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Abstract—Robustness to modeling attacks is an important
requirement for PUF circuits. Several reported Arbiter PUF com-
positions have resisted modeling attacks. and often require huge
computational resources for successful modeling. In this paper
we present deep feedforward neural network based modeling
attack on 64-bit and 128-bit Arbiter PUF (APUF), and several
other PUFs composed of Arbiter PUFs, namely, XOR APUF,
Lightweight Secure PUF (LSPUF), Multiplexer PUF (MPUF) and
its variants (cMPUF and rMPUF), and the recently proposed
Interpose PUF (IPUF, up to the (4,4)-IPUF configuration). The
technique requires no auxiliary information (e.g. side-channel
information or reliability information), while employing deep
neural networks of relatively low structural complexity to achieve
very high modeling accuracy at low computational overhead
(compared to previously proposed approaches), and is reasonably
robust to error-inflicted training dataset.

Index Terms—Arbiter PUF compositions, Deep Learning,
Modeling attacks, Physically Unclonable Functions.

I. INTRODUCTION

In the context of semiconductor technology, Physically Un-

clonable Functions (PUFs) are electronic circuits that manifest

the impact of nanoscale process variation induced randomness

of modern semiconductor manufacturing technology [1], [2].

An ideal PUF should be unclonable (by manufacturing or by

mathematical modeling), and each individual PUF instance

should have unique characteristics, which should clearly dis-

tinguish it from other instances of the same PUF family.

Typically, this unique characteristic is in the form of the

truth table of the PUF instance, and an n-bit input, m-bit

output PUF instance can be abstractly viewed to be a Boolean

function f : {0, 1}n → {0, 1}m. This Boolean mapping should

ideally be unique to each PUF instance, and should remain

constant over time in spite of variations in environmental

conditions and the electrical noise environment (i.e., the PUF

should be perfectly reliable). PUFs are useful hardware se-

curity primitives, and have been proposed to be used in a

plethora of applications, ranging remote hardware attestation

to lightweight authentication protocol development [1]–[6]. An

n-bit input to a PUF instance, and the corresponding m-bit

output generated by the PUF instance, together constitute a

“Challenge-Response Pair” (CRP).
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Unfortunately, the promise of PUFs have largely remained

unfulfilled in practice, due to the gap between the ideal char-

acteristics of a hypothetical PUF and the real characteristics

of practically implementable PUFs. Often PUF instances are

found to be quite similar in characteristics to each other (“poor

uniqueness”), and often their truth tables are not constant over

time of when subjected to environmental variations (“poor

reliability”). Also, PUFs have been shown to be suscepti-

ble to a plethora of attacks, ranging from direct physical

cloning [7] and laser based fault attacks [8], to mathematical

modeling attacks (primarily machine learning based) [1], [9]–

[15]. Currently, the modeling attacks are considered to be

the greatest threat against PUF implementations, and wide-

ranging intensive research is currently underway to develop

newer attacks, as well as PUF designs robust to known attacks.

In these attacks, typically a small fraction of the CRP dataset

of a particular PUF instance is made available to the adversary,

based on which she builds an accurate computational model

of the PUF instance, capable of predicting the response for an

arbitrary challenge with high probability of success.

Among silicon PUF implementations, the Arbiter PUF

(APUF) is perhaps the most widely studied PUF variant,

being analyzed and implemented since the earliest days of

research on PUFs [1]. Although stand-alone APUF by itself

is not deployable because of its severe vulnerability to mod-

eling attacks [1], [10], APUFs still have unique advantages

regarding simplicity and regularity in design and operating

principles, low hardware overhead, and being amenable to be

VLSI implementation. Hence, APUF continues to be used

as a building block for more secure APUF compositions,

the most common among which are: XORPUF, Lightweight

Secure PUF (LSPUF) [16], Multiplexer PUF (MPUF) and its

variants cMPUF and rMPUF [4], and the recently proposed

Interpose PUF (IPUF) [17]. Successful attacks have been

reported previously against even these variants in recent years,

but many of them require access to additional information,

e.g. side channel information [11], reliability characterization

information [18], etc. Some other proposed attacks on these

variants which do not require access to auxiliary information

have also been proposed, but they are unable to reach the

high levels of accuracy typically reached by machine learning

based techniques, and are only successful in a “cryptanalytic”

sense [19], meaning the probability of successful prediction of

the response corresponding to an arbitrary challenge is greater

than 1
2 ). Sometimes, these attacks are successful in predicting

the response for a challenge only if the responses of some

related challenges are known [20].

One of the first deep learning based attack on APUF
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Fig. 1. An n-bit Arbiter PUF (APUF) [1].
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Fig. 2. An x-XOR APUF.

using pure black-box technique was reported in [21], but it

obtained much poorer modeling accuracy (∼ 58%) compared

to previously reported ML algorithms. Another deep learning

based attack [22] uses de-noising autoencoders for evaluating

the security of 3-XOR APUF and Double Arbiter PUF (DA-

PUF), a variant of APUF with enhanced uniqueness. Because

de-noising autoencoders were used during the pre-training

phase, the reported computation time taken is significantly

high than ML algorithms. Also, they did not try the attacks

on challenging APUF compositions such as 5-XOR APUF

or LSPUF. Details about the operating principles of these

PUF variants, and existing attacks on them are provided in

Section II.

In this paper we have described deep learning based suc-

cessful attacks on the above APUF compositions. Note that

machine learning of XOR-type functions is a classic com-

putational problem, and has been widely studied for several

decades. Relatively recently, it has been suggested [23] based

on other theoretical advancements [24] that deep feedforward

neural networks with the Rectified Linear Unit (ReLU) as

the activation function in the hidden layers are possibly good

choices for learning XOR networks. This was an impor-

tant motivation for our efforts of applying deep learning

(in particular, deep feedforward networks) in modeling of

APUF compositions, many of which are based on XOR-

based combinations of APUF responses. Also, MPUF and its

variants are similar to XOR PUFs with respect to their Boolean

functional representation. A recent attack [25] applies Artificial

Neural Network (ANN) to model XOR APUF, and obtains

very promising results for 8-XOR APUF (64–bit challenge

size) and 7-XOR APUF (128-bit challenge size). However,

we faced issues trying to replicate the experiments described

in [25], as detailed in Section IV.

To summarize, in this paper, we make the following contri-

butions:

• To the best of our knowledge, this is the first successful

application of Deep Learning in attacking a wide va-

riety of APUF compositions, including challenging ones

such as 6-XORPUF, LSPUF (up to each output being 6-

XOR), and IPUF (up to the (4,4)-IPUF configuration),

for 64-bit and 128-bit challenge sizes.

• The proposed technique uses only parity-vectors derived

from the challenge as input features, and it does not

require any auxiliary information such as side-channel

information or reliability-related information. The pro-

posed attack also does not require the application of

external stimulus to modify the functionality or induce

fault in the PUF. According to the categorization of PUF

modeling attacks proposed in [17], the proposed attack

can be categorized as “classical derivative based white

box attack”, since:

– It requires to know the structure of the PUFs under

attack (“white box”).

– The proposed neural network uses gradient based nu-

merical optimization methods (“derivative based”).

– It only requires CRPs for launching the attack (“clas-

sic attack”).

• The technique achieves high modeling accuracy, at ac-

ceptable computational overhead, with all computations

being carried on a single high-end workstation. Our goal

is to demonstrate that deep learning is capable of

modeling practical PUF variants which have resisted

standalone machine learning based modeling till date,

using an ordinary computational infrastructure (i.e.

without using high-performance clusters, etc., in con-

trast to [26].

• No explicit “feature engineering” is required to design

custom input features for achieving high accuracy. The

technique is reasonably robust to errors in the training

dataset.

• Lastly, we have made the dataset and machine learning

software code used in our experiments available online1,

for the benefit of the research community and further

extension of the work.

The rest of the paper is organized as follows. Section II

presents background information on the PUF circuits consid-

ered, with previously reported attacks for each variant. We

describe our proposed attack and architecture of the deep

neural network used by us in Section III. Results are discussed

in Section IV. We conclude in Section V with directions of

future research.

II. BACKGROUND: APUF AND APUF COMPOSITIONS

A. Arbiter PUF (APUF)

The APUF consists of a cascade of several structurally

identical two-port delay stages, with an arbiter (usually a latch)

at the end of the cascade. For each delay stage (say, the i-th

stage), which are path-swapping switches, connectivity from

the input to output ports is controlled by a control bit (the i-th

challenge bit c[i]). The two input ports of the first stage are

shorted, and an input pulse is allowed to propagate along the

two delay paths. The exact paths followed by the two signals

1https://github.com/Praneshss/Modeling of APUF Compositions
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along the two paths depends on the challenge applied. Because

of process variation effects, in spite of (ideally) identical

layout, the signals along the two paths reach the arbiter after

slightly different delays, resulting in either logic-0 or logic-1

output of the arbiter. Fig. 1 shows an n-bit APUF circuit. For

each n-bit challenge c ∈ {0, 1}n, it can be proved that the

response of an APUF to for a given challenge c is given by:

r =

{

1 if ∆c < 0,

0 otherwise.
(1)

and the delay difference at the end of the cascaded switch

stages, ∆c is given by: ∆c = w
T
Φ. Here, w is known as

the weight vector, and is a (n + 1)-dimensional vector of

real numbers, with components dependent on the path delay,

and Φ is the parity vector derivable from the given challenge

c, whose components are given by: Φ[n] = 1 and Φ[i] =
n−1
∏

j=i

(1− 2c[j]), i = 0, 1, · · ·n−1. Hence, successful modeling

of an APUF comes down to accurately predicting the weight

vector ~w. This can be achieved quite successfully by several

machine learning algorithms, viz., Support Vector Machine

(SVM) [1], [10], Logistic Regression (LR) [10], Probably

Approximately Correct Learning (PAC Learning) [15], etc.

APUFs can also be attacked in a limited way, taking advantage

of their poor Strict Avalanche Criterion (SAC) property, to

accurately predict the response for challenges, if responses of

similar challenges are known [20].

B. XOR Arbiter PUF (XOR APUF)

To increase the robustness of APUF to machine learning

based modeling attacks, it was proposed to XOR the output

of multiple (say, x) APUFs, all being input the same chal-

lenge [3]. Fig. 2 shows the structure of an x-XOR APUF.

Increasing the value of x results in exponential increase

in training data and training time requirement in classical

machine learning attacks [10]. The same work mathematically

modeled the x-XOR PUF and expressed it as:

responseXOR =

x
∏

i=1

sign(~wT
i
~Φi) = sign(

x
∏

i=1

~wT
i
~Φi) (2)

where ~Φ is the “parity vector” corresponding to the applied

(bipolar-encoded) challenge vector. In [10] it was reported that

modeling attack on x-XOR APUF is infeasible if x ≥ 6,

although later careful implementation of LR was able to break

x-XOR APUF for x ≤ 9 [26], albeit employing substantial

computational resources (e.g. a cluster with 1 TB of main

memory), and large amount of CRP data (e.g. 350 million

CRPs for the 9-XOR APUF). x-XOR APUFs have also

been attacked successfully by PAC learning for x ≤ 5 [14].

Power and timing side channel information dependent machine

learning attack on x-XOR APUF was reported in [11] for

up to x = 16. A major hindrance with large XOR APUFs

is that the reliability of the x-XOR APUF decreases rapidly

with an increase in the value of x. In fact, a powerful attack

on x-XOR APUF, taking advantage of its imperfect reliability

characterization information, where the attack time complexity
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Fig. 3. An m-output Lightweight Secure PUF (LSPUF) [16].
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Fig. 4. Architecture of an (n, k)-MPUF [4].

increases only linearly with x was reported in [18]. Besides

reliability characterization information, this attack employs

Evolution Strategies (ES) as the ML modeling algorithm;

however, this attack requires the adversary to characterize a

given XOR APUF instance multiple times for the same set of

challenges.

C. Lightweight Secure PUF (LSPUF)

The LSPUF was designed to provide an security enhance-

ment over the XOR APUF [16]. It is a multi-bit output PUF

(say, m output bits), where each output bit is generated by

XOR-ing a fixed number (say, x) of outputs of a set of APUFs

(say, k total APUFs), according to the formula:

o[i] =

x−1
⊕

j=0

r((i+s+j) mod k) (3)

where o[i] is the i-th output bit, i = 0, 1, · · ·m− 1; rj denote

the j-th output bit of the j-th APUF; s is a circular shift

parameter which determines how the x APUF output values

are chosen, and x < k. A major architectural difference
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with the XOR APUF is that now every constituent APUF

receives a different challenge vector, being derived from the

input challenge ~c by an input logic network G. This helps

to enhance the security of the circuit with respect to the

XOR APUF [16]. However, each output bit of the LSPUF

still suffers from the reliability issue of XOR APUFs, hence

the value of x cannot be made arbitrarily large in practice.

Fig. 3 shows an example LSPUF with m-output bits, and k

constituent APUFs. The LSPUF (each individual output bit)

was attacked successfully through LR (up to each output being

5-XOR) [10], cryptanalysis-assisted machine learning [19],

and like the XOR APUF, through power and timing side

channel supplemented machine learning attacks (up to each

output being 16-XOR) [11].

D. Multiplexer PUF (MPUF) and Its Variants

To reach a trade-off between PUF area, reliability and

robustness to modeling attacks, the MPUF, along with its two

variants, were proposed [4]. The primary goal was to reach

robustness to cryptanalysis and modeling attack comparable

to XOR PUF, while being much more reliable than the XOR

APUF. An (n, k)-MPUF employs an 2k : 1 multiplexer, with

the k select lines of the multiplexer being connected to the

outputs of k APUFs, and the data lines of the multiplexer

being connected to 2k APUFs, with all AUFs are input the

same n-bit challenge. Fig. 4 shows the architecture of an

(n, k)-MPUF. In the same paper, the authors also proposed

two other variants, viz., cMPUF (robust against cryptanalysis)

and rMPUF (robust against reliability-based modeling attack).

The rMPUF uses 2k−1 APUFs for data selection using a

multiplexer tree, while the cMPUF uses only 2k−1 data

APUFs, with the other 2k−1 data inputs being complements

of them. The authors concluded through extensive theoretical

and experimental analysis that the (64, 3)-rMPUF to have

comparable robustness to modeling attack as an 10-XOR

APUF with 64-bit challenge, and its reliability is as high as

the reliability of a 4-XOR APUF. The authors demonstrate that

MPUF variants can also achieve statistical properties similar

to LSPUF without, using any additional input network.

E. Interpose PUF (IPUF)

The Interpose PUF (IPUF) [17] is the latest addition to

the repertoire of robust PUFs. The idea is to interpose the

response of an x-XOR APUF (with n challenge bits) to an

applied challenge, between two challenge bits of an y-XOR

APUF (with (n + 1) challenge bits, the remaining challenge

bits being the same as the x-XOR PUF), to get an (x, y)-
IPUF. Fig. 5 shows the structure of an (x, y)-IPUF, with n-bit

challenge. The authors claimed through theoretical analysis

and experimental results) that an (x, y)-IPUF design while

having the same hardware overhead and comparable reliability

as an (x+ y)-XOR PUF, provides much higher robustness to

modeling attacks. The authors claimed that using the middle

bit of the second APUF as the interpose position, the IPUF

is robust against classical machine learning based modeling

attack, reliability based modeling attack, and cryptanalytic

attacks. In particular, the authors demonstrate that the (3, 3)-
IPUF is satisfactorily resistant to all known attacks.

x-XOR APUFc0c1...cici+1...cn-1

n-bit Challenge

c0c1...ci rxci+1...cn-1

(n+1)-bit Challenge

y-XOR APUF

rx

r

C

Fig. 5. Architecture of an n-bit (x, y)-IPUF [17]. Only the n-bit challenge
c and the 1-bit response r are accessible as circuit ports.
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F. Our Observations about Robustness of PUFs to Modeling

Attacks

As we demonstrate through our modeling attack results,

many of the PUF variants claimed to be secure against model-

ing attack techniques tried previously, are actually vulnerable

to deep learning based modeling attacks (details in Section IV.

For example, we show that not only the (3, 3)-IPUF, but also

the (4, 4)-IPUF is vulnerable to deep learning based modeling

attack. Fig. 6 summarizes the scope of this paper.

We do not consider the feed-forward APUF (FF APUF) [1]

in this work. As demonstrated in [10], although the FF APUF

is largely resistant to SVM and LR based modeling attacks,

even structurally complex FF APUFs with up to 8 feed-

forward loops are quite susceptible to ES based machine

learning attack. However, in spite of its severe vulnerability

to a plethora of modeling attack techniques, we still examine

the vulnerability of the APUF because it is the fundamental

building block of the other PUFs considered in this work.

III. DEEP LEARNING METHODOLOGY FOR APUF

COMPOSITION MODELING

Deep learning is a specialization of the Artificial Neu-

ral Network (ANN) concept in machine learning. In recent

years, deep learning has demonstrated remarkable success in

performing different complex tasks in the domain of artifi-

cial intelligence, especially for tasks like object classifica-

tion and language translation [27], [28]. Deep Learning can

be applied to supervised, semi-supervised and unsupervised

learning problems. The most commonly used deep learning

architectures are the Deep Feedforward Neural Networks,

Convolutional Neural Networks (CNN), Recurrent Neural Net-

works (RNN), Autoencoders, Restricted Boltzmann Machines
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(RBM), etc. Deep feedforward neural network architectures

employ more than one hidden layer [28]. In [29], it has been

shown that multilayer feedforward networks with as few as one

hidden layer are indeed capable of universal approximation in

a very precise and satisfactory sense. However, the number of

parameters and required dataset size increases as the number

of neurons increases in a single hidden layer. It is also possible

to approximate complex functions with deep feedforward

architecture with less number of neurons in each layer. This

reduces the number of parameters to train and also requires

relatively less number of examples [30]. In the proposed

method, we use deep feedforward neural network architecture

to model APUF compositions.

A neural network uses activation functions to learn complex

mappings and patterns of the data. An activation function at

a neural network node defines the relationship between its

output value and input values. One of the most commonly

used activation function is the Sigmoid activation function,

which is a special case of the logistic function that is defined

as: Sigmoid(z) = 1
1+e−z

. It is bounded in the range [0,

1], has a positive derivative at each point, and its derivative

can be computed very easily. However, it suffers from the

gradient vanishing effect as its argument increases. However,

post-2011, the most computationally efficient and popular

activation function is the “Rectified Linear Unit” (ReLU),

which is defined as: ReLU(z) = max(0, z). It allows the

neural network to easily obtain sparse representations, and

because of its piecewise linearity, there is no gradient van-

ishing effect [31]. The same work also showed that training

of very deep neural networks is much faster if the hidden

layers are composed of ReLU. Though ReLU is very powerful,

it can only be used in the hidden layers and cannot be

used in the output layer due to its form. ReLU is also the

default activation function recommended for use with most

feedforward neural networks [28]. We use deep feedforward

networks with sigmoid activation function for the output layer

and ReLU activation function for the hidden layers.

In neural networks, backpropagation is used to repeatedly

adjust the weights of the connections in the network, so as

to minimize a measure of the difference between the actual

output vector of the net and the desired output vector. But

the algorithm is sensitive to the initial weights assigned to

the nodes of the network [32], which can drastically impact

the convergence of the backpropagation algorithm. In our

approach, we perform random initialization of the weights,

based on the uniform distribution that is normalized based on

the size of the input and output of the layers (“Glorot uniform”

initialization in the Keras framework), as suggested in [33].

We used Adam optimizer [34] for updating the weights

during backpropagation and Binary Cross Entropy as loss

function. Binary cross entropy function is defined as :

Lbce(y, ŷ) = −
1

n

n
∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4)

where yi and ŷi correspond to the original responses and

predicted responses of the PUF, and n is the number of re-

sponses considered. The generic deep feedforward architecture

used for modeling APUF and its variants is shown in Fig. 7.

Fig. 7. Generic Deep FF Neural Network Architecture for modeling APUF
Compositions.

Table I shows the different hyperparameters used in our deep

feedforward neural networks.

A key advantage of deep feedforward neural networks here

is “representation learning”, which is a set of methods that

allows a deep learning architecture to be input raw data

and to automatically discover the representations needed for

detection or classification [27]. For example, in our case the

stack of hidden layers transforms the input parity vectors

(calculated from the challenges) [1], into classifiable features

automatically. The authors of [10] showed the learnability of

APUF and x-XOR PUF (x < 6) using Logistic Regression.

The deep feedforward architecture with sigmoid activation

function at the output layer can be intuitively thought as the

combination of two sequential steps: (a) transformation of

the parity vectors to internally-generated features, and then

(b) applying Logistic Regression on the learned features for

classification.

IV. EXPERIMENTAL RESULTS

A. Implementation and Modeling Setup

We currently do not have access to ASIC fabrication,

and we found FPGA-based APUF implementations to exhibit

very poor uniqueness, as also previously reported by multiple

publications [4], [35], [36]. Hence, for our experiments, we

collected CRPs from Matlab simulation models of the PUFs.

Following [4], [10], we have considered that all stage delay

parameters of each APUF are independent and identically

distributed, and follow Normal distribution with mean µ = 0.1
and σ = 1. to simulate imperfect reliability of actual PUF cir-

cuits, we have considered additive random noise which follows

N (0, 0.01). For IPUF modeling, we used the Matlab-based

PUF simulation model made available by the authors [37].

The modeling experiments were performed on 64-bit and 128-

bit PUF variants. Random 128-bit and 64-bit challenges were

generated (in sets of 1 million challenges), and applied to

the PUF circuits as input. To calculate reliability, each PUF
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TABLE I
IMPORTANT HYPERPARAMETER VALUES USED

Hyper Parameters Values

Size (bits)

Kernel Initializer Glurot uniform [33]

Learning Rate 0.001

Bias Initializer Zeros

Optimizer Adam [34]

Loss Function Binary cross entropy

Hidden layer Activation function ReLU [38]

Output layer Activation function Sigmoid

TABLE II
UNIFORMITY AND UNIQUENESS METRICS FOR SELECTED PUFS

PUF Challenge Size Uniformity (%) Uniqueness (%)
(bits) (Mean, S.D.) (Mean, S.D.)

64 (51.04, 0.03) (50.19, 0.04)
APUF 128 (50.34, 0.02) (50.35, 0.03)

64 (50.00, 0.00) (49.98, 0.01)
5-XOR APUF 128 (50.03, 0.00) (50.32, 0.01)

64 (50.62,0.07) (51.01,0.03)
LSPUF (m = 4, x = 4, k = 5) 128 (49.97,0.00) (49.14, 0.03)

64 (51.93, 0.07) (54.20, 0.01)
MPUF (k = 3) 128 (52.61, 0.04) (52.61, 0.02)

64 (57.47, 0.07) (50.92, 0.01)
cMPUF (k = 3) 128 (57.47,0.07) (50.92, 0.02)

64 (50.05,0.03) (46.28, 0.10)
rMPUF (k = 3) 128 (50.40,0.02) (47.11, 0.11)

64 (50.50,0.00) (50.00, 0.00)
(4,4)-IPUF 128 (50.11,0.00) (49.98, 0.00)

was characterized eleven times for the same challenge, and

the response value obtained after majority voting the eleven

responses were chosen to be the response of the PUF. To cal-

culate uniqueness and uniformity, response sets for each PUF

variant was considered for the same challenge sets. Table II

shows the mean and standard deviation of the uniformity and

uniqueness metrics for selected PUF variants. As we have

seen in Section II-A, parity vectors linearly correlate with

the delay difference of APUFs, and since we are attacking

APUF compositions in this work, we chose to use parity

vectors as input features. Our efforts of using the raw CRPs

directly as input features was futile for all the PUF variants,

as we got very poor accuracy results (between 55-60%), a

phenomenon also reported in [21]. For each challenge, the

parity vector [1] was calculated. These parity vectors, along

with the corresponding responses, were used as input to the

deep learning architecture, for training and testing purposes.

For each PUF, the generated CRP set was divided into

two parts – the training set consisted of 80% of the total

CRPs, while the test set consisted of the remaining 20%.

The proposed deep learning modeling setup was implemented

using Python 2.7 and the Keras 2.1.5 [39] framework, with

TensorFlow [40] backend, and executed on a Linux worksta-

tion with 32 GB of main memory and a 3.3 GHz, 4-core

Intel Xeon processor. All the experiments were conducted

without us explicitly parallelizing the code across the cores,

i.e., if multi-threaded execution happened, it was managed

by the TensorFlow backend and was opaque to us. For the

convenience of the readers and the research community, we

have made the dataset and the modeling code available2.

2https://github.com/Praneshss/Modeling of APUF Compositions

TABLE III
MODELING ACCURACY RESULT FOR APUF

Challenge Training CRPs Prediction Training
Size (bits) Accuracy (%) Time

64 6,800 99.50 11.25 sec

128 8,000 99.50 18.21 sec

TABLE IV
MODELING ACCURACY RESULT FOR XOR APUF

Challenge No. of Training CRP Prediction Training

Size (bits) XORs Count Accuracy (%) Time

2 32,000 99.30 56.36 sec

3 36,800 99.22 1 min 12 sec

64 4 41,200 98.60 2 min 10 sec

5 145,000 98.20 10 min 12 sec

6 680,000 97.68 20 min 52 sec

7 1,200,000 – –

2 32,000 99.10 1 min 10 sec

3 37,600 98.90 2 min 5 sec

128 4 255,000 97.80 8 min 30 sec

5 655,000 97.87 29 min 21 sec

6 1,200,000 – –

TABLE V
MODELING ACCURACY RESULT FOR LSPUF (k = x+ 1,m = x)

Challenge No. of XOR Training CRP Prediction Training

Size (bits) (x) Count Accuracy (%) Time

3 80,000 98.50 3 min 20 sec

4 240,000 98.50 5 min 18 sec

64 5 320,000 97.23 18 min 35 sec

6 800,000 97.42 33 min 24 sec

7 1,200,000 – –

3 80,000 97.82 3 min 10 sec

128 4 240,000 97.80 4 min 22 sec

5 1,200,000 96.22 3 hr 11 min

6 1,200,000 – –

TABLE VI
MODELING ACCURACY RESULT FOR MPUF AND VARIANTS (k = 3)

PUF Challenge Training CRP Prediction Training
Type Size (bits) Count Accuracy (%) Time

64 111,000 98.10 2 min 5 sec
MPUF 128 112,000 97.50 3 min 23 sec

64 112,000 98.30 5 min 37 sec
cMPUF 128 112,000 97.50 4 min 5 sec

64 80,000 98.20 5 min 3 sec
rMPUF 128 80,000 97.40 5 min 40 sec

B. Modeling Accuracy Results

In each case, we have reported the minimum number of

CRPs that are required for successful modeling of the PUF

variant. Tables XII–XVIII in the Appendix shows the number

of hidden layers and average number of nodes per layer
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TABLE VII
MODELING ACCURACY RESULT FOR MPUF AND VARIANTS (k = 4)

PUF Challenge Training CRP Prediction Training

Type Size (bits) Count Accuracy (%) Time

64 176,000 97.44 4 min 31 sec
MPUF 128 184,000 96.49 16 min 10 sec

64 112,000 97.36 5 min 07 sec
cMPUF 128 160,000 97.14 8 min 25 sec

64 184,000 97.12 9 min 31 sec
rMPUF 128 264,000 96.23 20 min 16 sec

TABLE VIII
MODELING ACCURACY RESULT FOR MPUF AND VARIANTS (k = 5)

PUF Challenge Training CRP Prediction Training

Type Size (bits) Count Accuracy (%) Time

64 256,000 97.02 14 min 13 sec
MPUF 128 312,000 96.40 22 min 43 sec

64 152,000 97.24 10 min 21 sec
cMPUF 128 215,000 96.36 10 min 13 sec

64 320,000 96.54 15 min 23 sec
rMPUF 128 400,000 95.45 32 min 27 sec

necessary for successful modeling. Also, we terminated the

model building after 12 hours if model building had not

converged even with 1.2 million CRPs as training data.

1) Arbiter PUF: Although modeling of APUF is not a

challenging machine learning problem, for the sake of com-

pleteness we modeled 64-bit and 128-bit APUFs. For classifi-

cation of APUFs, we found that the deep learning architectures

necessary were particularly simple, e.g. only one hidden layer

with two nodes was sufficient to model 64-bit APUF. Table III

shows the results obtained on modeling APUFs. As expected,

the modeling accuracy achieved is very high with relatively

small training sets.

2) XOR Arbiter PUF: Table IV shows the results of mod-

eled XOR APUFs. As seen in the table, 6-XOR APUFs for

64-bit challenges and 5-XOR APUFs for 128-bit challenges

can be modeled quite accurately with far less computational

effort than previously reported techniques [10], [26], although

it requires more data. For example, in [10] it was reported

that LR algorithm modeling for 5-XOR APUF with 128 bit

challenge achieves 99% accuracy using 500,000 CRPs, but re-

quires a training time of approximately sixteen hours [10]. The

deep feed forward neural network achieves 97.87% accuracy

using 655,000 CRPs in approximately half an hour.

3) Lightweight Secure PUF: We modeled individual output

bits of LSPUF as in [10], and Table V reports the highest

modeling accuracy for the output bits. In each case, there were

k = x + 1 APUFs, and we set the number of output bits

m = x, where each output bit depends on the XORing of x

APUF outputs, and the circular shift parameter s = 0. Again

we find LSPUFs in which each output bit is up to 6-XOR

for 64-bit challenges and 5-XOR for 128-bit challenges, can

be modeled quite comfortably by deep learning. We consider

a successful attack with only three hours of training to be a

significant achievement, because previous effort of modeling

128-bit LSPUF (with 5-XOR outputs) required significantly

larger training time of 267 days as reported in [10].

4) Multiplexer PUF and Its Variants: We found that the

MPUF and its variants i.e., cMPUF and rMPUF (for the

TABLE IX
MODELING ACCURACY RESULT FOR IPUF

Challenge IPUF Type Training CRP Prediction Training

Size (bits) (x,y) Count Accuracy (%) Time

(3, 3) 240,000 98.30 6 min 29 sec

64 (4, 4) 319,000 97.44 5 min 23 sec

(5, 5) 1,200,000 – –

(3, 3) 288,000 97.47 10 min 21 sec

128 (4, 4) 647,000 97.68 32 min 17 sec

(5, 5) 1,200,000 – –

Fig. 8. Robustness results for various PUFs.

TABLE X
ROBUSTNESS ACCURACY RESULT FOR SELECTED PUFS

PUF Challenge Training CRP Pred. Acc. Pred. Acc. Pred. Acc. Pred. Acc.

Type Size (bits) Count (No error) (1% error) (2% error) (5% error)

5-XOR 128 655,000 97.87 97.79 97.42 96.93

6-XOR 64 680,000 97.68 97.33 97.08 96.47

LSPUF (x = 6) 64 800,000 97.42 95.13 94.83 51.82

rMPUF (k = 3) 128 80,000 97.40 96.81 96.44 95.56

(4,4)-IPUF 64 320,000 97.44 97.33 97.30 95.66

TABLE XI
HIGHLIGHTS OF OUR EXPERIMENTAL RESULTS

PUF Challenge Training CRP Model. Acc. Training

Type Size (bits) Count (%) Time

LSPUF (5-XOR) 128 1,200,000 96.22 3 hrs 11 min

(4,4)-IPUF 128 647,000 97.68 32 min 17 sec

rMPUF (k = 5) 128 400,000 95.45 32 min 27 sec

5-XOR APUF 128 655,000 97.87 29 min 21 sec

LSPUF (6-XOR) 64 800,000 97.42 33 min 24 sec

6-XOR APUF 64 680,000 97.68 20 min 52 sec

(4,4)-IPUF 64 320,000 97.44 5 min 23 sec

design parameter k = 3, 4, 5) can be modeled with relatively

lesser number of CRPs than XOR-based APUF compositions.

Tables VI–VIII shows results of modeled MPUF and its

variants for both 64 bit and 128 bit challenges sizes. From

the table it is evident that the complexity of the modeling

attack increases as the value of k increases.

5) Interpose PUF: We found the training data requirement

of IPUFs is relatively higher than other XOR-based APUF

compositions. The middle bit of the second APUF is used as

interpose position for both 64-bit and 128-bit IPUFs, because

this is supposed to provide the maximum robustness to model-

ing attack [17]. Table IX shows the modeling accuracy results

for some IPUF variants. Note that we could successfully model

up to (4,4)-IPUF for both 64-bit and 128-bit challenges. This

is a major result, as mentioned earlier in Section II-F, because

the authors of [17] found that previously proposed techniques

cannot successfully attack even (3,3)-IPUF.
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C. Robustness of Modeling Attack to Noisy Dataset

The impact of error in the training CRP set (possibly

through corruption of the CRP database) was simulated by ran-

domly flipping some percentage of response bits. The flipped

training dataset is modeled and validated with the error-free

test set. Table X shows variation in prediction accuracy, while

Fig. 8 shows the robustness results for various selected PUFs,

in terms of the change in prediction error, as the error rate

in training data increases [10]. LSPUF shows early deviation

with increasing error rates, size whereas 6-XOR and rMPUF

(128 bit) shows higher and stable modeling accuracy even with

10% erroneous data. IPUF and 5-XOR (128-bit) show linear

changes in the loss values till 5% and 7% respectively, after

which the loss increases.

D. Summary and Highlights of Results

The main observations from our results are as follows:

• For deep learning based modeling of different APUF

compositions, the parity vectors seem to constitute a good

input feature set, although we do not currently have a

formal theory to justify this observation.

• In general, we found that modeling of 128-bit PUF

versions are more challenging than the modeling of the

64-bit versions of the same PUF types, as the training

data and the computation time required for the proposed

modeling attack to succeed increases with the challenge

size.

• Similar data requirement and training time trends were

observed as the complexity of the PUF variants increase

(e.g. modeling of 3-XOR APUF is more challenging than

that of 2-XOR APUF).

• Increase in structural complexity of PUF is a stronger de-

termining factor than increase in challenge size, regarding

the modeling feasibility of the PUF variant.

• Deep learning modeling among notable machine learning

attack resilient PUFs consistently outperforms previously

proposed standalone (those which do not use any auxil-

iary information) machine learning based modeling tech-

niques such as Logistic Regression in modeling PUFs,

often achieving comparable modeling accuracy in much

lesser computation time, although it also requires more

training data in general.

• The input network of a LSPUF seems to make machine

learning based modeling attack for individual output bits

more difficult than XOR APUFs of the same complexity,

an observation also reported in [10].

• In contrast to the conclusions reached in [4], robustness

to modeling attacks of rMPUFs seems inferior to that of

XOR APUFs.

• In contrast to the conclusions reached in [17], (3,3)-IPUF

and (4,4)-IPUF can be modeled by deep learning.

• The deep learning based modeling technique demon-

strates comparable robustness to error-inflicted training

data as previously used machine learning techniques such

as Logistic Regression.

Table XI presents the summary of the main results for

the proposed attack technique on the different PUF variants

considered, where we have included only the results which

supersede other previously proposed (mainly [10]) standalone

modeling attacks in effectiveness. We foresee that through

the application of more powerful computational infrastruc-

ture and more data resources (e.g. more CRPs), it would

be feasible using deep learning, in near future to model

PUFs using which evaded modeling in this work.

We were unable to replicate the experiments described in

the ANN based modeling attack technique on XOR APUFs

reported in [25] for x ≥ 6. The results presented in [25]

are surprising because very large datasets have been operated

upon, with relatively low-end computational resource, even

inferior to the one used by us. For example, to model 128-bit

7-XOR APUF, they used a training dataset of chunk-size 14

GB on a laptop computer with 16 GB of main memory, and

the training time was only 1.5 hours! The authors of [25] were

contacted but did not respond to our requests for clarification

at the time of submitting this manuscript.

V. CONCLUSIONS

We have launched successful deep learning based modeling

attack on APUF and its several compositions. The attack is

computationally feasible for most practical PUF designs, and

reasonably robust to input dataset noise. Our future works

would be directed towards theoretical justification of the

modeling accuracy trends we have observed, and applying the

proposed technique to model other common PUF types such

as the Ring Oscillator PUF [3] and its variants, and other

novel APUF compositions, possibly combining APUF with

other PUFs [41] or non-linear chaotic circuits [42].
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[11] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, and W. P. Burleson, “Efficient Power and Timing Side Channels
for Physical Unclonable Functions,” in Proceeding of Workshop on

Cryptographic Hardware and Embedded Systems, ser. CHES’14, 2014,
pp. 476–492.

[12] F. Ganji, S. Tajik, and J.-P. Seifert, “Let Me Prove It to You: RO PUFs
Are Provably Learnable,” in Proceeding of International Conference

on Information Security and Cryptology, ser. ICISC’15, S. Kwon and
A. Yun, Eds. Springer International Publishing, 2015, pp. 345–358.
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APPENDIX

DEEP NEURAL NETWORK ARCHITECTURES

We present below the minimum number of hidden layers

and the average number of nodes per layer required for suc-

cessful modeling of the PUF variants, the accuracy results for

which were presented in Section IV. Note that these network

architectures are not unique, and it is quite possible that

other alternative deep neural network architectures can be

derived which are equally or more effective in modeling

the same PUF variants.

TABLE XII
DEEP NEURAL NETWORK ARCHITECTURE FOR APUF

Challenge No. of No. of
Size (bits) Hidden Layers Nodes per Layer

64 1 2

128 1 3
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TABLE XIII
DEEP NEURAL NETWORK ARCHITECTURE FOR XOR APUF

Challenge No. of No. of Av. No. of
Size (bits) XORs Hidden Layers Nodes per Hidden Layer

2 2 6
3 2 6

64 4 2 15
5 2 29
6 5 230

2 2 5
3 2 10

128 4 3 53
5 4 100

TABLE XIV
DEEP NEURAL NETWORK ARCHITECTURE FOR LSPUF (k = 5,m = x)

Challenge No. of No. of Av. No. of

Size (bits) XORs Hidden Layers Nodes per Hidden Layer

3 4 20
64 4 4 30

5 4 100
6 5 400

3 3 20
128 4 4 30

5 4 400

TABLE XV
DEEP NEURAL NETWORK ARCHITECTURE FOR MPUF AND VARIANTS

(k = 3)

PUF Challenge No. of Av. No. of

Type Size (bits) Hidden Layers Nodes per Hidden Layer

64 2 30
MPUF 128 4 27

64 4 27
cMPUF 128 4 27

64 3 30
rMPUF 128 4 30

TABLE XVI
DEEP NEURAL NETWORK ARCHITECTURE FOR MPUF AND VARIANTS

(k = 4)

PUF Challenge No. of Av. No. of

Type Size (bits) Hidden Layers Nodes per Hidden Layer

64 3 50
MPUF 128 3 50

64 4 27
cMPUF 128 4 40

64 3 50
rMPUF 128 4 50

TABLE XVII
DEEP NEURAL NETWORK ARCHITECTURE FOR MPUF AND VARIANTS

(k = 5)

PUF Challenge No. of Av. No. of

Type Size (bits) Hidden Layers Nodes per Hidden Layer

64 3 55
MPUF 128 4 65

64 4 31
cMPUF 128 3 60

64 3 70
rMPUF 128 4 65

TABLE XVIII
DEEP NEURAL NETWORK ARCHITECTURE FOR IPUF

Challenge IPUF Type No. of Av. No. of
Size (bits) (x,y) Hidden Layers Nodes per Hidden Layer

(3, 3) 3 50
64 (4, 4) 3 60

(3, 3) 3 50
128 (4, 4) 3 60


