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Abstract

Identifying robust survival subgroups of hepatocellular car-

cinoma (HCC) will significantly improve patient care. Current-

ly, endeavor of integrating multi-omics data to explicitly predict

HCC survival from multiple patient cohorts is lacking. To fill

this gap, we present a deep learning (DL)–based model on HCC

that robustly differentiates survival subpopulations of patients

in six cohorts. We built the DL-based, survival-sensitive model

on 360 HCC patients' data using RNA sequencing (RNA-Seq),

miRNA sequencing (miRNA-Seq), and methylation data from

The Cancer Genome Atlas (TCGA), which predicts prognosis

as good as an alternative model where genomics and clinical

data are both considered. This DL-based model provides two

optimal subgroups of patients with significant survival differ-

ences (P ¼ 7.13e�6) and good model fitness [concordance

index (C-index) ¼ 0.68]. More aggressive subtype is associated

with frequent TP53 inactivation mutations, higher expression

of stemness markers (KRT19 and EPCAM) and tumor marker

BIRC5, and activated Wnt and Akt signaling pathways. We

validated this multi-omics model on five external datasets of

various omics types: LIRI-JP cohort (n ¼ 230, C-index ¼ 0.75),

NCI cohort (n ¼ 221, C-index ¼ 0.67), Chinese cohort (n ¼
166, C-index ¼ 0.69), E-TABM-36 cohort (n ¼ 40, C-index ¼
0.77), and Hawaiian cohort (n ¼ 27, C-index ¼ 0.82). This

is the first study to employ DL to identify multi-omics features

linked to the differential survival of patients with HCC. Given

its robustness over multiple cohorts, we expect this workflow to

be useful at predicting HCC prognosis prediction. Clin Cancer

Res; 24(6); 1248–59. �2017 AACR.

Introduction

Liver cancer is the second leading cancer responsible for the

mortality in men worldwide (1). In the United States, more than

40,000 people are estimated to be diagnosed with liver cancer in

2017, according to the American Cancer Society (2). It is one of the

few cancer typeswith increase inboth incidence andmortality rates,

by approximately 3% per year in the United States (3). Hepato-

cellular carcinoma (HCC) is the most prevalent type (70%–90%)

of liver cancer. It is aggravated by various risk factors, including

hepatitis B virus/hepatitis C virus (HBV/HCV) infection, nonalco-

holic steatohepatitis (NASH), alcoholism, and smoking. The 5-year

survival rateofHCCvaries greatly acrossdifferentpopulations,with

an average rate of less than 32% (4–9). The high level of hetero-

geneity inHCC, alongwith the complex etiologic factors,makes the

prognosis prediction very challenging (10, 11). Moreover, treat-

ment strategies in HCC are very limited, imposing an additional

urgent need for developing tools to predict patient survival (12).

To understand the HCC heterogeneity among patients, a con-

siderable amount of work has been done to identify the HCC

molecular subtypes (13–19). A variety of numbers of subtypes

were identified, ranging from two to six, based on various omics

data types, driving hypotheses and computational methods.

Besides most commonly used mRNA gene expression data, a

recent study integrated copy number variation (CNV), DNA

methylation, mRNA, and miRNA expression to identify the five

HCC molecular subtypes from 256 samples from The Cancer

Genome Atlas (TCGA; ref. 20). However, most of the studies

explored the molecular subtypes without relying on survival

during the process of defining subtypes (21). Rather, survival

information was used post hoc to evaluate the clinical significance

of these subtypes (20). As a result, some molecular subtypes

showed converging and similar survival profiles, making them

redundant subtypes in terms of survival differences (16). New

approaches to discover survival-sensitive and multi-omics data-

based molecular subtypes are much needed in HCC research.

Toaddress these issues, for thefirst time,weutilizeddeep learning

(DL) computational framework on multi-omics HCC datasets. We

chose the autoencoder framework as the implementation of DL for

multi-omics integration. Autoencoders aim to reconstruct the orig-

inal input using combinations of nonlinear functions that can then

be used as new features to represent the dataset. These algorithms

have already been proven to be efficient approaches to produce

features linked to clinical outcomes (22). Autoencoders were suc-

cessfully applied to analyze high-dimensional gene expression data

(23, 24) and to integrate heterogeneous data (25, 26). Notably,

autoencoder transformation tends to aggregate genes sharing sim-

ilar pathways (27), therefore making it appealing to interpret the

biological functions. The contributions of this study to the HCC

field is manifested not only in its thorough and integrative compu-

tational rigor but also in its unification of the discordant molecular

subtypes into robust subtypes that withstand the testing of various

cohorts, even when they are in different omics forms.
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We derived the model from 360 HCC samples in the TCGA

multi-omics cohort, which have mRNA expression, miRNA

expression, CpG methylation, and clinical information. We dis-

covered two subtypes with significant differences in survival.

These subtypes hold independent predictive values on patient

survival, apart from clinical characteristics. Most importantly, the

two subtypes obtained from our DL framework are successfully

validated in five independent cohorts, which have an miRNA or

mRNA or DNA methylation dataset. Functional analysis of these

two subtypes identified that gene expression signatures (KIRT19,

EPCAM, and BIRC5) and Wnt signaling pathways are highly

associated with poor survival. In summary, the survival-sensitive

subtype model reported here is significant for both HCC prog-

nosis prediction and therapeutic intervention.

Materials and Methods

Datasets and study design

In this study, we used a total of six cohorts, and the descriptions

of these are detailed below. We used the TCGA data in two steps:

The first step is to obtain the labels of survival-risk classes, using

the whole TCGA dataset; the second is to train a Support Vector

Machine (SVM) model by splitting the samples 60%/40% to

training and held-out testing data (detailed in "Data partitioning

and robustness assessment" subsection). We used five additional

confirmation datasets to evaluate the prediction accuracy of the

DL-based prognosis model.

TCGA set. We obtained multi-omics HCC data from the TCGA

portal (https://tcga-data.nci.nih.gov/tcga/). We used the R pack-

age TCGA-Assembler (v1.0.3; ref. 28) and obtained 360 samples

with RNA sequencing (RNA-Seq) data (UNC IlluminaHiSeq_

RNASeqV2; Level 3), miRNA sequencing (miRNA-Seq) data

(BCGSC IlluminaHiSeq_miRNASeq; Level 3), DNA methylation

data (JHU-USCHumanMethylation450; Level 3), and the clinical

information. For the DNA methylation, we mapped CpG islands

within 1,500 base pairs (bp) ahead of transcription start sites

(TSS) of genes and averaged their methylation values. In dealing

with the missing values (preprocessing of data), three steps

were performed as elsewhere (29). First, the biological features

(e.g., genes/miRNAs) were removed if having zero value in

more than 20% of patients. The samples were removed if missing

across more than 20% features. Second, we used the impute

function from the R impute package (30) to fill out the missing

values. Third, we removed input features with zero values across

all samples.

Confirmation cohort 1 (LIRI-JP cohort, RNA-Seq). A total of 230

samples with RNA-Seq data were obtained from the ICGC portal

(https://dcc.icgc.org/projects/LIRI-JP). These samples belong to a

Japanese population primarily infected with HBV/HCV (31). We

used the normalized read count values given in the gene expres-

sion file.

Confirmation cohort 2 (NCI cohort, microarray gene expression). A

total of 221 samples with survival information were chosen from

GSE14520 Affymetrix high-throughput GeneChip HG-U133A

microarray dataset from an earlier study of patients with HCC

(32). This is a Chinese population primarily associated with HBV

infection. Log2 Robust Multi-array Average (RMA)–calculated

signal intensity values provided by the authors were used for

analysis.

Confirmation cohort 3 (Chinese cohort, miRNA expression array). A

total of 166 pairs of HCC/matched noncancerous normal tissue

samples were downloaded, with CapitalBio custom Human

miRNA array data (GSE31384; ref. 33). As the data were already

log2 transformed, we used unit-scale normalization.

Confirmation cohort 4 (E-TABM-36, gene expression microarray)

Forty HCC samples were used, with survival information and

transcriptional profiling from Affymetrix HG-U133A GeneChip

arrays platform(16).Weused theCHPSignal values for the further

processing as a measure of gene expression.

Confirmation cohort 5 (Hawaiian cohort, DNAmethylation array).

Twenty-seven samples were used, with genome-widemethylation

profiling from Illumina HumanMethylation450 BeadChip plat-

form (34). Probe-to-gene conversion was done the same way as

for the TCGA HCC methylation data.

All the available clinical information for the confirmation

cohorts is listed in Supplementary Table S1. These cohorts were

used to test the SVM-based machine-learning models.

Transformed features using a DL framework

We used the three preprocessed TCGA HCC omics datasets of

360 samples as the input for the autoencoders framework. We

stacked the three matrices that are unit-norm scaled by sample to

form a unique matrix as reported before (35). An autoencoder is

an unsupervised feed-forward, nonrecurrent neural network (36).

Given an input layer taking the input x ¼ ðx1; . . . ; xnÞ of dimen-

sion n, the objective of an autoencoder is to reconstruct x by

the output x' (x and x' have the same dimension) via transforming

x through successive hidden layers. For a given layer i, we used tanh

as activation function between input layer x and output layer y.

That is:

y ¼ fi xð Þ ¼ tanh Wi:xþ bið Þ

Where x and y are two vectors of size d and p, respectively, andWi is

the weight matrix of size p � d, bi an intercept vector of size

p and Wi.x gives a vector of size p. For an autoencoder with k

layers, x' is then given by:

x' ¼ F1!kðxÞ ¼ f1
�
. . .

� fk�1
�fkðxÞ

Where fk�1
�fkðxÞ ¼ fk�1ðfkðxÞÞ is the composed function of

fk�1 with fk. To train an autoencoder, the objective is to find the

different weight vectors Wi minimizing a specific objective func-

tion. We chose logloss as the objective function, which measures

the error between the input x and the output x':

loglossðx; x'Þ ¼
P

d

k¼1

ðxk logðx'kÞ þ ð1� xkÞ logð1� x'kÞÞ

To control overfitting,we added an L1 regularization penaltyaw
on theweight vectorWi, and anL2 regularizationpenaltyaa on the

nodes activities: F1!kðxÞ. Thus, the objective function above

becomes:

L x; x'ð Þ ¼ logloss x; x'ð Þ þ
X

k

i¼1

awjjWijj1 þ aajjF1!i xð Þjj22
� �

We implemented an autoencoder with three hidden layers

(500, 100, and 500 nodes, respectively) using the Python Keras

library (https://github.com/fchollet/keras). We used the bot-

tleneck layer of the autoencoder to produce new features from
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the omics data. The values aa and aw were set to 0.0001 and

0.001. Finally, to train the autoencoder, we used the gradient

descent algorithm with 10 epochs and 50% dropout. Here,

epoch means the iteration of the learning algorithm (stochastic

gradient descent) through the entire training dataset. During

one epoch, the learning algorithm processes each instance of

training data once.

Transformed feature selection and K-means clustering

The autoencoder reduced the initial number of features to 100

new features obtained from the bottleneck layer. Next, for each of

these transformed features produced by the autoencoder,we built a

univariate Cox proportional hazards (Cox-PH)model and selected

features from which a significant Cox-PH model is obtained (log-

rank P < 0.05). We then used these reduced new features to cluster

the samples using the K-means clustering algorithm. We deter-

mined the optimal number of clusters with twometrics: Silhouette

index (37) andCalinski–Harabasz criterion (38).Weused the scikit-

learn package for K-means implementation (39).

Data partitioning and robustness assessment

Weused a cross-validation (CV)–like procedure to partition the

TCGA dataset as follows: We used a 60%/40% split (training/test

sets) of the TCGA data to have sufficient number of test samples

that generate evaluation metrics. We first randomly split the 360

samples from TCGA into 5 folds. We then used 2 of the 5 folds as

the test set, and the remaining 3 folds as the training set. With this

approach, we obtained 10 new combinations (folds). For each of

these 10 new folds, we constructed a model using the 60%

samples (training set) and predicted the labels in test set (held-

out). This data partitioning was only used to assess the robustness

of the model. For each training fold, a distinct autoencoder and a

classifier (see below) were built to predict the labels of the test

fold. The labels of the TCGA samples are finally inferred using an

autoencoder built with all the samples, and these labels were used

for the prediction of the confirmation datasets.

Supervised classification

After obtaining the labels from K-means clustering, we built a

supervised classification model(s) using the SVM algorithm. We

normalized each omics layer in the training set and then selected

the top N features that are most correlated with the cluster labels

(obtained from K-means) based on ANOVA F values. We set

defaultN values as 100 formRNAs, 50 formethylation, and 50 for

miRNAs.

Topredict onTCGA3-omics held-out test data,webuilt an SVM

classifier from a combination of the top 100 mRNAs, 50 meth-

ylation, and 50 miRNA features selected by ANOVA. To predict

each of the other five confirmation cohorts used in this study, we

built an SVM classifier on each omics type, using the correspond-

ing top 100 mRNAs, 50 methylation, or 50 miRNA features

selected by ANOVA, respectively. For a confirmation cohort from

a specific omic layer, we first selected common features (mRNAs,

genes with CpG sites, or miRNAs) between this cohort and the

corresponding omic layer in the TCGA training set. Specifically,

the common features between the five cohorts and the TCGA

training dataset are 14,634 for the LIRI-JP cohort; 9,311 for the

NCI cohort; 174 for the Chinese cohort; 10,550 for the E-TABM-

36 cohort; and 19,883 for the Hawaiian cohort.

We then applied two scaling steps on both the training set and

confirmation cohort samples. We first used a median scaling on

both the training set and the new test samples, where each feature

is rescaled according to its median and absolute median devia-

tion. This approachwas used tonormalize samples fromRNA-Seq

data previously (40). For mRNA and DNA methylation data,

we then applied a robust scaling on the training set and confir-

mation samples using the means and the standard deviations of

the training set (41). For miRNA confirmation data, we applied

the unit-scale normalization for both themiRNA training and the

confirmation cohort. When predicting a single sample, an alter-

native rank normalization (rather than robust or unit-scale nor-

malization) can be applied to both the new sample and samples

from the training sets (seemore details in Supplementary File S1).

We used the scikit-learn package to perform grid search to find

the best hyperparameters of the SVM model(s) using 5-fold CV

and built SVM models.

Evaluation metrics for models

The metrics used closely reflect the accuracy of survival predic-

tion in the subgroups identified. Three sets of evaluation metrics

were used.

Concordance index. The concordance index (C-index) can be seen

as the fraction of all pairs of individuals whose predicted survival

times are correctly ordered (42) and is based onHarrell C statistics

(43). A C-index score around 0.70 indicates a good model,

whereas a score around 0.50 means random background. To

compute the C-index, we first built a Cox-PH model using the

training set (cluster labels and survival data) and then predicted

survival using the labels of the test/confirmation set. We then

calculated the C-index using function concordance.index in the R

survcomppackage (44). To compute theC-indexusing themultiple

clinical features, we built a Cox-PH using the glmnet package

instead (45). We opted to perform penalization through ridge

regression rather than the default Lasso penalization. Before

building the Cox-PH model, we performed a 10-fold CV to find

the best lambda.

Log-rank P value of Cox-PH regression. We plotted the Kaplan–

Meier survival curves of the two risk groups and calculated the

log-rank P value of the survival difference between them.We used

the Cox-PHmodel for survival analysis (46), similar to described

before (47, 48), using the R survival package (49).

Brier score. It is another score function that measures the accuracy

of probabilistic prediction (50). In survival analysis, the Brier

score measures the mean of the difference between the observed

and the estimated survival beyond a certain time (51). The score

ranges between 0 and 1, and a larger score indicates higher

inaccuracy. We used the implementation of the Brier score from

the R survcomp package.

Alternative approaches to the DL framework

We compared the performances of the DL framework with

two alternative approaches. In the first approach, we performed

principal component analysis (PCA) and used the same number

(100) of principal components as those features in the bottleneck

layer of Fig. 1. We then identified the subset (13) of PCA features

significantly associated with survival using univariate Cox-PH

models, using the same procedure as the Cox-PH step in Fig. 1.

In the second approach, we selected the top 37 features among

Chaudhary et al.
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all 3 omics features using single-variant Cox-PH models based

on the C-index scores. We clustered the samples using the same

K-means procedure as in Fig. 1.

Functional analysis

Anumber of functional analyseswere performed tounderstand

the characteristics of two survival-risk subtypes of TCGA HCC

samples.

TP53 mutation analysis. We analyzed the somatic mutation

frequency distributions in the survival subtypes for the TP53

gene among the TCGA and LIRI-JP cohorts. The TCGA and LIRI-

JP cohorts have exome sequencing and whole genome sequenc-

ing data for 186 and 230 samples with survival data, respec-

tively. We performed Fisher test on TP53mutation between two

survival-risk groups.

Clinical covariate analysis. We tested the associations of our

identified subtypes with other clinical factors, including gender,

race, grade, stage, and risk factors, using Fisher exact tests. To test

whether the two survival-risk subtypes have prognostic values in

addition to clinical characteristics, we built a combined Cox-PH

model with survival-risk classification and clinical data, and

compared it to the one with only clinical data (stage, grade, race,

gender, age, and risk factor).

Differential expression. To identify the differentially expressed

genes between the two survival-risk subtypes, we performed the

differential expression analysis for the mRNA, miRNA expression,

and methylation genes. We used the DESeq2 package (52) to

identify the differential gene and miRNA expression between the

two subtypes (false discovery rate, or FDR, < 0.05). In addition, we

used log2 fold change greater than 1 as filtering formRNA/miRNA.

Formethylationdata,we transformed thebeta values intoM values

as elsewhere (53, 54) using the lumi package in R (55). We fit the

linearmodel for each gene using the lmFit function followedby the

empirical Bayesmethod, using the limma package in R (56). It uses

moderate t tests to determine significant difference in methylation

for each gene between S1 and S2 subtypes (Benjamini–Hochberg

corrected P < 0.05). In addition, we used averaged M value

differences greater than 1 as filtering. We used volcano plot to

show the differentially methylated genes in two subtypes.
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Figure 1.

Overall workflow. A, Autoencoder architecture used to integrate 3 omics of HCC data. B, Workflow combining DL and machine learning techniques to

predict HCC survival subgroups. The workflow includes two steps: step 1, inferring survival subgroups; step 2, predicting risk labels for new samples. In step 1,

mRNA, DNAmethylation, and miRNA features from the TCGA HCC cohort are stacked up as input features for the autoencoder, a DL method; then each of the new,

transformed features in the bottleneck layer of the autoencoder is then subjected to single variate Cox-PH models to select the features associated with survival;

then K-mean clustering is applied to samples represented by these features to identify survival-risk groups. In step 2, mRNA, methylation, and miRNA input

features are ranked by ANOVA test F values, those features that are in common with the predicting dataset are selected, then the top features are used to build an

SVM model(s) to predict the survival-risk labels of new datasets.
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Enriched pathway analysis. We used upregulated and down-

regulated genes for the KEGG pathway analysis, using the

functional annotation tool from the online DAVID interface

(57, 58). We used the modified Fisher exact test P value (EASE

score provided by DAVID) threshold of 0.10 to consider a

pathway significant. We plotted the gene pathway network

using Gephi (59).

Results

Two differential survival subtypes are identified in TCGA

multi-omics HCC data

From the TCGA HCC project, we obtained 360 tumor samples

that had coupled RNA-Seq, miRNA-Seq, and DNA methylation

data. For these 360 samples, we preprocessed the data as described

in the "Materials and Methods" section and obtained 15,629

genes from RNA-Seq, 365miRNAs frommiRNA-Seq, and 19,883

genes from DNA methylation data as input features. These three

types of omics featureswere stacked together using an autoencoder,

a DL framework (36). The architecture of the autoencoder is shown

inFig. 1A.Weused the activityof the100nodes fromthebottleneck

hidden layerasnewfeatures.Wethen conductedunivariateCox-PH

regression on each of the 100 features and identified 37 features

significantly (log-rank P < 0.05) associated with survival. These 37

features were subjective to K-means clustering, with cluster number

K ranging from 2 to 6. Using silhouette index and the Calinski–

Harabasz criterion, we found that K¼ 2was the optimumwith the

best scores for both metrics (Supplementary Fig. S1A). Further-

more, the survival analysis on the full TCGA HCC data shows that

the survivals in the two subclusters aredrasticallydifferent (log-rank

P¼7.13e�6; Fig. 2A). Moreover, K¼ 2 to 6 yielded Kaplan–Meier

survival curves that essentially represent two significantly different

survival groups (Supplementary Fig. S1B). Thus, we determined

that K ¼ 2 was the optimal number of classes for the subsequent

supervised machine learning processes.

We next used the two classes determined above as the labels to

build a classification model using the SVM algorithm with CV

(Fig. 1B).We split the 360 TCGA samples into 10 folds using a 60/

40 ratio for training and test data. We chose a 60/40 split rather
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Figure 2.

Significant survival differences for the TCGA and external confirmation cohorts: TCGA cohort (A), LIRI-JP cohort (B), NCI cohort (C), Chinese cohort (D), E-TABM-36

cohort (E), and Hawaiian cohort (F).
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than a conventional 90/10 split to have sufficient test samples for

sensible log-rank P values in the survival analysis (see Materials

and Methods). In addition, we assessed the accuracy of the

survival subtype predictions using C-index, which measures the

fraction of all pairs of individuals whose predicted survival times

are ordered correctly (42). We also calculated the error of the

model fitting on survival data using Brier score (50). On average,

the training data generated high C-index (0.70� 0.04), low Brier

score (0.19 � 0.01), and significant average log-rank P value

(0.001) on survival difference (Table 1). A similar trend was

observed for the 3-omics held-out test data, with C-index ¼
0.69 � 0.08, Brier score ¼ 0.20 � 0.02, and average survival P

¼ 0.005 (Table 1). When tested on each single omic layer of data,

this multi-omics model also has decent performances in terms of

C-index, low Brier scores, and log-rank P (Table 1). These results

demonstrate that the classification model using cluster labels is

robust to predict survival-specific clusters. Supplementary Table

S2 enlists the topK features for 3-omics selected byANOVA for the

SVM-based classification in the full TCGA cohort.

The survival subtypes are robustly validated infive independent

cohorts

To demonstrate the robustness of the classification model at

predicting survival outcomes, we validated themodel on a variety

of five independent cohorts, each of which had only mRNA, or

miRNA or methylation omics data (Table 2; Figs. 2B–F). The

common top features selected by ANOVA prior to SVM classifi-

cation (between TCGA and five cohorts) are as follows: LIRI-JP

(94%), NCI (74%), Chinese-GSE31384 (58%), E-TABM-36

(82%), and Hawaiian (100%). The LIRI-JP dataset is the RNA-

Seq dataset with the most patients (n¼ 230); we achieved a good

C-index of 0.75, a low Brier error rate of 0.16, and a log-rank P

value of 4.4e�4 between the two subtypes. For the second largest

(n ¼ 221) cohort (NCI GSE14520), the two subgroups have a

decent C-index of 0.67 and low Brier error rate of 0.18, with a log-

rank P value of 1.05e�3 (Table 2). For the Chinese cohort

(GSE31384), the miRNA array data with 166 samples, the two

subgroups have a C-index of 0.69, a low Brier error rate of 0.21,

and a log-rank P value of 8.49e�4 (Table 2). Impressively, the C-

indices for the two smallest cohorts, E-TABM-36 (40 samples) and

Hawaiian (27 samples), are very good, with values of 0.77 and

0.82, respectively. The P values obtained for the small cohorts are

not significant due to small sample size, with values of 0.103 and

0.0535, respectively (Fig. 2E and F).

The DL-based methodology outperforms alternative

approaches

We compared the performance of themodel described in Fig. 1B

to two alternative approaches (Supplementary Fig. S2). In the first

approach, we replaced the autoencoder with the conventional

dimension reduction method principal component analysis

(PCA). Similar to the 100 features from hidden nodes in the

autoencoder, we obtained the top 100 principal components,

which were then subjective to univariate Cox-PH. As a result, 13

principal component features remained. However, this approach

failed to give significant log-rank P value (P ¼ 0.14) in detecting

survival subgroups (Supplementary Fig. S2A). It also yielded sig-

nificantly lower C-index for test data (0.62; Supplementary Table

S3) as compared with the model using the autoencoder. In the

second approach, we bypassed the autoencoder step, performed

univariate Cox-PH analysis on each input feature in the 3 omics

data types, and kept the top 37 features based on theC-index scores

(Supplementary Fig. S2B). Thismodel gaveaP valueof3.0e�8, still

much less significant than theDLmethod (6.0e�9; Supplementary

Fig. S2C). More importantly, these alternative approaches failed

overall to find significant subgroups in the majority of the confir-

mation sets. The only significance is in the LIRI-JP dataset using the

Cox-PH approach (Supplementary Table S3).

Worth noticing, the 3-omics–based DL model gives better

prediction metrics in CV when compared with single-omics–

based DL models (Supplementary Table S4), suggesting that

multi-omics data are, indeed, better than single-omics data for

model building. Finally, autoencoders fitted with a high number

of epochs, with more than three hidden layers, or with a high

number of hidden nodes presented significant decreases of the

performances. However, only one hidden layer or too few hidden

nodes appeared less efficient (Supplementary Table S3).

Adding clinical information does not improve DL-based

multi-omics model

It remains to be seen whether the DL-basedmulti-omics model

will improve the predictability by adding clinical information.

Therefore, we assessed the performance of alternativemodelswith

clinical variables as the features, either alone or in combination

with previous DL-based multi-omics model (Table 3). When

Table 1. CV-based performance robustness of the SVM classifier on training and test set in TCGA cohort

Dataset 10-fold CV C-index Brier score Log-rank P (geo. mean)

Training 3-omics training (60%) 0.70 (�0.04) 0.19 (�0.01) 0.001

Test 3-omics test (40%) 0.69 (�0.08) 0.20 (�0.02) 0.005

RNA only 0.68 (�0.07) 0.20 (�0.02) 0.01

miRNA only 0.69 (�0.07) 0.20 (�0.02) 0.003

Methylation only 0.66 (�0.07) 0.20 (�0.02) 0.031

Abbreviation: geo., geometric.

Table 2. Performance of classifier for the five external confirmation cohorts

Confirmation cohort Omics data type Reference Samples (N) C-index Brier score Log-rank P

LIRI-JP RNA-Seq (31) 230 0.75 0.16 4.4e�4

NCI mRNA microarray (32) 221 0.67 0.18 1.05e�3

Chinese miRNA array (33) 166 0.69 0.21 8.49e�4

E-TABM-36 mRNA microarray (16) 40 0.77 0.19 0.103

Hawaiian DNA methylation (34) 27 0.82 0.19 5.35e�2

Using Deep Learning to Predict Liver Cancer Prognosis
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clinical features were used as the sole feature set for survival

prediction, the models' performances were much poorer (Table

3) when compared with the DL-based genomic model (Table 2).

Then we combined the clinical features with the 3 omics layers

before the K-means clustering step in Fig. 1B. Surprisingly, the

C-indices of the combined model were not better on the confir-

mation cohorts with larger sample sizes (LIRI-JP andNCI cohorts)

compared with those of the DL-based multi-omics model. C-

index and P value were only slightly but not statistically signif-

icantly better for theHawaiian cohort, which has only 27 samples.

We thus conclude that theDL-basedmulti-omicsmodel performs

sufficiently well, even without clinical features. We speculate that

the reason is due to the unique advantage of the DL neural

network, which can capture the redundant contributions of

clinical features through their correlated genomic features.

Associations of survival subgroups with clinical covariates

We performed the Fisher exact test between the two survival

subgroups and the clinical variables from the TCGA cohort, and

found that only grade (P ¼ 0.0004) and stage (P ¼ 0.002) were

significantly associated with survival, as expected. As HCC is

aggravated by multiple risk factors, including HBV, HCV, and

alcohol, we also tested our model within subpopulations strat-

ified by individual risk factors (Table 4). Impressively, our model

performed verywell on all the risk factor categories, withC-indices

ranging from0.69 to 0.79 and Brier scores between 0.19 and 0.20.

Log-rank P values were significant in HBV-infected patients (P ¼
0.04), alcohol consumers (P ¼ 0.005), and others category (P ¼
0.0035). The only nonsignificant P value (P¼ 0.20) was obtained

from the HCV-infected patients, probably attributed to the small

group size (n ¼ 31).

TP53 is one of the most frequently mutated genes in HCC, and

its inactivation mutations have been reported to be associated

with poor survival in HCC (60). Between the two survival sub-

groups S1 and S2 in the TCGA samples, TP53 is more frequently

mutated in the aggressive subtype S1 (Fisher test P ¼ 0.042).

Furthermore, TP53 inactivationmutations are associated with the

aggressive subtype S1 in the LIRI-JP cohort, where whole genome

sequencing data are available (P ¼ 0.024).

Functional analysis of the survival subgroups in TCGA HCC

samples

We used the DESeq2 package (52) for differential gene expres-

sion between the two identified subtypes. After applying the filter

of log2 fold change >1 and FDR <0.05, we obtained 820 upre-

gulated and 530 downregulated genes in the aggressive subcluster

S1. Figure 3 shows the comparative expression profile of these

1,350 genes after normalization. The upregulated genes in the S1

cluster include the stemness marker genes EPCAM (P ¼ 5.7e�6)

and KRT19 (P ¼ 6.7e�15) and tumor marker gene BIRC5 (P ¼
1.2e�13), which were also reported earlier to be associated with

aggressive HCC subtype (61–63). In addition, 18 genes (ADH1B,

ALDOA, APOC3, CYP4F12, EPHX2, KHK, PFKFB3, PKLR, PLG,

RGN, RGS2, RNASE4, SERPINC1, SLC22A7, SLC2A2, SPHK1,

SULT2A1, and TM4SF1) differentially expressed in the two sub-

types have similar trends of expression as in the previous study,

where a panel of 65-gene signature was reported to be associated

with HCC survival (64).

Using the differentially expressed genes above, we conducted

KEGG pathway analysis to pinpoint the pathways enriched in the

two subtypes. As we have used EASE score in DAVID as the

enrichment method, these results should be interpretive only

(65). These subtypes have different and (almost) disjoint active

pathways, confirming that they are distinct subgroups at the

pathway level (Fig. 4). Aggressive subtype S1 is enriched with

cancer related pathways, Wnt signaling pathway, PI3K–Akt signal-

ing pathway, and so on (Fig. 4A). The Wnt signaling pathway was

reported to be associated with aggressive HCC previously (66). In

contrast, the moderate subtype S2 has activated metabolism-

related pathways including drugmetabolism, amino acid and fatty

acidmetabolism, and soon (Fig. 4B). Further biological functional

studies are needed to confirm the signaling pathway (for S1) versus

metabolic pathway (for S2) preferences between the two survival

groups. We performed similar differential analysis for miRNA

expression and methylation data, and detected 23 miRNAs and

55 genes' methylation statistically different between the two sub-

groups (Supplementary Fig. S3; Supplementary File S2).

Discussion

Heterogeneity is one of the bottlenecks for understandingHCC

etiology. Although there are many studies for subtype identifica-

tion ofHCCpatients, embedding survival outcomeof the patients

as part of the procedure of identified subtypes has not been

reported before. Moreover, most reported HCC subtype models

have either no or very few external confirmation cohorts. This calls

for better strategies where the identified subtypes could reflect the

phenotypic outcome of the patients, that is, the survival directly.

Current work includes the integration of the multi-omics data

from the samepatients, giving an edge by exploiting the improved

signal-to-noise ratio. To our knowledge, we are the first to use

the DL framework to integrate multi-omics information in HCC.

It propels DL to develop a risk-stratification model, not only

for prognostication but also instrumental for improvising risk-

adapted therapy in HCC.

We have identified two subtypes from the molecular level.

This model is robust and perhaps more superior than other

Table 3. Performance of the model using clinical features on confirmation cohorts

Confirmation cohort C-index (clinic only) C-index (combined
a
) Brier score Log-rank P

LIRI-JP 0.55 0.74 0.16 0

NCI 0.45 0.65 0.19 0.007

E-TABM-36 0.50 0.75 0.19 0.056

Hawaiian 0.70 0.87 0.19 0.003
aCombined, clinical þ DL-based class labels.

Table 4. Full model performance within each subpopulation stratified by the

clinical confounders in the TCGA cohort

Confounder Samples (N) C-index Brier score Log-rank P

HBV 74 0.74 0.20 0.04

HCV 31 0.69 0.19 0.20

Alcohol 67 0.79 0.20 0.005

Others 59 0.77 0.19 0.0035

Chaudhary et al.
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Figure 3.

Differentially expressed genes and their enriched pathways in the two subtypes from the TCGA cohort. S1: aggressive (higher risk survival) subtype;

S2: moderate (lower risk survival) subtype.
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Figure 4.

Bipartite graph for significantly enriched KEGG pathways and upregulated genes in the two subtypes. Enriched pathway gene analysis for upregulated genes in

the S1 aggressive tumor subgroup (A) and less aggressive S2 subgroup (B).
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approaches, manifested in several levels. First, CV results gave the

consistent performance in TCGA HCC test samples, implying the

reliability and robustness of themodel. Second, the DL technique

used in the model has captured sufficient variations due to

potential clinical risk factors, such that it performs as accurately

or even better than, having additional clinical features in the

model. Third, the autoencoder framework shows much more

efficiency to identify features linked to survival compared with

PCA or individual Cox-PH–based models. Finally and most

importantly, this model is repetitively validated in five additional

cohorts, ranging fromRNA-Seq,mRNAmicroarray, miRNA array,

and DNA methylation platforms.

In association with clinical characteristics, the more aggressive

subtype (S1) has consistent trends of associationwith higherTP53

inactivation mutation frequencies in the TCGA and LIRI-JP

cohorts, which is in concordance with the previous study (60).

Association of stemnessmarkers (KRT19 and EPCAM) with the S1

subtype is also in congruence with the literature (61, 62). More-

over, the S1 subtype is enriched with activated Wnt signaling

pathway (66).Despite our effort, the one-to-one comparisonwith

previous studies is not feasible due to the absence of cluster label

information in original reports and lack of survival data in some

cases. Fortunately, we were able to identify five external confir-

mation cohorts encompassing different omic datasets and suc-

ceeded in validating the subtypes among them. These results gave

enough confidence that the two survival subtype–specific model

proposed in this report is of direct clinical importance andmay be

useful to improving the survival of patients with HCC.

Some caveats are worth discussion below. First, we used the

whole TCGAdataset in step 1 (Fig. 1B) to learn the class label of the

TCGA samples in an unsupervised way. Therefore, when we build

an SVM model using the TCGA training dataset and apply it on

TCGA testing data, the C-statistics may be inflated; however, when

we apply the SVM model to the other external datasets, these

datasets give more unbiased C-statistics, as they are not part of the

SVM model construction process. Also, our current model is

trained on the TCGA HCC data, and it has been reported earlier

that TCGA samples are impure (67). Liver tumor samples (LIHC)

was reported to have better than average purity among 21 tumor

types—higher than breast cancers in TCGA. Also, to obtain only

HCC samples, we have procured the data from the TCGA website

with their clinical annotation for liver hepatocellular carcinoma

under the LIHCflag. Thepurity issue, alongwith theheterogeneous

nature of HCC due to various risk factor, may explain why we do

not have a C-index better than 0.80 in the TCGA training data. To

further examine the effects of risk factors on the model, we built

submodels for samples with only HBV, HCV, and alcohol risk

factors. We obtained C-indices of 0.90, 0.92, and 0.83 on HBV,

HCV, and alcohol-affected TCGA subpopulations. Thus, the het-

erogeneity of the population does affect the model performance.

However, issues exist to test these models on external datasets, as

the submodels were built on small training data, thus they could

suffer fromover-fitting in confirmation cohorts.Moreover, sample

risk factors are not always known for public cohorts, restricting our

confirmation effort. Albeit these issues, the current TCGA-based

model has an average C-index of 0.74 on five external confirma-

tions, indicating that themodel is generally predictive. In addition,

we used log-rank P value and Brier score as other performance

metrics to assess our pipeline. In the future, we plan to collaborate

with clinicians to prospective cohorts and improve themodel over

time.
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