficulties in SPR heterogeneity  
analysis is the mathematical representation of protein conforma-
tions. If we consider the motion of an object from position A 
to position B along a simple linear path, it should be possible to 
repre sent the position of the object on the path with a single value. 
However, when we represent this motion via images or volumes, 
the motion becomes a pattern of pixels becoming brighter and dim-
mer along the path in a complex sequence. Simple image analysis 
methods, such as principal component analysis (PCA), can readily  
identify the pixels involved in such a motion, but cannot readily 
map the highly nonlinear sequence of pixel variations back to the 
single degree of freedom we know exists in the underlying system.
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Rather than attempting to determine paths in image space, we 
instead impose a Gaussian model at a specified level of detail, and 
then identify changes in Gaussian location and intensity that are 
self-consistent with the ensemble of particles. In this GMM, each 
function is defined by five variables: 3D coordinates, amplitude 
and width. The local motion of a domain is represented by a simple 
change in location of the Gaussians making it up, and the presence 
or absence of a ligand is represented by a change of amplitude.

Converting the Gaussian representation into an image repre-
sentation (a projection) is a trivial process, whereas the inverse 
process, generating a GMM from a single projection image, is 
under determined. The inverse problem is sufficiently constrained 
only when a large ensemble of projection images in different orien-
tations is considered. To solve this sparse and nonlinear inverse  
problem, we make use of deep learning methodologies. This design 
is completely unsupervised, and only requires the definition of  
a loss function describing the agreement between individual  
images and specific configuration of the GMM. We make use of  
the Fourier ring correlation (FRC) metric17 in the loss function, 
which has the additional advantage of being insensitive to micro-
scope contrast transfer function (CTF) artifacts so long as the 
(phase flipped) images are reasonably stigmated with minimal drift.

The network design involves two components. First, a decoder, 
which maps a small latent vector, into a set of 5N Gaussian para-
meters. The latent vector is simply a reduced dimensionality repre-
sentation of the 3D configuration of the molecule. In linear analysis, 
each component in the latent vector represents one degree of free-
dom in the macromolecule. However, with the nonlinearity pro-
vided by the network, it is possible for local regions in the latent 
space to represent independent discrete states.

The second network component is the encoder, which maps 2D 
images, via their derivatives, into latent vectors. The latent vector 
then passes through the decoder to produce 5N Gaussian para-
meters, which immediately provides a 2D projection or 3D volume 
as desired. This mapping process is constrained by the latent vector  
representation, and the set of particles mapped into this latent 
space will form a manifold, conceptually similar to other mani-
fold methods in cryo-EM. However, due to the nonlinearities and 
our enforcement of a GMM with a specified level of detail, it also 

becomes possible to probe systems in very specific ways, which 
would be difficult using competing methods. For example, para-
meters of specific Gaussian components can be held constant, such 
that the GMM considers only variability in specific regions.

Our network structure is conceptually similar to an auto encoder18, 
in which the network is trained directly from raw data, with no need 
for ground truth. The goal of the autoencoder is to optimally match 
the input data to the same data at the output, after passing through 
a low dimensionality latent space. In our case, the input data are 2D 
particle data, and our network output is a complete 3D GMM. While 
this 3D model can recreate 2D projections for training, the GMM 
output is far richer than a 2D image. To achieve this result, a slightly 
different network training strategy is required.

We begin by training only the decoder so that it produces a single 
neutral 3D structure from a zero latent vector (Fig. 1a). The network 
is trained to produce 5N Gaussian parameters best matching the 
provided neutral structure. The decoder is trained using an ADAM 
optimizer19 with the FRC between the GMM and the provided  
map as the loss function (Methods). When trained, the decoder 
produces an accurate representation of the neutral map when given 
an input latent vector of zero.

Next, the encoder, which produces latent vectors from particle 
data, must be included in the training process (Fig. 1b). The goal of 
this procedure is for the latent space vector to represent as much of 
the variability of the specimen as possible. The training data consist 
of 2D particles and their orientation parameters from a standard 
single-particle refinement. The assigned orientations for the parti-
cles can be imported from a standard EMAN2 or Relion refine-
ment20,21. For each particle, we compute the gradient of the loss 
function between the particle image and GMM with respect to the 
neutral model GMM parameters. These gradients, 5N parameters 
per particle, are the input to the encoder. The gradient vectors are 
computed in the coordinate system of the GMM, so they are invariant 
with respect to translation and rotation of the raw particles. The loss 
function is the FRC between the particle and Gaussian projection.  
For training, the encoder weights are initialized with small random 
values producing near zero latent vectors.

The particle data and Gaussian parameters will clearly not  
agree perfectly due to both noise present in the 2D particle  
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the latent space vector representing the conformation of a particle. S is the size of the particle in Fourier space.
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images as well as the conformational and compositional variabil-
ity in the specimen. As noise is completely random within each  
particle, whereas the conformational and compositional variabil-
ity follows patterns represented across many particles, the latent  
space should preferentially train for variations actually present  
in the data. We do not require the orientations to be truly optimal  
at this point, as when one part of the structure is moving with  
respect to another, the concept of a single correct orientation  
does not exist. Once the complete network has been trained to  
represent the variations in the data with the given orientations, 
another training cycle can be run where the particle orientations 
are refined against the dynamic GMM (Extended Data Fig. 1).  
This process can be iterated, although in practice it generally  
converges rapidly.

With a PCA representation of variability in image space22,23, the 
dimensionality of even a simple motion within a structure will be 
high since the motion involves many pixels undergoing nonlinear 
variations in intensity. With the GMM representation, each inde-
pendent motion should require, at most, a single variable in the 
latent space. Thus, our default of a four dimensional (4D) latent 
vector can represent at least four independent variations. However, 
given the nonlinearity of the system and the fact that molecular  
variation tends to be highly constrained, it is readily possible for 
a single variable to possess multiple features across its domain. 
Additional dimensional reduction algorithms can be used on the  
latent space to further facilitate visualization. PCA applied to the 
latent space is one straightforward approach for visualization and  
segmentation. Even with the nonlinearity of the network, we still 
have the constraint that similar configurations will lie close to each 
other in the latent space and less similar configurations will be  
further apart. That is, we still expect continuous variations in  
structure to appear on manifolds in the latent space. Any latent  
vector can be visualized immediately via its GMM representa-
tion or by reconstruction of the particles in a local region in the  
latent space.

Application of e2gmm on cryo-EM datasets. We consider three 
publicly available Electron Microscopy Public Image Archive 
(EMPIAR)24 datasets, each of which exhibits different types of 
variability. Most observed variations are well known in each case, 
providing a validation of the method. We also observe addi-
tional motions not reported in the original studies, but generally 
consistent with our understanding of the underlying systems. 
As these are public datasets, experimental validation of these  

observations is clearly beyond the scope of this paper. Nonetheless, 
we believe these examples present the power of the method. Basic 
tests using simulated data are included in the Methods (Extended 
Data Fig. 5).

50S ribosome assembly. The bL17-depleted 50S ribosomal inter-
mediate dataset (EMPIAR-10076)25 demonstrates the method’s 
ability to identify discrete variability, such as partial complex for-
mation/ligand binding. These data were also used in two other 
recent manifold method papers, permitting qualitative comparison 
of results14,15. We began with a structure determined using normal 
single-particle methods in EMAN2 to 3.3 Å using the entire data-
set excluding obvious ice contamination (124,900 particles). This 
structure was lowpass filtered to 8 Å, then used to generate a GMM 
with 3,082 Gaussians. The specific number of Gaussians was empir-
ically determined, based on the targeted level of detail, and has little 
qualitative impact. Any Gaussians falling outside a specified mask 
can be excluded from the final model. Since most of the variations 
within this dataset are the presence/absence of individual ribosomal 
components, we initially permitted only the Gaussian amplitudes 
to vary. After training (Extended Data Fig. 3) we used UMAP 
(uniform manifold approximation and projection for dimension 
reduction)26 to reduce the 4D space to 2D to visually explore the 
structural variability of the system. Particles were clearly separated 
into six visible clusters, each of which was reconstructed in 3D. 
The observed structural differences recapitulate known states25 of  
ribosome assembly as shown in Fig. 2.

While the points form clear clusters in the 2D conformation 
space, such classification only represents large-scale structural  
differences and more subtle compositional changes can be observed 
within clusters. For example, we reconstructed the 2,000 particles 
closest to three linear points within one cluster, and the resulting 
structures show the introduction of h68–70 and h76–78 of the 23S 
ribosomal RNA25. Selecting three points along a similar line in a  
different cluster, one without the central protuberance domain, 
shows the introduction of the same rRNA helices (Fig. 3b).

Finally, we examined conformational changes within the system. 
One of the factors that limits the resolvability of the averaged ribo-
some is the smearing effect of the dynamic central protuberance 
domain. To study this, we continued training the network with the 
Gaussian positions also permitted to vary in this domain, includ-
ing only particles where the central protuberance domain is present. 
This additional analysis identified a clear tilting motion of roughly 
8° of this domain (Fig. 3d).
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Fig. 2 | Classification of assembling ribosomes. a, 2D embedding of particles from the 4D latent space, colored by labels from clustering. b, Averaged 3D 

structures produced using the 2D particles in each colored class, filtered to 8 A (Supplementary Video 1).
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Spliceosome. The precatalytic spliceosome data (EMPIAR-10180)27 
demonstrate large-scale conformational changes. We began with the 
particle orientation assignments and an averaged structure deter-
mined using EMAN2 to 4.6 Å (327,490 particles). As resolution in 
cryo-EM is a measure of self-consistency rather than visible detail, 
it is possible to achieve relatively high measured resolutions in the 
presence of substantial motion blurring, even when the structure 
clearly lacks high-resolution detail. The density map was lowpass 
filtered to 13 Å and represented by 2,048 Gaussians. All Gaussian 
parameters were allowed to vary. We used PCA to reduce the latent 
space to 2D for visualization of the subspace with the largest varia-
tion. Compared to nonlinear dimension reduction methods, PCA 
conveniently preserves the inverse transform so the eigenvectors 
can be mapped back to the Gaussian parameters and motion tra-
jectories can be easily visualized. The first eigenvector from PCA 
shows a correlated motion of the helicase domain and the SF3b sub-
units, similar to the motion trajectories reported in previous studies.

While the eigenvectors from PCA exhibited several overall modes 
of motion of the complex, to better interpret the mechanism of the 
system it is more interesting to look at spatially localized eigenmo-
tion trajectories. The use of PCA does not change the fact that the 
latent space has a nonlinear relationship to the motions of the sys-
tem. Thanks to the characteristics of Gaussian models, we can focus 

on specific regions in real space. Rather than decomposing the point 
cloud in the latent space with PCA, we search for origin-crossing 
vectors in the latent space where the motion of Gaussian coordinates 
along the line is maximized in the domain of interest but mini mized 
in rest parts of the protein (Fig. 4). Since the points from this data-
set form a relatively isotropic distribution in the latent space, the 
movement represented by these vectors are nearly as important as 
the eigenmotion from PCA, while the Gaussian functions that are 
involved in the motion are far more localized. Furthermore, since 
the motion trajectories are localized in different domains, the two 
eigenmotion vectors are also orthogonal.

With the two independent eigenmotion vectors localized in  
the helicase and SF3b domains, we investigated the coordination 
of the two domains by looking at motion trajectories produced by 
the linear combinations of the two vectors. Adding the two vectors 
results in a motion mode that the two domains are moving toward 
the same direction, similar to the first eigenmotion extracted by 
PCA from the system. In the alternative combination, the two 
domains can be seen moving apart from each other, a motion mode 
never reported for the dataset (Fig. 4f and Extended Data Fig. 4). 
Note that the individual presented structures are the 3D reconstruc-
tions of particles near the corresponding point on the manifold. 
That is, unlike normal mode analysis, which predicts hypothetical 
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Fig. 3 | Exploration of subtle structural variability in the ribosome dataset. a, Location of particles sampled from the 2D embedding of the conformation space. 

b, Averaged structures reconstructed from the sampled particles. Yellow arrows point to the main differences between the structures. c, Motion trajectories 

of gaussian coordinates in the central protuberance domain from the first eigenvector of conformational heterogeneity analysis. d, Averaged structures of the 

particles at points along the motion trajectory. The dotted envelope is fixed to better visualize the changes in each map (Supplementary Video 2).
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modes with unknown amplitude and phase, in this case specific 3D 
structures are generated from the data for each putative point, dem-
onstrating that each specific state can be generated from the data 
and that relative populations of different states can be considered, 
within the limits of noise.

SARS-CoV-2 spike protein. We use the spike structure of SARS-CoV-2 
(EMPIAR-10492) for our third test. While the opening of the receptor 
binding domains (RBD) was not observed in the deposited particles 
due to the sucrose cushion used in sample preparation28, the RBDs 
in the published structure still have weaker density and lower resolu-
tion compared to the rest of the protein. In the original publication, 
3D classification was performed, but only an asymmetrical structure 
with weak RBD was reported, and it was unclear what conformational 
changes caused the weakening of the RBD density.

To investigate this question, we performed heterogeneity analysis 
on the combined particle set of the RBD closed and weaker density 
state (55,159 particles). To demonstrate that e2gmm is directly com-
patible with other software, we directly used the averaged structure 
and particle orientations from the published Relion refinement and 
2,188 Gaussian functions were used to model the averaged structure 
at roughly 7 Å. To break the C3 symmetry, we treated every par-
ticle as three copies in the symmetrical orientations. Only Gaussian 
functions in one asymmetric unit are allowed to vary, so every  
particle is mapped to three points in the conformation space,  
corresponding to the three asymmetric units.

After training, we performed PCA on the latent space and the 
eigenvectors show the motion of secondary structure elements 
at the RBD. Along the first eigenvector, the alpha helix at residue 

335–344 can be seen tilting toward the RBD of its adjacent subunit 
by roughly 11° (Fig. 5 and Extended Data Fig. 8). In the averaged 
structures along the same trajectory, the same helix in one of the 
neighboring subunits is undergoing the same motion, but in the 
opposite direction (Fig. 5f–h). Since the adjacent subunit was not 
targeted in the heterogeneity analysis, the presence of correlated 
motion suggests that the conformational changes of the RBDs in the 
two subunits are coordinated. Meanwhile, the same domain in the 
other subunit remains unchanged. On the other hand, the second 
eigenvector from PCA emphasizes the motion of the alpha helix at 
residue 364–371, as well as the beta-sheet strain at residue 354–359. 
Some coordination of motion in the adjacent subunit can also be 
observed but it is less clear.

In the density maps reconstructed from particles in specific con-
formations, the RBD at the subunit we focus on has stronger density 
than that of the other two subunits, suggesting the conformational 
changes we observe are indeed contributing to the weakening of 
density at the RBD (Extended Data Fig. 2).

Discussion
The main difference between the proposed method and most 
cryo-EM variability methods is the representation of the struc-
ture by a GMM, similar to methods sometimes used in coarse- 
grained modeling29,30. This is analogous to the idea of directly  
refining the atomistic structure against the raw data, but in a 
reduced representation based on the scale of the expected variations.  
This representation provides a number of advantages. First, it 
greatly reduces the number of parameters that needed to represent 
the molecule at any specified level of detail, limited by the sampling 
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Fig. 4 | Structural variability analysis of spliceosome. a, Distribution of particles in the 2D space formed by the selected base vectors. Colored arrows corres-

pond to different motion trajectories explored in panels with the corresponding color shown in b–g. Panels b,c show motion vectors corresponding to the 

same-colored arrow in a. The lengths of the vectors have been exaggerated for visualization. Panels d–g show reconstructions of particles from along the corres-

ponding colored vector in a. The fixed dotted outline represents a fixed neutral reference to make visualizing the changes easier in static images. Arrows indicate 

the location and direction of strong visible motions in each example. Supplementary Video 3 presents the variabilites as motions in 3D for easier visualization.
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of the image data31. For example, in the case of spliceosome, to rep-
resent the structure at 13 Å using a voxel-based representation, the 
density map can be downsampled to a cube with a box size of 84, so 
a total of 592,704 floating point parameters are required to represent 
the volume. Using the GMM, only 10,240 variables are needed for 
the 2,048 Gaussians used in the model, and the average Fourier shell 
correlation between the GMM and the density map is still above 
0.95 for the spatial frequencies under consideration, indicating that 
it is a very good representation of the density map.

Second, at low resolution, Gaussian functions are a natural way 
to model cryo-EM maps32–34. If these methods were extended to 
atomic resolution representation, it may be necessary to include the 
atomic form factors and consider the differences between electronic 
potential and electron density, but at intermediate resolutions such 
subtleties are effectively undetectable. Typical protein structural 
variability, such as ligand binding and domain motion, can be easily 
represented as simple trajectories in the Gaussian parameter space. 
Whereas under voxel-based representations, a high-dimensional 
nonlinear model is required to depict the motion of a domain along 
even a linear trajectory, especially when the length of the path is 
longer than the size of the domain of interest. As a result, the com-
plexity of the model required to describe the structural variability of 
the protein is greatly reduced, easing the effort to train the encoder–
decoder neural networks.

Third, due to the mathematical characteristics of Gaussian func-
tions in both real and Fourier space, our representation avoids 
the artifacts produced by common image processing operations. 
For example, to focus the analysis on a specific domain, only the 
parameters corresponding to Gaussians in that domain are allowed 
to change during network training. As all Gaussian functions still 
exist in the projection images, this will not introduce artifacts. The 
properties of Gaussian functions also ensure the model is always 
smooth at any snapshot during a continuous motion. Since the pro-
jection operation is performed by transforming the coordinates of 
the Gaussian functions, no interpolation artifacts are introduced by 

rotation or nonintegral translation. This also makes it easier to apply 
constraints in both spaces when studying the structural variability 
of proteins, such as focusing on specific domains in real space or 
limiting to a range of Fourier frequencies.

Finally, the use of Gaussian models makes the output from  
the neural networks directly and intuitively interpretable, unlike 
the typical abstract spaces produced by other manifold methods14,15.  
Each point in the conformational space is mapped to a set of 
Gaussian parameters, which corresponds to a complete 3D struc-
ture in one conformation. This means that for any given point, 
a representation can be generated either by reconstructing the  
particle image data in the vicinity of the point, or by directly  
converting the Gaussians into a density representation. The 
Gaussian map can provide a direct representation of the varia-
tions the network has learned, while the particle reconstructions  
can confirm that the actual 3D intermediate structures exist and  
agree with the Gaussians. For any two selected points in the  
confirmation space, it is easy to visualize the differences between 
those points by plotting a trajectory of coordinate motion or  
amplitude change. This can be especially useful in identifying puta-
tive changes when there are insufficient particles in the confor-
mation of interest to provide a true 3D reconstruction at sufficient 
resolution. The Gaussian representation remains equivalently 
resolved at any point.

Unfortunately, some limitations remain in the current implemen-
tation of the method. First, since e2gmm requires the orientation of 
each particle as input, it only works in situations where a portion of 
the molecule is rigid enough that a reasonable neutral 3D structure 
exists, and reasonable particle orientations can be determined. While 
this is a safe assumption for most SPR cases, it is also possible that 
the protein complex of interest is so heterogeneous that the align-
ment in the initial refinement fails entirely, and particle-projection 
mismatch is caused by misalignment instead of conformational 
differences. A potential solution to this problem is simultane-
ous training of particle orientation and GMM conformation.  
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Fig. 5 | Structural variability analysis of the spike protein of SaRS-CoV-2. a, Average structure of the spike protein, showing the RBD of the subunit 

that the analysis focuses on (dashed box). b, Density map of the target RBD overlaid with the molecular model (PDB 6zwv). c–e, Structures showing 

a sequence of targeted RBD structures along the first eigenvector. f–h, Structures showing a sequence of non-targeted RBD structures along the first 

eigenvector. i–k, Structures showing a sequence of targeted RBD structures along the second eigenvector. Supplementary Video 4 summarizes all of these 

changes dynamically for easier visualization.
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While this is possible, training the model to convergence is more 
challenging when this approach is used.

Second, the protocol normally begins with an averaged struc-
ture of all particles, assuming this represents the ‘neutral structure’, 
which is then perturbed. This assumption is not always true. When 
a domain motion is large enough, regions in the averaged map 
may be sufficiently spread in space so that no Gaussian function 
is identified in that region when the neutral model is trained. As 
a result, the model excludes motion in that region since there are 
no Gaussians present to move. This can be corrected by selecting a 
better neutral structure with stronger density in this region. If deal-
ing with a system with compositional variability, such as multiple 
ligands that may or may not be present, it is critical that the training 
volume be one with some density present for all ligands. This poten-
tial problem can also be reduced by building the neutral Gaussian 
model directly from aligned particles instead of the averaged struc-
ture, although this will incur a time penalty and may lead to a less 
robust model.

Finally, graphics processing unit (GPU) memory currently limits 
the size and resolution of the model. For example, a GPU with 11 Gb 
of memory supports up to 3,200 Gaussians with particles sampled at 
128 × 128 pixels, and a batch size of eight during training. This would 
be sufficient to represent the 50S ribosome at a roughly 8 Å resolution, 
or smaller proteins at proportionally higher resolution. So, for many 
proteins, the method is currently limited to variations at the level of 
secondary structural features. This limitation is due to the Gaussian 
representation currently required by the underlying TensorFlow sys-
tem. We expect that continuing evolution of GPU hardware as well as 
TensorFlow itself will remedy this problem in the near future.

Despite these minor limitations, e2gmm represents an easy 
to use mechanism for exploring macromolecular variability in 
cryo-EM with results that can be easily and intuitively interpreted. 
The user can define the resolution of interest, easily approaching 
features at any level of detail, within hardware limits. The next obvi-
ous development would be to operate on cryo-EM data, to permit 
similar studies in the context of the cellular environment, but tech-
nically this adaptation is not entirely straightforward to achieve 
due to the high noise levels in individual tilts and the increase in 
the amount of coordinated image data this would entail. All of the 
GMM operations are available through the program e2gmm_refine.
py, and a graphical interface for interactive examination of results 
and exploring changes in parameters is provided by e2gmm.py. All 
of the necessary software is provided as part of EMAN2.91. A tuto-
rial with sample data is available at http://eman2.org.
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Methods
Gaussian representation of protein density maps. �e GMM, M, is a simple sum 
of N Gaussian functions in real space, x̄ ∈ R

3:

M (x̄) =

N∑

j=1

A

j

e

−

|̄x−̄c

j

|2

2σ

2

j

Here, the Gaussian parameters are amplitude, Aj, width, σj, and center coordinates 
c̄

j

. In the network parameter space, the center parameters have a range (−0.5, 0.5), 
the amplitude has a range (0, 1) and the Gaussian width (0.5, 1.5). Note that only 
the relative values of the amplitude and width of the Gaussian functions within the 
model are meaningful, as the FRC metric is insensitive to overall brightness and 
filtration of the image. The center coordinates are scaled by the linear size of the 
image in pixels to form the projection images.

Internally, a projection orientation is a 3 × 3 rotation matrix irrespective of the 
stored orientation in terms of Euler angles, quaternions and so on35. In the equation 
that follows, we discard the z component in the product, so R is 2 × 3, excluding the 
z row. A projection, P, of the GMM in t̄ ∈ R

2 is thus simply:

P (̄t) =

N∑

j=1

A

j

e

−

|̄t−R̄c

j

|2

2σ

2

j

Our loss function is the FRC between the Fourier transform of P and a 
particle image and I in the same orientation. Note that the Fourier transform of 
P can be computed by shifting the Gaussian sum to Fourier space for efficiency 
if the real-space representation is not required for some other purpose. The FRC 
between the Fourier transform of the GMM projection and a cryo-EM particle 
image is the average of the correlation coefficients over Fourier rings36:

FRC (P , I) =
2

b

b/2

∑

k=1

∑

θ

P
k,θ

· I
k,θ

√

∑

θ

P2

k,θ

·
∑

θ

I2

k,θ

where b is the box size in pixels, k,θ are fast Fourier transform (FFT) polar 
coordinates and P and I  are the FFTs of P and I. As this is an operation over the 
FFT of discrete images, the sum over θ covers all values at k ± 0.5 pixels. Since 
each ring is an independently normalized dot product, the FRC is insensitive to 
multiplication by any nonzero radial (filter) function. So long as the CTF phases 
have been correctly flipped and astigmatism and drift are minimal, CTF amplitude 
correction can be ignored. While the signal to noise ratio will be lower in the 
particle at points where the CTF amplitude is low, the FRC will still be maximized 
for an individual particle when the GMM best agrees with the underlying particle 
density irrespective of CTF.

Neural network structure and parameter selection. The structure of neural 
networks and the parameters during the two phases of training process are user 
adjustable, but the defaults are suitable for most use cases. By default, the encoder 
and decoder both have three fully connected hidden layers, each with 512 units. A 
dropout layer with a rate of 0.3, as well as a batch normalization layer is included 
before the final output layer of both networks (Extended Data Fig. 7). The ReLu 
function is used for activation in each layer, except for the output layer of the 
decoder that uses a sigmoid activation function. During the training process, the 
default learning rate is 0.0001, with an L2 regularization of 0.001. A small random 
variable is also added to the latent space vector before it is input to the decoder as 
a way to enforce the continuity of particle distribution in the latent space. This is 
similar to the concept of variational autoencoder, except that the variation of the 
random variable is not trainable here. An additional regularization factor is applied 
to the standard deviation of the amplitude and width of Gaussian functions to 
encourage the Gaussian functions to spread out in real space.

The number of Gaussian functions used in the model is decided based on the 
size of molecule and the target resolution. In practice, to build a Gaussian model 
from a density map, we start from a small amount of Gaussian functions (for 
example, 256) and target a low resolution (for example, 50 Å), and run the decoder 
optimization until the FRC curves between projections of the Gaussian model. The 
projections of the density map below the target resolution are always above 0.95. 
Then, we double the number of Gaussian functions, increase the target resolution 
and repeat the process. When increasing the number of Gaussian functions, each 
newly added Gaussian will be seeded near an existing one, so the low-resolution 
correlation between the Gaussian model and the density map from the previous 
round is roughly preserved. Typically, within 3–5 rounds, the decoder can produce 
a Gaussian model that matches the density map at the target resolution. When a 
user-defined mask is provided, the program will exclude Gaussian functions whose 
centers fall out of the mask, resulting in slightly fewer Gaussian functions than the 
targeted number.

Using the trained decoder, is possible to visualize any point in the latent space, 
or a derived reduced representation if it can be mapped back to the latent space. It 
is sometimes also useful to display the vector motions connecting two points in the 

latent space for all Gaussians. This can be easily presented as a quiver plot, with a 
vector drawn for each Gaussian between its position at point A in the latent space 
to its position at point B in the latent space. If the motions are particularly small 
compared to the size of the molecule, an optional scaling factor can be used to 
make the vectors more visible. A graphical tool, e2gmm_analysis.py, is provided to 
easily generate such plots.

Tests on simulated datasets. To verify the method’s fundamental capabilities, 
testing was performed on three simple simulated datasets (Extended Data Fig. 5),  
each consisting of random projections of a dynamic 3D model with a small 
amount of added noise. The first system included a large rigid domain with a 
smaller domain undergoing linear motion. The path length of the linear motion 
was longer than the width of the moving domain. Twenty 3D density maps were 
generated along the trajectory and 200 particles were generated for each 3D map, 
by projecting the map in a random orientation and adding a small amount of noise. 
In the simulation, we simply used the known projection orientations since the 
routine is normally used with predetermined orientations. For simplicity, in this 
example we use a one-dimensional latent space to avoid the need for any further 
dimensional reduction. After training the GMM, the resulting latent variable has 
good agreement with the location on the path. A plot of true conformation versus 
the single latent variable is shown in Extended Data Fig. 5d.

It is worth noting that, even for this simple system, the estimated particle 
conformation distribution includes some off-diagonal points that will tend to 
be biased toward zero, the neutral conformation. This is because the simulated 
domain movement occurs in a plane, so in some orientations the motion is 
effectively unobservable. In such cases, there is a bias toward the neutral state. 
While this artifact is unavoidable and populating the manifold with particles 
will produce some near the origin of the latent space irrespective of their true 
conformation, this does not mean the manifold itself is inaccurate. So long 
as orientations are sufficiently diverse, the manifold should still be accurately 
determined. Indeed, with some effort it may be possible to remove such outliers 
from the particle distribution by testing whether the change in GMM would be 
detectable in the orientation of each individual particle.

In the second example, we simulated the cyclic rotation of a small domain 
around an axis, to show the method can learn nonlinear/cyclic motion  
trajectories. In the simulated dataset, 36 density maps were generated along  
the movement trajectory and 200 particles were used for each snapshot. Here,  
we used a 2D latent space, so the motion could be directly modeled by the  
encoder with no further dimensional reduction. After training, the particles 
distribution in the latent space roughly formed a circle (Extended Data Fig. 5f), 
and when viewed in polar coordinates, the angle of each point in the latent space 
correlates well with its ground truth rotation angle of the small domain (Extended 
Data Fig. 5g).

Finally, we demonstrate the performance of the method when the system 
contains a mixture of conformational and compositional heterogeneity. The 
domain motion in this simulated system is the same as the first example, but 
for half of the population, we added a small additional density to the map, to 
represent compositional variability (Extended Data Fig. 5h). The compositional 
difference and the domain motion are independent. A Gaussian model was built 
from the averaged density map and trained to embed the particles onto a 2D 
latent space. After training, particles form two curves on the latent space that are 
roughly parallel to each other. Comparing to the ground truth conformation of 
the particles, it is clear that points on the two curves represent particles with and 
without the extra density, and the trajectory along the curve represents the linear 
motion of the flexible domain (Extended Data Fig. 5i). This also highlights the 
ability to separate compositional and conformational heterogeneity within the 
system.

Additional data processing details for tests on real data. For the ribosome 
dataset, obvious ice contamination was removed using the EMAN2 neural network 
particle picking tool before refinement. Single model refinement was performed 
using the remaining particles, which were split into two independent subsets. As 
we were not attempting to test the refinement pipeline, a high-resolution structure 
(EMD-8455) was lowpass filtered and phase randomized beyond 20 Å to serve as 
an initial model for the refinement.

For the spliceosome dataset, all provided particles were used in the single 
model refinement. A high-resolution structure (EMD-3683) was lowpass filtered 
and phase randomized beyond 25 Å to serve as the initial model for the refinement.

For the SARS-CoV-2 spike protein dataset, Phenix real-space refinement was 
performed to produce atomic models of the RBD for each frame of the continuous 
motion. Each density map was lowpass filtered to 5 Å, and the RBD of the target 
asymmetrical unit was segmented in UCSF Chimera using the Protein Data Bank 
(PDB) model 6ZWV. Real-space refinement was performed using the segmented 
RBD domains and the PDB model as the starting point.

Reproducibility. Since the method includes stochastic components, it is worth 
considering reproducibility. Toward this end, we tested the analysis of the 
EMPIAR-10076 dataset by evenly separating the data into even/odd subsets. The 
entire processing pipeline, including single model refinement, the generation of 
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Gaussian model and the heterogeneity analysis, was performed independently on 
each subset. The GMM parameters and the training process for the two subsets 
were the same as described for the full dataset.

While the learned spaces are not identical due to the stochastic nature of the 
process, the number of clusters, the arrangement of the clusters on the manifold 
and the number of particles within each cluster are equivalent (Extended Data 
Fig. 6). Further, after clustering the particles and reconstructing a 3D structure for 
each class, we can find a one-to-one match between the 3D class averages from the 
two subsets. The structures of the matched classes from particles different subsets 
are highly consistent, and Fourier shell correlation between the corresponding 
structures extend beyond 4 Å.

This test establishes that functional reproducibility, while not guaranteed, is 
clearly possible in this method. We suggest that this even/odd split test, similar to 
the ‘gold standard’ methods used for resolution testing in single model refinement, 
represents a reasonable test of the reproducibility of biological conclusions drawn 
from the results of the method.

Computational requirements. For EMPIAR-10076, starting from a completed 
single-particle refinement, the first round of heterogeneity analysis, which focuses 
on only the amplitude changes of Gaussians required around 3 h on a GeForce 
RTX 2080 TI GPU, including the training of the GMM model and the dimension 
reduction process. Less than 1 h on a 12-core workstation was required to embed 
the encoder latent space in 2D, perform clustering, and reconstruct all of the 
3D density maps. The second round of heterogeneity analysis focusing on the 
conformational change in the central protuberance domain also required roughly 
3 h on the GPU and <1 h on the 12-core workstation.

For the EMPIAR-10180 dataset, the heterogeneity analysis required roughly 
3 GPU-h and 30 CPU-h for the reconstruction of the density maps along the four 
reported motion trajectories.

The provided Relion alignment was used for the EMPIAR-10492 dataset. 
Heterogeneity analysis required roughly 2 plus 10 CPU-h.

Comparison to existing methods. The recently published heterogeneity methods, 
CryoDRGN14, CryoSPARC 3DVA15 and e2gmm (this paper), all made use of the 
ribosome (EMPIAR-10076) and spliceosome (EMPIAR-10180) as two of their 
examples, permitting users interested in comparing the methods to draw their 
own conclusions. While the results produced by the different packages on the two 
datasets are similar in general, the three methods use very different approaches to 
solve the same problem and each has its own advantages, which we discuss briefly.

3DVA solves the structural variability of the protein complex using a linear 
subspace model. The nature of the method makes it difficult to represent 
large-scale motions, where the trajectory of the conformational change is not 
linear with respect to the intensity of individual voxels. On the other hand, the 
linearity constraint also greatly simplifies the problem. So, when the heterogeneity 
within the system meets the linearity criteria, often the case in single-particle 
analysis, it can produce accurate results very quickly. For example, to solve the 
motion within the spliceosome dataset, 3DVA takes roughly 3 GPU h, similar to 
e2gmm processing time, but is 20× faster than CryoDRGN. Its performance is best 
demonstrated in the ribosome assembly dataset, as the compositional variability 
within the complex is strictly linear with the intensity of the voxels. Compared 
to our approach (Extended Data Fig. 3), the separation of classes is more obvious 
in their linear subspace, even without the extra UMAP embedding step. GMM 
clustering on the 3DVA latent space shows seven ribosome classes, and six of them 
directly match the six classes from our result. The extra class identified by 3DVA is 
similar to the subtle changes from our result shown in Fig. 2b, which do not form 
obvious clusters in the conformation space but can still be resolved in e2gmm with 
further analysis.

CryoDRGN uses an encoder–decoder deep neural network architecture 
conceptually similar to ours, but the underlying data representation uses a classical 
coordinate-based approach on the 3D density map. Compared to e2gmm, one 
advantage of CryoDRGN is its capability to generate neutral state structures from 
particles with predetermined orientations, without the need for a reference 3D 
density map. This makes it possible to obtain distant states that are not covered 
in the averaged structure from the single-particle refinement. For example, in the 
50S ribosome assembly example, CryoDRGN is able to capture the small cluster 
of 70S ribosome (<1% of particles), an impurity of the dataset, in the embedded 
conformational space that was not immediately detected in the results from 3DVA 
or our software.

In e2gmm, our use of a GMM representation has numerous advantages, 
including a reduction in time and resource requirements. In the same benchmark 
datasets, e2gmm is roughly as fast as 3DVA and is 10–20× faster than CryoDRGN, 
while producing qualitatively similar results. Also note that the tests of our 
software are performed on a consumer grade GPU (GTX2080), which only has 
roughly a third of the memory and substantially lower performance than the 
hardware used in the CryoDRGN and 3DVA benchmarks.

One of the main difficulties in analyzing protein heterogeneity using other 
‘manifold methods’ is to interpret the particle distribution on the manifold and 
draw biological conclusions from the results. Generally, to interpret the structural 
difference between any two points on a manifold requires identifying particles 
near both points and reconstructing them in 3D. With e2gmm, we can put any 
latent vector into the decoder and immediately have a set of Gaussian coordinates 
to display on the screen. The user can literally drag the mouse around the latent 
space and observe the changes in the underlying Gaussian model interactively. 
Further, with e2gmm a mask can be used to define a subset of Gaussians to model 
during network training. Since the underlying Gaussian model is completely 
smooth, doing this does not introduce any edge artifacts into the system. While 
the capability of representing particles on the determined manifold is similar 
across all of these methods, with e2gmm it is much easier to find specific paths in 
a potentially multidimensional manifold that correspond to specific variations of 
interest. Thanks to the advantages, we are able to identify conformational changes 
from the two datasets that are not described in the previous work, such as the 
tilting of the central protrusion domain of the ribosome, and the independent 
movement of the helicase and SF3b domains in the spliceosome dataset.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The three datasets used in the paper are publicly available through EMPIAR. 
The 50S ribosomal intermediate dataset is acquired from EMPIAR-10076, the 
spliceosome dataset is acquired from EMPIAR-10180 and the SARS-CoV-2 spike 
protein dataset comes from EMPIAR-10492. Structures produced in this paper are 
deposited in Electron Microscopy Databank (EMD): EMD-24129, classification of 
50S ribosome assembly states (Fig. 2); EMD-24130, subtle structural variability of 
ribosome assembly intermediates (Fig. 3b); EMD-24131, continuous movement 
of the central protuberance domain of 50S ribosome (Fig. 3d); EMD-24092, 
EMD-24093, EMD-24094 and EMD-24096, the four movement modes of 
spliceosome (Fig. 4); and EMD-24118 and EMD-24119, the two movement modes 
of SARS-CoV-2 spike protein RBD (Fig. 5). Note that the main data file for each 
entry contains only one representative class or video frame; the entire 3D video or 
classification result is deposited as multiple 3D maps in the additional data files of 
each EMD entry.

Code availability
EMAN2.91 is free and open source software available from http://eman2.org with 
source code on GitHub (https://github.com/cryoem/eman2).
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Extended Data Fig. 1 | Workflow for local particle orientation refinement. Workflow for local particle orientation refinement using the trained gaussian 

model. This process can optionally be used after training the full gMM to improve particle orientations.
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Extended Data Fig. 2 | Structure of SaRS-CoV2 spike protein visualized at high isosurface threshold. Structure of SARS-COV2 spike at one point in the 

continuous motion, visualized at high isosurface threshold. Note that the RBD of the subunit the heterogeneity analysis focuses on (yellow arrow) is still 

solid while the other two RBDs (red arrows) already vanish. This suggests the continuous motion is contributing to the weakening of density at the RBD.
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Extended Data Fig. 3 | 50S ribosome particle distribution in the 4D encoder latent space. 50S ribosome particle distribution in the 4D encoder latent 

space, colored by the classification results shown in Fig. 2.
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Extended Data Fig. 4 | Motion trajectory vectors of the spliceosome. Front and side views of the motion trajectory vectors from the four identified motion 

modes of the spliceosome dataset shown in in Fig. 4 d-g.
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Extended Data Fig. 5 | Results on simulated datasets. Results on simulated datasets. a, 3D view of two snapshots of the simulated system at different 

frames of the movement trajectory. b, Sample simulated particles. c, Model of linear domain motion (yellow). d, Scatter plot of the ground truth position 

vs estimated particle conformation of the linear domain movement. e, Model of domain rotation around an axis. f, Estimated particle distribution of (e) on 

the 2D latent space. g, Scatter plot of the ground truth rotation angle vs estimated particle angle in the latent space (θ in f). h, Combination of independent 

linear domain motion (yellow) and compositional change (green). i, Particle distribution of (h) on the 2D latent space. Points are colored by their ground 

truth position along the linear domain motion trajectory. Particles with the extra density are marked as ‘x’, and the rest are marked as ‘o’.
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Extended Data Fig. 6 | Reproducibility of the method on the ribosome dataset. Reproducibility of the method on the ribosome dataset. a, b, 2D 

conformation space embedding from heterogeneity analysis of two independent subsets of particles. The clusters are colored using the same scheme as 

Fig. 2. c, d, 3D class averages of particles in the same cluster from the two subsets. The maps are filtered by the local FSC between the two half maps.  

e, “gold-standard” FSC curves of the full dataset (black), and the two classes shown in (c, d,) (blue and purple).
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Extended Data Fig. 7 | Detailed structure of the default neural network. Detailed structure of the default neural network used for the examples shown in 

the paper.
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Extended Data Fig. 8 | Molecular models fit to the RBD of the SaRS-CoV-2 spike protein. Molecular models fit to individual 3D snapshots of the focused 

RBD of the SARS-COV-2 spike protein, along the trajectory of the first eigenvector (Fig. 5c-e).
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