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Deep learning-based multi-spectral satellite image

segmentation for water body detection

Kunhao Yuan, Xu Zhuang, Gerald Schaefer, Jianxin Feng*, Lin Guan, Hui Fang

Abstract—Automated water body detection from satellite im-
agery is a fundamental stage for urban hydrological studies.
In recent years, various deep convolutional neural network
(DCNN)-based methods have been proposed to segment remote
sensing data collected by conventional RGB or multi-spectral
imagery for such studies. However, how to effectively explore
the wider spectrum bands of multi-spectral sensors to achieve
significantly better performance compared to the use of only RGB
bands has been left underexplored. In this paper, we propose a
novel deep convolutional neural network model – Multi-Channel
Water Body Detection Network (MC-WBDN) – that incorporates
three innovative components, a multi-channel fusion module,
an Enhanced Atrous Spatial Pyramid Pooling (EASPP) module,
and Space-to-Depth (S2D)/Depth-to-Space (D2S) operations, to
outperform state-of-the-art DCNN-based water body detection
methods. Experimental results convincingly show that our MC-
WBDN model achieves remarkable water body detection perfor-
mance, is more robust to light and weather variations and can
better distinguish tiny water bodies compared to other DCNN
models.

Index Terms—Multi-spectral remote sensing, water body detec-
tion, deep convolutional neural networks, semantic segmentation,
feature fusion

I. INTRODUCTION

WATER body detection from remote sensing imagery is

of great importance for urban hydrological studies [1].

Urban hydrology has become an emerging research area

that allows to improve and manage urban water systems for

solving environmental issues caused by rapid urbanisation.

It also facilitates timely flood protection planning and water

quality control for public safety and health [2]. To achieve

an insightful analysis of water systems in cities, automated

accurate water body detection is the first and fundamental

stage to provide pixel-level identification of water regions [3],

[4].

Since its launch in 2015, the Sentinel-2 satellite has pro-

vided publicly available multi-spectral imagery that has been

widely employed in land-cover applications [5], [6], [7].

It offers one of the most suitable data sources for timely

urban hydrological monitoring and analysis due to its near-

daily update frequency compared to higher-resolution remote

sensing data such as Very High Spatial Resolution (VHR) [8]

and Synthetic Aperture Radar (SAR) [4]. Thus, in this paper,
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we investigate the use of 10 meter resolution multi-spectral

data from Sentinel-2 due to its potential for urban hydrolog-

ical applications that require frequently updated data in their

analysis process.

Traditional water body detection methods design hand-

crafted statistical features extracted from multi-spectral im-

agery including near infrared (NIR) and short-wave infrared

(SWIR). Well-known features include the Normalized Differ-

ence Water Index (NDWI) [9], Normalized Difference Mois-

ture Index (NDMI) [10], Modified Normalized Difference Wa-

ter Index (MNDWI) [11], Automated Water Extraction Index

(AWEI) [12], and Pixel Region Index (PRI) [13]. Despite

their relatively good performance on well-controlled datasets,

they are less useful for water body detection in real-world

conditions.

Deep convolutional neural network (DCNN) models have

become popular for water body detection in recent years [14],

[15], [4], [3], [16]. DCNN-based semantic segmentation net-

works employed for remote-sensed water detection in urban

hydrological applications include fully convolutional networks

(FCNs) [17], upsampling pyramid networks (UPNs) [4] and

DenseNet [18]. The advantage of these models is that they

are able to extract more distinctive feature representations

compared to traditional water index features, thus enabling

improved water body detection.

Multi-spectral imagery should support further improved wa-

ter body segmentation compared to using only RGB channels

due to the additional information contained in the extra bands

that cover a wider part of the electromagnetic spectrum, while

the resulting higher-dimensional data can be reduced through

appropriate methods [19]. However, in recent work [4], [20]

the use of multiple bands did not prove to be very ef-

fective. In the Kaggle Satellite Imagery Feature Detection

challenge [20], methods using all of the available 20 channels

(1 panchromatic channel with pixel resolution of 0.31m,

RGB channels (0.31m), 8 multi-spectral bands (1.24m) and 8

short-wave infrared bands (7.5m)) achieved only insignificant

improvements compared to those employing RGB bands only.

Since the different bands are of different resolutions, NIR and

SWIR bands need to be upsampled to the same resolution as

the panchromatic/RGB bands, while this interpolation process

might compromise the information of the original features.

In this paper, we propose a novel Multi-Channel Water Body

Detection Network (MC-WBDN) that exploits the potential of

multi-spectral imagery to improve the performance of state-

of-the-art DCNN models for water body segmentation. In

our model, we use Sentinel-2 RGB, NIR and SWIR bands

and design a multi-channel fusion module to deal with the
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different image resolutions in order to eliminate the above-

mentioned upsampling issue. In addition, we introduce a novel

Enhanced Atrous Spatial Pyramid Pooling (EASPP) module

to extract multi-receptive feature representations and Space-

to-Depth (S2D)/Depth-to-Space (D2S) operations to replace

the max pooling operation and upsampling process in order to

preserve the saliency of the high-dimensional representations.

Our experimental results convincingly show that we achieve

significant improvements compared to state-of-the-art deep

learning methods that employ either RGB or multi-spectral

data.

Our contributions in this paper are as follows:

• A multi-channel fusion module is designed to fuse all

bands in an end-to-end manner avoiding upsampling

operations, so that the learned weights are more effective.

• An Enhanced Atrous Spatial Pyramid Pooling (EASPP)

module is designed to extract multi-receptive features

from multi-scale levels to obtain an enhanced represen-

tation.

• Space-to-Depth (S2D)/Depth-to-Space (D2S) operations

are introduced to replace the max pooling and upsampling

stages in order to preserve more features for segmenta-

tion.

• A comprehensive set of experiments, including an abla-

tion study and a comparison to state-of-the-art methods,

are conducted to confirm the effectiveness of our pro-

posed method.

• Our annotated dataset is made publicly available1 to the

research community to allow further work in this area

and to support the comparison of different approaches.

The remainder of the paper is organised as follows. Related

work is discussed in Section II to provide some background

of our proposed model. Section III describes the employed

dataset, data augmentation and data pre-processing steps.

Section IV then explains our proposed MC-WBDN model in

detail, while in Section V experimental results, including an

ablation study, are presented to demonstrate its effectiveness.

Finally, Section VI concludes the paper and identifies future

work.

II. RELATED WORK

A. Traditional index-based water detection

Index-based water body detection has been studied exten-

sively since the commercialisation of remote sensing satel-

lites [12], [21]. Various handcrafted features have been de-

signed considering water body characteristics to label pixels

into water or non-water categories. [9] proposes NDWI to

extract vegetation liquid water based on the green and NIR

channels from Landsat imagery, succeeding in suppressing

background soil and terrestrial vegetation features by de-

lineating open water features. In [11], the modified NDWI

(MNDWI) replaces the green band with the middle infrared

(MIR) band to further suppress built-up land noise, vegetation

and soil noise, thus enhancing water region segmentation per-

formance. In [12], a dual-coefficient index named AWEI (for

1https://github.com/SCoulY/Sentinel-2-Water-Segmentation

Automated Water Extraction Index), is proposed to increase

the contrast between water and other dark surfaces, while,

more recently, [13], introduces the Pixel Region Index (PRI), a

spatial feature index, to exploit the smoothness characteristics

of local areas to improve the effectiveness of NDWI.

B. DCNNs for semantic segmentation

Semantic segmentation assigns a class label to each image

pixel to support a high level semantic understanding of the

image [22]. Traditional machine learning applications rely

heavily on pre-defined feature descriptors to achieve pixel-wise

classification [23], [24]. Since the introduction of the pioneer-

ing DCNN model for this, the fully convolutional network

(FCN) [22], many network architectures, e.g., DenseNet [25]

and ResNet [26], have been adopted, proposing various inno-

vations such as the re-use of features from previous layers and

mapping residuals in a deep model, to yield high segmentation

accuracy. In [27], [28], the DeepLabV3 and DeepLabV3+

methods propose a spatial pyramid pooling module between

encoder and decoder to take advantage of multi-scale features,

while some of the latest methods, including SharpMask [29],

U-Net [30], and RefineNet [31], embed hierarchical feature

representations extracted from multiple layers of the encoders

into their corresponding decoders for better segmentation.

DCNN models have also been deployed in remote sensing

applications. Image segmentation of remotely sensed imagery

is more challenging due to high intra-class variations and

low sensor resolution [32]. To tackle these challenges, several

strategies, including hierarchical feature representations [33],

multi-modality [34], and fusion schemes [35], [36], [34],

have been adopted in recent applications. In [37], a hybrid

architecture based on SharpMask and RefineNet achieves the

best performance on a 6-band multi-spectral imagery segmen-

tation task due to its diversified feature representation. In [38],

three CNN models are ensembled using Monte Carlo dropout

uncertainty maps to outperform standard weight averaging for

land cover mapping segmentation in urban areas. [39] employs

a digital surface model (DSM) to use geometry information

in order to improve the FCN network segmentation results of

VHR remote sensed images.

C. DCNNs for water body detection

Various standard DCNN models have been adapted in water

body detection applications. [17] uses an FCN model to extract

the water body of Beijing’s metropolitan area from VHR

images collected by the GaoFen-2 satellite. In [16], a CRF-

refined U-Net is proposed to process VHR images collected

from both GaoFen-2 and WorldView-2 satellites. Additional

elevation information from SAR images is exploited in [4]

and a focal loss function is used to deal with the imbalanced

categorical distributions in order to improve the segmentation

accuracy of pixels located at boundaries.

III. DATA AND DATA PREPARATION

A. Study area and data source

Our research area is Chengdu City and its suburban region

(over 15k km2) in Sichuan Province, China (“Sichuan” lit-

erally means “four rivers”). The motivation of our proposed
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Fig. 1. An 1024× 1024 image block (left) and the cropped patches extracted for training (right). The first and the third values on each line segment denote
the start and end pixel locations in the original image block while the middle value denotes the length of the line segment.

algorithm is to facilitate timely monitoring and protection of

the local water resource by analysing its dynamics at short

intervals. Sentinel-2 satellite imagery of Chengdu City is

collected for training and testing the proposed model. Details

on the Sentinel-2 bands are given in Table I. According to [10],

[11], [12], the bands most sensitive to water reflection are

green, NIR, and MIR (SWIR in Sentinel-2). Consequently, we

select bands 4, 3 and 2 (RGB) together with bands 8 (NIR)

and 12 (SWIR) for our approach.

TABLE I
MULTI-BAND INFORMATION OF SENTINEL-2 DATA USED IN THE PAPER.

band pixel resolution [m] central wavelength [µm]

1 - Coastal aerosol 60 0.443
2 - Blue 10 0.490
3 - Green 10 0.560
4 - Red 10 0.665
5 - Vegetation Red Edge 20 0.705
6 - Vegetation Red Edge 20 0.740
7 - Vegetation Red Edge 20 0.784
8 - NIR 10 0.842
9 - Water vapour 60 0.945
10 - SWIR-Cirrus 60 1.375
11 - Water vapour 20 1.610
12 - Water vapour 20 2.190

The employed multi-spectral imagery of Chengdu City

comprises a 16-bit raster image of size 20976× 20982 pixels

for R, G, B, and NIR bands (10m resolution), and of size

10488×10491 pixels for the SWIR band (20m resolution). The

data used in this paper was retrieved from Sentinel-2 in April

2018. Additionally, we have downloaded two further batches

of data, captured in late 2018 and early 2019, respectively,

of the same area in order to be able to evaluate robustness

to light and cloud variations. Since Chengdu is located in the

Sichuan Basin, cloud cover is typically high. Thus, we merged

images taken on sunny days across an entire month to create

a high-quality near cloud-free dataset. We also performed

atmospheric correction on the images using ArcGIS.

B. Data pre-processing and data augmentation

Before model training, data pre-processing and data aug-

mentation steps are applied to enhance the model’s effective-

ness and speed up the computation. These include:

• Image splitting: the raster imagery is split into man-

ageable image blocks in order to avoid large computa-

tional and memory requirements as well as to facilitate

parallel computation. The input size of our proposed

model is 512 × 512 pixels for NIR and RGB channels

and 256 × 256 pixels for the SWIR channel. Instead of

splitting the full multi-spectral image into patches of the

required size, we first split it into blocks of 1024× 1024
(NIR,RGB)/512×512 (SWIR) pixels. This configuration

allows to set different splitting strategies for training and

testing purposes. In the training stage, more samples

are required to tackle overfitting problems. Therefore, an

overlapping split of image blocks is introduced in order to

generate more training samples as illustrated in Fig. 1. For

testing, patches from randomly sampled non-overlapping

blocks are used as input to our proposed model.

• Cloud filtering and colour normalisation: based on a pre-

liminary analysis on spectral information for each band,

a heuristic threshold of 3000 is used for both NIR and

SWIR channels to filter out the remaining cloudy areas

with values above the threshold capped. As illustrated in

Fig. 2, the data distribution of each wavelength channel

generally approximates a Gaussian distribution. Thus, we
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Fig. 2. Pixel intensity distributions of the used bands.

Fig. 3. The proposed MC-WBDN network architecture which adopts the popular encoder-decoder structure for semantic segmentation with a fusion head and
works fully end-to-end. The baseline MC-WBDN model replaces S2D and D2S with corresponding pooling subsampling and bilinear upsampling. Residual
connections between each convolutional blocks are omitted. The number below each block denotes the channels of feature maps whereas ‘stride2’ indicates
2 times downsampled resolution compared to original input. The output is a single-channel feature map of the same size as the input.

normalise the intensities Xi in each channel by their mean

µ and standard deviation σ as

Xi =
Xi − µ(Xi)

σ(Xi)
. (1)

• Image augmentation: in addition to the original patches

obtained from the splitting stage, we apply the following

methods during the training stage for data augmentation:

(1) a random horizontal/vertical flip with probability 0.5;

(2) a clockwise 90-degree rotation with probability 0.5;

and (3) a random HSV colour shift within a small range

with probability 0.25.

IV. MC-WBDN MODEL

A. Model Architecture

The architecture of our proposed MC-WBDN model is

illustrated in Fig. 3. The RGB channels, NIR channel and

SWIR channel form the three input images. These are pro-

cessed by their corresponding convolution kernels in the multi-

channel fusion module. Feature maps of identical size are

generated and concatenated in the fusion module and used as

input to our backbone encoder-decoder network for pixel-level

labelling. The Encoder network is a ResNet-34 model pre-

trained on ImageNet [26] and the Fusion Channel Decoder is

an enhanced DeepLabV3+ network that uses the fine grained

feature maps produced by the EASPP and S2D/D2S modules.

The detailed network configuration is given in Table II which

lists the kernel width, kernel height, and number of kernels in

each convolutional layer, together with the output sizes of the

feature maps.

In a classical backbone encoder-decoder architecture, the

encoder consecutively downsamples and diversifies the feature

representations, while the decoder upsamples and maps them

to their correspondent labels. Compared to this, our proposed

model has two distinctive traits: (1) we replace all bi-linear

upsampling operations in our decoder with Depth-to-Space
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TABLE II
LAYER CONFIGURATION OF EMPLOYED NETWORK ARCHITECTURE. BN = BATCH NORMALISATION.

layer MC-WBDN MC-WBDN output size Kwidth Kheight Kfilters non-linearities

w/o S2D/D2S w/ S2D/D2S

fusion module
RGB (256,256,64) 7 7 64 BN,Swish
NIR (256,256,32) 7 7 32 BN,Swish

SWIR (256,256,32) 1 1 32 BN,Swish

Concatenate (256,256,128)

Conv2d (256,256,64) 1 1 64 BN,Swish

ResNet34-Block1 (256,256,64) (3,3) (3,3) 64× 2× 3 BN,ReLU

ResNet34-Block2 (128,128,128) (3,3) (3,3) 128× 2× 4 BN,ReLU

ResNet34-Block3 (64,64,256) (3,3) (3,3) 256× 2× 6 BN,ReLU

ResNet34-Block4 (32,32,512) (3,3) (3,3) 512× 2× 3 BN,ReLU

EASPP module (32,32,1024) (1,3,3,3,1)(1,3,3,3,1) 512 BN

Upsample-4x D2S+S2D (128,128,1024)(256,256,128)

Concatenate (128,128,1024+128)

Conv2d (128,128,128) 1 1 128 BN,Swish

Upsample-4x D2S (512,512,128) (512,512,8)

Conv2d (512,512,16) (512,512,1) 1 1 16 BN,Swish

Conv2d (512,512,1) 1 1 1

(D2S) operations. This allows for an improved information ex-

change between channels which proved effective in SENet [40]

and ShuffleNet [41]. Table II highlights the two process

pipelines, with and without S2D/D2S operations, while a

performance comparison of the two structures is presented in

our ablation study. (2) two extra bypasses from lower layers in

the encoder are concatenated with dense feature maps given by

an Enhanced Atrous Spatial Pyramid Pooling (EASPP) module

in order to preserve more fine-grained context.

To ensure numerical stability and non-linear representation,

Swish activation functions [42], which are differentiable when

dealing with negative gradients and defined as f(x) = x ·
sigmoid(x), are used in both the fusion head and the decoder,

while ReLU activation functions (f(x) = max(0, x)) are

employed in the encoder part. This preserves the represen-

tative features transferred from the pre-trained deep learning

model. For testing, a sliding window prediction mechanism

is employed where the central area is kept as the result from

sliding a window along the satellite imagery.

In the following, we explain the main features and innova-

tions of our proposed model.

1) Multi-channel fusion head: We fuse RGB channels

with NIR and SWIR channels at the very beginning of the

processing pipeline. For RGB and NIR channels, which are

of the same resolution, we apply 7 × 7 convolution kernels

to enlarge the receptive field and a stride of 2 to align the

output size with SWIR, while for the lower resolution SWIR

band, we apply 1×1 convolution kernels to densify its feature

maps. The three outputs are then concatenated, followed by a

1 × 1 convolution to yield the channel combination used by

the context encoder.

2) EASPP module: To extract distinctive features from mul-

tiple receptive fields we introduce an enhancement to Atrous

Spatial Pyramid Pooling (ASPP) [36]. In our Enhanced ASPP

(EASPP), we apply 1×1 convolution operations followed by a

local max pooling to the feature maps from the previous layers,

thus avoiding the up-sampling stage in the original ASPP.

Intuitively, this modification adds a shortcut from previous

layers and makes the trainable weights more effective. Our

proposed EASPP module distils dense features from different

scales of the input feature maps [36] by individual dilated

convolutions [43], [44], [45] at different scales. These scales

indicate the various region sizes in the feature maps that can

be activated. Benefitting from the hierarchical structure of the

receptive fields, the feature pyramid aggregates rich context

information from the input. The multi-scale feature pyramid

is concatenated and pruned by a 1× 1 convolution to produce

the output feature maps.

3) Space-to-Depth and Depth-to-Space: In a conventional

DCNN pipeline, feature maps are processed with pooling

operations in the encoder and upsampling operations in the

decoder. These two operations however are sub-optimal since

pooling operations discard detailed feature responses while the

upsampling operations are non-trainable. Although transposed

convolution operations complement upsampling schemes, they

significantly increase the parameters in a DCNN [46].

Fig. 4. (a) Visualisation of S2D and D2S. (b) The role of S2D in a network.
Dashed arrows demonstrate the relationships between slices after S2D and
the original branch but do not actually take effect when processing.

The use of Space-to-Depth (S2D) and Depth-to-Space

(D2S) operations can alleviate these problems [47], [48]. As
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illustrated in Fig. 4(a), S2D moves pixels from spatial locations

to channel dimensions, while D2S is the inverse operation.

With S2D operations, more local features can be preserved

for the decoder process. Moreover, the S2D operation can be

treated as an intra-model augmentation as shown in Fig. 4(b)

and offers views of inputs with different pixel shifts. Vice

versa, D2S is an alternative to transposed convolutions for up-

sampling due with two advantages: (1) D2S is parameter-free

while keeping all the responses from previous layers, and (2)

it merges information across feature map channels to allow

effective feature exchange instead of focussing on individual

channels when applying transposed convolutions.

B. Loss functions

Our loss function comprises two terms, a pixel-wise loss

term and a region-based loss term. For the pixel-wise term,

we use the binary cross-entropy loss, calculated as

lossBCE = −
1

|Ω|

∑

i∈Ω

[yi log ŷi + (1− yi) log(1− ŷi)], (2)

where Ω denotes all pixels in the predicted map, yi is the label

of the i-th pixel (0 or 1), and ŷ is the predicted probability of

pixel i.

In contrast to the pixel-wise loss term, the region-based

loss term focusses on optimising the smoothness of regions

to improve the mIoU (mean Intersection over Union over all

classes). Commonly used region-based loss terms include the

Dice coefficient loss, Jaccard loss [49], and Lovász-Softmax

loss [50]. The former two are more suitable for imbalanced

data training, and we thus use only them. The Dice coefficient

loss is defined as

lossDice = 1−
2
∣

∣

∣
Ŷ ∩ Y

∣

∣

∣

∣

∣

∣
Ŷ
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∣

∣
+ |Y |

, (3)

where Ŷ represents the predicted map and Y the label mask,

while the Jaccard loss is calculated as

lossJaccard = 1−

∣

∣

∣
Ŷ ∩ Y

∣

∣

∣

∣

∣

∣
Ŷ ∪ Y

∣

∣

∣

. (4)

The multi-task loss is then calculated as

loss = α · lossBCE + (1− α) · lossDice (5)

and

loss = α · lossBCE + (1− α) · lossJaccard, (6)

respectively, where α ∈ [0; 1] is a weight to balance the two

terms. A larger value of α will favour the binary cross-entropy

loss and thus improve detection of small water bodies (e.g.,

paddy fields and streams) while a lower weight will enhance

regional smoothness of the segmentation. The optimal setting

of α is assessed in our ablation study.

The end-to-end training of the model is performed by

backpropagation [51] through the loss function. After gradient

calculation, the parameter set of the network is updated as

θ = θ − ǫĝ, (7)

where ǫ denotes the learning rate. We use Adam [52] as the

optimiser.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental setup

Our data is split into disjoint training, validation and test

sets. From the original satellite imagery we first generate

441 blocks of size 1024× 1024. After image splitting, which

generates 9 patches from each 1024 × 1024 block, we thus

have a total of 3969 image patches. 300 1024× 1024 blocks

are used to generate 2700 training patches, and we divide the

remaining 141 blocks into a validation set of 33 blocks and

297 patches and a test set of 108 blocks and 972 patches.

We further divide the training and validation sets into three

folds (each of 300 blocks training and 33 block validation) to

test the robustness of the proposed method. We report mIoU

results in terms of average and standard deviation on the test

set when trained using the three trained models.

We compare our proposed MC-WBDN model with com-

monly used RGB-based segmentation architectures and some

of the latest multi-band methods. In particular, we use

U-Net [30]2, D-LinkNet [53], vanilla Sharpmask [29],

DeeplabV3+ [28] and the method by Kemker at al. [37], which

merges the encoder structure of Sharpmask and the decoder

structure of RefineNet3, in our evaluation.

We train each deep learning model for a minimum of

100 and a maximum of 300 epochs with an early-stopping

mechanism that terminates learning when performance on the

validation set does not improve for five consecutive epochs.

2Our implementation of U-Net involves no pre-training.
3Our implementation uses the five bands mentioned, while the original

method uses six spectral bands.

Fig. 5. Learning curves of different models.
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TABLE III
MIOU RESULTS ON TEST SET FOR ALL METHODS.

method bands parameters/band ImageNet mIoU

[106] pre-trained [%]

traditional
indices

NDWI [9] Green+SWIR n/a n/a 1.77
NDMI [10] NIR+SWIR n/a n/a 3.28
MNDWI [11] Green+SWIR n/a n/a 10.44

RGB-based
DCNNs

U-Net [30] RGB 10.36 no 54.44 ± 6.02
D-LinkNet [53] RGB 10.37 yes 54.39 ± 1.60
DeepLabV3+ [28] RGB 8.66 yes 58.96 ± 9.58

multi-spectral

DCNNs

Sharpmask [29] RGB+NIR+SWIR 5.78 no 70.60 ± 2.30
Kemker et al. [37] RGB+NIR+SWIR 39.66 no 64.70 ± 4.11
MC-WBDN RGB+NIR+SWIR 6.85 yes 74.42 ± 0.65

We use an initial learning rate of 1e-3, an end threshold of

1e-8 and a decay rate of 0.5 in our experiments. Training

takes, depending on the model, about 10-50 hours to conver-

gence using 4 NVIDIA GTX1080ti GPUs with a batch size

of 16. All the experiments were carried using the PyTorch

deep learning framework [54]. We note that only Sharpmask,

Kemker et al. and our MC-WBDN take multi-spectral images

as input. In addition to deep learning models, we also evaluate

some traditional index methods, namely NDWI, NDMI, and

MNDWI, for which the established thresholds of 0.34, 0.3,

and 0.1, respectively, are used.

B. Experimental results

We plot learning curves depicting accuracy over the first

50 training epochs in Fig. 5. From there, we can see that U-

Net shows the lowest training and validation accuracy. Higher

accuracies are achieved by D-LinkNet and DeepLabV3+, but it

is clear that the multi-spectral models do better still, reaching

both higher accuracies on both training and validation sets

and more stable performance, indicating that RGB features are

insufficient to successfully learn a more general water repre-

sentation. Our proposed MC-WBDN approach outperforms all

other models and yields the highest training accuracy of 0.988

as well as the highest validation accuracy of 0.984, while the

training process takes less than 20 hours due to the simplicity

and efficiency of our network architecture.

mIoU results, in terms of average and standard deviation on

the test set are given in Table III for all evaluated models.

From there, it is immediately apparent that the results for

the traditional water extraction indices are extremely inferior,

even when compared to the worst performing deep learning

method. While MNDWI improves upon NDWI and NDMI,

the achieved mIoU of just over 10% is far too low to be

useful. Also, since these models rely on (fixed) thresholds,

they lack flexibility while the indices themselves exploit only

linear relationships between the selected bands.

In contrast, deep learning-based approaches support non-

linear representation ability and are able to learn useful fea-

tures from large parameter spaces, leading to significantly bet-

ter segmentation performance. Looking closer at the obtained

results, we can see that generally approaches that use only the

RGB bands are inferior to those that also incorporate NIR and

SWIR bands to exploit the additional information contained

there. Of the RGB models, the best results are obtained using

DeepLabV3+, while U-Net and D-LinkNet yield relatively

poor performance.

Similar to our proposed MC-WBDN approach, Sharpmask

and Kemker et al. also use multi-spectral input (the identical

bands in our experiments). The method by Kemker et al. fails

to generalise well and consequently yields lower performance

in comparison to Sharpmask. Our proposed MC-WBDN how-

ever clearly outperforms Sharpmask and all other evaluated

methods, giving the best segmentation results with an mIoU

of 74.42%, based on an equal weighting of pixel and region

loss function terms and Jaccard loss for the latter. In addition,

MC-WBDN also yields the lowest standard deviation and thus

is the most robust of the evaluated DCNN models.

Table III also shows the number of trainable parameters per

band. Due to heavy usage of transposed convolutions in the

bottom-up phase, the number of parameters almost doubles

for U-Net and D-LinkNet in comparison to Sharpmask which

has the lowest number of parameters per band. By far the

most parameters are used in the model by Kemker et al.,

while the parameter space of our proposed MC-WBDN model

is relatively small and only somewhat larger than that of

Sharpmask.

Fig. 6 shows several typical test patches together with their

ground truth segmentations and the outputs of the six deep

learning models, while Fig. 7 gives results for further, more

challenging, test patches under low lighting conditions.

As can be seen from these examples, the multi-spectral

models such as Sharpmask, Kemker et al. and our MC-WBDN

outperform RGB-only models (i.e., U-Net, D-LinkNet and

DeepLabV3+). In particular, for areas that contain complex

urban scenarios (such as row 6 in Fig. 6), RGB-only models

tend to fail as they are unable to handle the wider range of

colour shifts. Also, for patches containing both shallow and

wide water bodies (e.g., rows 3 and 5 in Fig. 6), our MC-

WBDN is able to deliver improved detection due to both the

additional information in the NIR and SWIR bands and the

multi-scale features leaned by the EASPP module.

While the performance improvement of our MC-WBDN

model is relatively minor for the samples in Fig. 6, it becomes

more apparent for areas under low lighting conditions such as

the examples shown in Fig. 7. In particular for the patch in the

second row, which requires consistent prediction of scattered

water ponds, we can notice a vast improvement.
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patch ground truth U-Net D-LinkNet DeepLabV3+ Sharpmask Kemker MC-WBDN

Fig. 6. Test results for different models on example patches.

C. Ablation study

We perform a thorough ablation study where we investigate

the effect of each introduced component. The results are given

in Table IV which shows the obtained performances (based

on the models trained on the first partition of the dataset)

when employing multi-channel fusion versus standard pan-

sharpening, employing our proposed EASPP module versus

standard ASPP, and using D2S/S2D versus standard bilinear

interpolation.

TABLE IV
RESULTS OF ABLATION STUDY (BASED ON α = 0.1 AND DICE REGION

LOSS [55]). DEFAULT PROCESSING (THE NOES IN THE TABLE) INVOLVES

PAN-SHARPENING, ASPP, AND BILINEAR INTERPOLATION.

MC fusion EASPP D2S/S2D mIoU [%]

no no no 67.82

yes no no 70.41
no yes no 68.60
no no yes 69.49

yes yes no 72.59
no yes yes 69.91
yes no yes 71.41

yes yes yes 74.14

As we can see from Table IV, the baseline results are

relatively modest with an mIoU of 67.82, while introduction

of each component (MC fusion, EASPP, D2S/S2D) on its

own is shown to lead to an improvement. It is however the

three working together in tandem that really boosts the water

detection performance, to an mIoU of 74.14, and does so

by more than the sum of the individual improvements, thus

confirming the effectiveness of our proposed model and its

careful design.

D. Loss function evaluation

As explained in Section IV-B, our loss function comprises

a pixel-based component and a region-based component while

the latter is based on either Dice coefficient loss or Jaccard

loss. Tuning the α parameter that balances the two compo-

nents, one can thus put more emphasis on pixel- or region-

based labelling. We evaluate three different settings, namely

α = 0.1, α = 0.5, and α = 0.9, together with the two region-

based loss terms and show the obtained results (again, based on

models trained on the first partition of the dataset) in Table V.

Looking at the obtained results, we notice that better per-

formance is achieved using the Jaccard loss compared to the

Dice coefficient loss, which is not surprising since the standard

performance measure of mIoU corresponds to the Jaccard
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patch ground truth U-Net D-LinkNet DeepLabV3+ Sharpmask Kemker MC-WBDN

Fig. 7. Test results for different models on dark example patches.

TABLE V
RESULTS FOR DIFFERENT LOSS FUNCTION SETUPS.

region loss α mIoU [%]

Dice 0.1 74.14
Dice 0.5 73.96
Dice 0.9 74.80

Jaccard 0.1 75.06
Jaccard 0.5 75.13
Jaccard 0.9 74.71

index. The best weighting between pixel and region (Jaccard)

loss is obtained by setting α to 0.5, which justifies the setup

of our loss function. A best test mIoU of 75.13%, is obtained

based on the first training-validation partition. After repeating

training on the three partitions while using Jaccard region loss

and α = 0.5, an average mIoU of 74.42% on the test set is

achieved, which is also the result reported in Table III.

E. Robustness against light and weather variations

One of the challenges of automated remote sensing is that

the captured information of the same area can vary drastically

due to environmental changes such as differing lightning and

weather conditions. To evaluate robustness against varying

conditions, we measure the performance of the various models

on image patches of the same area as the original test samples

but taken at different times (in late 2018 and in early 2019).

Fig. 8 shows a collection of sample patches for all three

timestamps together with the water areas detected by our MC-

WBDN model. As we can see, the variations in terms of colour

shifts and cloud cover are quite apparent. In addition, we can

notice some artefacts that come from the satellite built-in pre-

processing and lead to rather different appearances within the

same patch such as in the two middle patches for timestamp 3.

Despite these difficulties, the performance of MC-WBDN is

relatively consistent including for the very challenging patch

at the top right.

Fig. 9 shows the results obtained by all deep learning models

for the first area patch of Fig. 8. From there, we can observe

that RGB-only models are greatly affected when lightning

condition change and in particular fail completely for the

cloudy scenario for the third timestamp. In contrast, the multi-

band models exhibit improved robustness due to their ability to

incorporate information from the NIR and SWIR bands also.

MC-WBDN gives the best results across the three timestamps,

followed by Sharpmask.

Table VI gives the results over all test patches for all three
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ground truth timestamp 1 timestamp 2 timestamp 3
(timestamp 1) patch result patch result patch result

Fig. 8. MC-WBDN water body detection result examples across different timestamps

patch ground truth U-Net D-LinkNet DeepLabV3+ Sharpmask Kemker MC-WBDN

Fig. 9. Results on sample patch across three timestamps for all models.

timestamps and for all deep learning models (based on the

models trained on the first partition of the dataset). From there

it is clear that the RGB-only models fail to generalise well for

the other two timestamps. For example, for DeepLabV3+, the

mIoUs for timestamps 2 and 3 are almost 20 points lower

than for timestamp 1. Significantly better results are achieved

by the multi-band methods of Sharpmask and Kemker et al.

which clearly outperform the RGB-only networks. The overall

best performance across the different timestamps, with an

average mIoU of 73.56, is obtained by MC-WBDN which thus

confirms that our proposed model does not only outperform

the other ones but also allows for water body detection that is

robust with respect to light and weather conditions.

F. Discussion

In this paper, we design a novel effective DCNN model

for water segmentation from satellite imagery which can be

trained in an end-to-end fashion through backpropagation.

Deep learning approaches allow for adaptive training on large

and varied datasets, in contrast to traditional index-based water

extraction methods that work only within a small range but

largely fail in open areas and complex scenes due to the
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TABLE VI
RESULTS, IN TERMS OF MIOU [%], ACROSS ALL TEST PATCHES FOR THE

THREE DIFFERENT TIMESTAMPS.

timestamp 1 timestamp 2 timestamp 3 average

U-Net 61.39 50.07 50.06 53.84
D-LinkNet 52.56 56.31 55.68 54.85
DeepLabV3+ 70.20 51.76 51.59 57.85

Sharpmask 68.47 67.90 72.44 69.60
Kemker et al. 59.98 64.89 66.69 63.85

MC-WBDN 75.13 72.52 73.03 73.56

difficulty in selecting appropriate thresholds and inability to

learn non-linear feature representations.

Instead of upsampling satellite bands captured at lower

resolutions, our MC-WBDN approach directly fuses multi-

band inside the network. This fusion head is then connected to

an elegant state-of-the-art semantic segmentation DeepLabV3-

like architecture, resulting in only a small increase of tune-

able parameters but yielding noticeable performance increases

compared to standard pan-sharpening as reported in Table IV.

Compared with RGB-only data, inclusion of multi-spectral

bands (in our approach NIR and SWIR bands) provides

additional useful information for water extraction, leading to

more accurate segmentation of water bodies, although further

work to investigate the contribution of the additional bands

over RGB-only data should prove useful in order to define

a more detailed relationship between the bands and object

features for water detection.

The proposed EASPP module is better capable of integrat-

ing representations from previous convolutional layers, leading

to a significant performance boost as can be seen from Ta-

ble IV. In addition, we also introduce Space-to-Depth/Depth-

to-Space operations to enhance the reconstruction performance

in the bottom-up phase of our model. Benefitting from the

ability to exchange arbitrary pixel information from feature

map channel dimensions to spatial dimensions and vice versa,

this supports improved detection as confirmed in Table IV,

while the overall MC-WBDN provides better generalisation

ability and excellent water body detection performance, also

in comparison to previous work, as shown in Table III and

illustrated by the examples in Figs. 6 and 7. The impact of

S2D/D2S can be seen as a combination of lower resolution

feature maps and a splitting of the high-resolution feature

map. Currently, this is only supported for image dimensions

that are a power of 2. With an arbitrary sampling rate, such

a reconstruction from dense feature maps using D2S could

potentially replace the 1 × 1 convolutions that are currently

dominant but require a higher memory allocation [47], [48].

Emphasis on pixelwise and region-based classification re-

spectively is possible through adjustment of the weight param-

eter α in the loss function. Overall, our MC-WBDN model

reaches the best performance by equally weighting the two

loss terms as shown in Table V, thus paying equal attention

to pixelwise and region-based classification. Further work can

focus to identify if skeleton features are favourable for e.g.

rivers while fine-granularity features are beneficial for larger

water bodies such as lakes.

Consistent prediction on samples taken at different times-

tamps demonstrate the advantage of our MC-WBDN model

as shown in Figs. 8 and 9 and Table VI. In contrast, other

models fail to provide consistently high detection ability across

timestamps, in particular when light and weather conditions

vary more dramatically.

As mentioned in Section II-C, traditional baseline methods,

e.g. FCN, U-Net along with refinement modules such as CRF,

have been previously used in water body detection research.

In addition, we also compare our proposed method with other

generic methods such as Sharpmask and Kemker et al.’s

work, since these methods have reported better performance

in various applications compared to FCN and U-Net. These

benchmarking methods also share their open-source code, thus

allowing for objective and reproducible performance compar-

ison. In future work, we plan to investigate more algorithms

including further methods that been specifically developed for

water body detection.

VI. CONCLUSIONS

Motivated by the success of deep learning methods and

their applications to remote sensing, in this paper, we have

introduced a novel approach to satellite-based water body ex-

traction, accomplished through an effective deep convolutional

neural network that incorporates several contributions. While

RGB, being the basis of both the human visual system and

common camera systems, has been frequently used for remote

sensed analysis, we demonstrate that additional wavelength

bands (NIR and SWIR) allow for improved segmentation.

Given Sentinel-2 satellite data, we effectively exploit its multi-

spectral information to aid our network model in successfully

recognising water areas. Information from bands captured

at different resolutions is appropriately fused directly in the

network avoiding the need for image interpolation methods.

We also incorporate Space-to-Depth/Depth-to-Space opera-

tions which are memory efficient and allow to retain better

features, while we have presented an Enhanced ASPP to

appropriately extract multi-receptive features from multiple

scales. Experimental results have demonstrate excellent water

detection capability of our MC-WBDN model, outperforming

other evaluated models including traditional water detection

indices and state-of-the-art deep models based on RGB and

multi-spectral input, as well as showing improved robustness

against light and weather variations. In future work, we aim

to further use the proposed method in applicable hydrological

studies.
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