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Abstract: Sarcopenia, an age-related loss of skeletal muscle mass and function, is correlated with
adverse outcomes after some surgeries. Here, we present a deep-learning-based model for automatic
muscle segmentation and quantification of full-leg plain radiographs. We illustrated the potential of
the model to predict sarcopenia in patients undergoing total knee arthroplasty (TKA). A U-Net-based
deep learning model for automatic muscle segmentation was developed, trained and validated on the
plain radiographs of 227 healthy volunteers. The radiographs of 403 patients scheduled for primary
TKA were reviewed to test the developed model and explore its potential to predict sarcopenia.
The proposed deep learning model achieved mean IoU values of 0.959 (95% CI 0.959–0.960) and
0.926 (95% CI 0.920–0.931) in the training set and test set, respectively. The fivefold AUC value of the
sarcopenia classification model was 0.988 (95% CI 0.986–0.989). Of seven key predictors included
in the model, the predicted muscle volume (PMV) was the most important of these features in the
decision process. In the preoperative clinical setting, wherein laboratory tests and radiographic
imaging are available, the proposed deep-learning-based model can be used to screen for sarcopenia
in patients with knee osteoarthritis undergoing TKA with high sarcopenia screening performance.

Keywords: sarcopenia; deep learning; screening; plain radiograph; segmentation; total knee arthro-
plasty; osteoarthritis

1. Introduction

Total knee arthroplasty (TKA) is an effective treatment for end-stage knee osteoarthri-
tis [1,2]. Despite its benefits for relieving pain and restoring mobility, TKA is characterised
by several postoperative complications, including the need for blood transfusion, acute
kidney injury, prosthetic joint infection and periprosthetic tibiofemoral fractures with vary-
ing incidence rates [3–6]. To prevent such adverse outcomes, risk factors for postoperative
complications of TKA have been explored [7–9].

Sarcopenia, characterised as age-related loss of skeletal muscle mass and function,
has attracted a great deal of interest because of its reported association with an increased
likelihood of poor clinical outcomes, including falls, fractures, physical disability and
mortality [10]. Recent studies have showed that sarcopenia independently predicts adverse
outcomes of various surgical procedures, including TKA [11–14]. Therefore, there is
increasing recognition of the importance of preoperative risk stratification by screening
orthopaedic surgery patients for sarcopenia [15–18].
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Several tools are available for sarcopenia screening. Calf circumference (CC) is an
inexpensive and readily available screening method. There is accumulating evidence that
it correlates with both muscle mass and sarcopenia [19–21]. However, as the European
Working Group on Sarcopenia in Older People (EWGSOP2) does not recommend CC as a
screening tool for sarcopenia due to age-related changes in fat deposits and variable skin
elasticity [10], its performance has mainly been studied in Asian populations [20,22,23].
The EWGSOP2 and Asian Working Group for Sarcopenia (AWGS) recommended the SARC-
F questionnaire as a screening tool in primary healthcare settings [10,24]. However, several
studies have reported low-to-moderate sensitivity of this tool to detect sarcopenia, such
that a substantial number of potential patients likely go unrecognised [25]. There have
been numerous efforts to boost its sensitivity for screening purposes by lowering the
cutoffs, adding extra items and combining it with other examinations, but there is as yet no
consensus regarding the best tool for screening sarcopenia [26].

As both the EWGSOP2 and AWGS suggest muscle quantity or mass as the confirma-
tory diagnostic criterion for sarcopenia, a radiological assessment of muscle quantity may
represent an alternative method for screening sarcopenia, directly reflecting muscle loss in
patients. A radiological assessment by magnetic resonance imaging (MRI) and computed
tomography (CT) is considered the gold standard for the noninvasive assessment of muscle
mass due to the high accuracy of these modalities. The abdominal skeletal muscle area
at the third lumbar level of a single cross-sectional CT image is reported to have corre-
lation with the whole-body skeletal muscle mass, and thus is being deployed to assess
sarcopenia [27]. However, the need for time-consuming manual segmentation and potential
interobserver variability are major barriers to clinical application [28,29]. In addition, imag-
ing modalities such as CT and MRI are not always available for orthopaedic surgeons in the
preoperative setting, hindering their application for sarcopenia screening. Therefore, there
is a need for an alternative and more accessible tool to assess muscle quantity in the field of
orthopaedics [30].

Here, we propose a novel method of screening for sarcopenia in patients undergoing
orthopaedic surgery involving the lower extremities in the preoperative setting. We adopted
a convolutional neural network (CNN)-based model for automatic muscle segmentation on
full-leg weight-bearing plain radiographs. CNNs are the current state-of-the-art artificial
intelligence technique for medical image classification and segmentation. The ability to
screen for sarcopenia on full-leg plain radiographs prior to surgical procedures will aid
orthopaedic surgeons in terms of risk stratification and patient selection.

The main objective of this study was to present a deep-learning-based muscle seg-
mentation and quantification model using full-leg plain radiographs and illustrate its
potential to predict sarcopenia in patients undergoing TKA, which was then confirmed by
a bioelectrical impedance analysis (BIA).

2. Materials and Methods
2.1. Study Subjects

This retrospective single-centre study was conducted on two separate cohorts after
obtaining institutional review board approval (IRB no. H-2009-181-1161).

For training and validation of the model, healthy volunteers with no history of trauma
or prior orthopaedic surgery, enrolled between January 2011 and November 2012, were
reviewed (cohort A). Cohort A consisted of two subgroups: a young group consisting of
128 young adults aged 19–35 years (79 females, 61.7%) and an older group consisting of
99 patients aged 60–69 years (51 females, 51.5%). A total of 227 full-leg lower extremity
plain radiographs were used as the training set. The muscle segmentation model presented
in this study represents a fully automated deep learning system, which was developed,
trained and validated using cohort A data.

Patients scheduled for primary TKA to treat degenerative knee arthritis, enrolled
between May 2018 and April 2021, were reviewed to test the developed model and explore
its potential for predicting sarcopenia (cohort B). Subjects with adequate preoperative
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BIA, determined using the InBody S10 device (InBody Co. Ltd., Seoul, Korea), were
included in cohort B. A total of 633 patients were initially enrolled. We excluded patients
who underwent simultaneous bilateral TKA (n = 5), or had inadequate tissue hydration
(extracellular water (ECW) ratio > 0.4; n = 175), no available preoperative plain radiographs
(within 8 weeks before scheduled surgery; n = 4), low-quality full-leg plain radiographs
(n = 45) or severe obesity (body mass index (BMI) > 35 kg/m2; n = 1) [31–33]. A total
of 403 patients (54 males, 349 females) were included in the test set. Data for cohort B
were used to evaluate the performance of the developed muscle segmentation model
and estimate the muscle quantity of the patients. The machine-learning-based sarcopenia
prediction model presented in this study was developed, trained and validated using
cohort B data.

2.2. Data Acquisition

All data were collected from the electronic medical records of our institution. Patient baseline
characteristics, laboratory data and BIA data were collected. Sarcopenia was determined
according to the cutoffs for appendicular skeletal muscle index (SMI) suggested by the
AWGS 2019 (<7.0 kg/m2 for males, <5.7 kg/m2 for females) [33]. SMI is defined as the
height-adjusted appendicular skeletal muscle mass and was calculated automatically by
the InBody S10 device (InBody Co. Ltd., Seoul, Korea). The baseline characteristics,
laboratory data and SMI were compared between the sarcopenic and normal groups
(Tables S1 and S2).

Full-leg weight-bearing plain radiographs were acquired using a consistent scanning
protocol. The subjects stood barefoot with the feet together in the “stand at attention”
position, with the patellae oriented forward. The acquired radiographic images were
collected using the picture archiving and communication system (PACS) of our institution.

One of the authors (SA) trained in the segmentation task prepared 227 manually
annotated images using Adobe Photoshop (Adobe, Mountain View, CA, USA) using a
standardised protocol, to ensure consistency of the data. Muscles of the bilateral thighs
and calves were annotated. The upper border of the thigh was determined as the greater
trochanter of the femur (lateral) and gluteal fold (medial), and the lower border of the thigh
was determined as the lateral epicondyle of the femur (lateral) and medical epicondyle of
the femur (medial). The visible parts of the soleus and gastrocnemius muscle on coronal
plane radiographs were annotated as the bilateral calf regions. Each ground truth segmen-
tation was reviewed and revised by an orthopaedic surgeon with 14 years of experience
(DR) (Figure 1).

2.3. Model

An overview of the study is shown in Figure 2.

2.3.1. Data Preprocessing

All full-leg plain radiographs and ground truth masks were cropped and resized
to 240 × 1200 pixels. Pixel values of grayscale images ranging from 0 to 255 on plain
radiographs were normalised (Z-score normalisation) so that each image had a mean pixel
value of 0 and standard deviation of 1 [34].

2.3.2. Model Architecture

U-Net shows high performance in medical image segmentation, attributed to its skip
connections that allow feature extraction without a significant loss of resolution [35]. In this
study, we adopted a U-Net-like architecture to develop an optimal model to segment
muscle from full-leg plain radiographs. To increase its feature extraction capability, we
added the squeeze-and-excitation (SE) block to the encoding path of the network, which
adaptively recalibrated channel-wise feature responses to significantly improve CNN
performance, without marked increases in model complexity or computational burden [36].
In addition, we applied group normalisation instead of batch normalisation, which is the
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most commonly used normalisation method. Retaining the resolution of the original image
was important for segmenting muscle from plain radiographs but had the potential to
adversely affect model performance (as a larger image size will inevitably result in a smaller
batch size due to the limited memory). Instead, robust normalisation methods such as
group normalisation, which performs well even with a small batch size, can be used [37].
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Figure 2. Model overview. Model training, left to right: the model is trained on input images,
which undergo preprocessing (crop and resize) and augmentation (enriching the training set) before
being fed into the convolutional neural network. The model is trained and validated by 5-fold
cross validation. Hyperparameter tuning is conducted to optimise the model for muscle segmenta-
tion. Model testing, left to right: the optimised eXtreme Gradient Boosting (XGBoost) classification
model is used to estimate predicted muscle volume (PMV) of the patients and, along with baseline
characteristics, to classify patients into sarcopenia and normal groups.
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2.3.3. Network Training

The Adam optimiser was used to train our model [38]. The Lovász–Hinge loss was
used as a loss function and backpropagation was applied to the network weights for
training [39]. The training batch size was set to 4. We used a global learning decay strategy
that reduced the learning rate by 90% when the loss reached a plateau. The training and
model performance assessment were conducted using a 5-fold cross-validation to address
potential overfitting due to the small dataset. Data augmentation strategies included
rotation (−10, +10), horizontal flip and scaling (0.9, 1.1).

2.3.4. Model Performance Evaluation

The most widely adopted metrics for evaluating models for semantic segmentation are
the mean intersection-over-union (IoU) value and dice similarity coefficient (DSC) [40,41].
The performance of the developed model was evaluated using both the training (cohort A)
and test sets (cohort B) (Supplementary Table S3).

2.3.5. Muscle Volume Estimation

A total of 403 test images from cohort B were fed into the developed model for muscle
segmentation based on full-leg plain radiographs, to estimate the muscle volume. From the
output segmentation mask, the predicted muscle area (A) was estimated as the sum of
nonzero pixels multiplied by pixel size. We assumed that a single leg was a cylinder to
estimate the predicted muscle volume (PMV) as follows: PMV = πa (dL + dR)/4. Here, dL
and dR are the longest diameters of the mid-thigh region of the left and right extremities,
respectively. The mid-thigh muscle area has been reported to be a good predictor of
whole-body skeletal muscle mass, as it is highly sensitive to changes therein [10]. The mid-
thigh diameter was measured automatically by postprocessing in our model. A Pearson’s
correlation analysis was performed between the PMV and SMI.

2.3.6. Machine Learning Model for Sarcopenia Prediction

Thirty preoperative variables were initially chosen as candidate predictors based on
previous studies [12,14,42–44]. The preoperative variables included patient demographic
information, comorbidities, laboratory data and the proposed sarcopenia marker (PMV)
(Supplementary Tables S1 and S2). The model for sarcopenia prediction was developed,
trained and validated based on PMV and the baseline characteristics of patients of cohort B.

For prediction of sarcopenia, the binary classification (sarcopenia/normal) model
of XG Boost was used. The XGBoost model is one of the most commonly used machine
learning models for solving both regression and classification problems and has been
widely adopted to classify and predict medical events [3,45,46]. The synthetic minority
oversampling technique (SMOTE) was utilised to overcome the potential bias arising from
class imbalances, by creating synthetic minority class samples (the sarcopenia group in this
case) [47,48]. Key features for the XGBoost classification were selected. The comparison
of key features between sarcopenia and normal group was conducted. A stratified 5-fold
cross-validation of the training dataset was performed to obtain the optimal degree of
model complexity. Training accuracy was evaluated from the mean area under curve
(AUC) value of the receiver operating characteristic (ROC). Along with the AUC and model
accuracy, the sensitivity and specificity of the binary classification were also investigated.
To understand the decision-making process, the importance of each feature in the machine
learning model was also determined by calculating a “gain”, which refers to the relative
contribution of the corresponding feature to the model by taking each feature’s contribution
for each tree in the model [49].

2.4. Statistical Analysis

Statistical analyses were performed using RStudio for Windows (ver. 1.2.5033; RStudio,
Boston, MA, USA). Nominal data are shown as percentages and were analysed by two-
sided Pearson’s χ2 test or Fisher’s exact test. Continuous data are shown as the mean ± SD
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and were analysed using Student’s t test. In all analyses, p < 0.05 was taken to indicate
statistical significance.

3. Results

The proportion of patients who had undergone primary TKA and had sarcopenia was
8.5% (34/369). There were significant differences between the sarcopenia and nonsarcope-
nia groups in age, BMI, preoperative total protein and haemoglobin (Hb) levels, skeletal
muscle index (SMI) and PMV (Table 1). The patients with sarcopenia were older than those
without the condition (74.6 ± 6.5 vs. 70.5 ± 6.5 years, p = 0.001), and had a lower BMI
(23.9 ± 3.4 vs. 26.7 ± 3.2 kg/m2, p < 0.001), preoperative total protein level (6.7 ± 0.4 vs.
7.1 ± 0.4 mg/dL, p < 0.001), preoperative Hb (12.3 ± 1.2 vs. 13.1 ± 1.8 g/dL, p = 0.008), SMI
(5.5 ± 0.6 vs. 7.4 ± 1.1 kg/m2, p < 0.001) and PMV (6972.4 ± 1354.6 vs. 8418.4 ± 1634.8 cm3,
p < 0.001).

Table 1. Key features comparison of the sarcopenia and nonsarcopenia groups.

Total Population
(n = 403)

Sarcopenia

Characteristics Yes
(n = 34)

No
(n = 369) p-Value

Sex (%)
Female 32 (94.1) 319 (86.4) 0.266
Male 2 (5.9) 50 (13.6)

Age (SD) 74.6 (6.5) 70.5 (6.5) <0.001
BMI, kg/m2 (SD) 23.9 (3.4) 26.7 (3.2) <0.001

Total Protein, mg/dL (SD) 6.7 (0.4) 7.1 (0.4) <0.001
Albumin, g/dL (SD) 4.1 (0.3) 4.2 (0.4) 0.194

Hemoglobin, g/dL (SD) 12.3 (1.2) 13.1 (1.8) 0.004
Total Bilirubin, mg/dL (SD) 0.6 (0.3) 0.6 (0.2) 0.946

SMI, kg/m2 (SD) 5.5 (0.6) 7.4 (1.1) <0.001
PMV, cm3 (SD) 6972.4 (1354.6) 8418.4 (1634.8) <0.001

Values are shown as the mean ± standard deviation or number (%). Statistical significance was set at p < 0.05.
BMI, body mass index. SMI, skeletal muscle index. PMV, predictive muscle volume.

The deep learning model developed for the muscle segmentation of full-leg plain
radiographs achieved a mean DSC of 0.944 (95% CI 0.936–0.951) and mean IoU value of
0.959 (95% CI 0.959–0.960) for the developmental training cohort A. For the test set images
of cohort B, it achieved a mean DSC of 0.913 (95% CI 0.910–0.916) and mean IoU value of
0.926 (95% CI 0.920–0.931).

Pearson’s correlation analysis was performed between PMV and SMI, and the correla-
tion coefficient was 0.654 (p < 0.001) (Figure 3).

The stratified fivefold AUC value of the XGBoost model after internal validation with
the test set (cohort B) was 0.988 (95% CI 0.986–0.989) (Figure 4). The classification model
had an accuracy of 0.945 (95% CI 0.941–0.950), sensitivity of 0.970 (95% CI 0.962–0.978) and
specificity of 0.926 (95% CI 0.920–0.931).

Of the 30 preoperative variables, 7 key predictors were selected for the model: age,
BMI, total protein, albumin, Hb, bilirubin and PMV. Feature importance ranks, which
indicate the relative importance of input features, were calculated to understand the
decision-making process of the XGBoost model (Figure 5). PMV was the most important
feature in the decision-making process (feature importance: 0.179). Along with the PMV,
BMI (0.164), bilirubin (0.158), preoperative Hb (0.132), albumin (0.131), total protein (0.123)
and age (0.113) were key features for sarcopenia prediction; PMV, BMI, Hb, total protein
and age also showed statistical significance (p < 0.05) in a univariate analysis.
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Figure 5. Feature importance with respect to the binary classification of sarcopenia using the XGBoost
model. Features that showed statistical significance in a univariate analysis also ranked high in
importance in the XGBoost model, with PMV being the most important features.

4. Discussion

The most important findings of this study were that our CNN-based deep learning
model showed high performance in terms of automatic muscle segmentation of full-leg
plain radiographs, while the XGBoost classification model, which included several impor-
tant patient features such as PMV, showed high performance for predicting sarcopenia.

The feature importance ranks of our sarcopenia prediction model showed that PMV
can serve as a feasible sarcopenia marker. The feature importance score of PMV suggested
that it is the most important factor for predicting sarcopenia. Along with PMV, it is
notable that several serum markers also contributed to the decision-making process. Total
bilirubin has been reported to be positively correlated with SMI, although it was not
significantly different between sarcopenia and normal groups [42]. Bilirubin is one of
the most active endogenous antioxidant molecules and is therefore thought to have a
protective effect against the progression of sarcopenia. Albumin and total protein are
considered good markers of nutritional status and were reported to be low in patients with
sarcopenia [43,44]. A low Hb level was also reported to be associated with sarcopenia,
although the pathophysiology of this relation has not been explored [50]. The selection
of serum markers that are correlated with sarcopenia indicates that the decision-making
process of the XGBoost classifier was reasonable.

To our knowledge, among all reported sarcopenia screening models, ours showed the
highest performance (AUC 0.988, 95% CI 0.986–0.989) [25,33,51,52]. We have developed
a pipeline involving both deep-learning- and machine-learning-based models, to take
both radiographic images and patient baseline characteristics into consideration (which
can be easily obtained in the preoperative clinical setting). Moreover, there have been
no previous reports of automatic muscle segmentation or quantification of full-leg plain
radiographs for sarcopenia screening. There are studies reporting the potential of chest
radiographs to analyse body composition, but not for the purpose of assessing sarcope-
nia [53]. Although surgeons can use other imaging modalities, such as CT, to investigate
the risk of sarcopenia, we evaluated muscle mass on full-leg plain radiographs as they are
routinely obtained in TKA patients and are therefore appropriate for screening purposes.
Our method could also be applied to other surgical procedures in which full-leg plain
radiographs are obtained as part of routine examinations, which would be particularly
useful in the field of orthopaedics. Our proposed sarcopenia screening method may not be
applicable in a community healthcare setting, where neither laboratory testing nor radio-
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graphic imaging is available. In the preoperative setting, on the other hand, sarcopenia can
be screened with near-perfect sensitivity and specificity using only elementary laboratory
data and full-leg plain radiographic images.

This study had several limitations. Firstly, there were some barriers to a reasonable
estimation of the muscle volume on full-leg plain radiographs. Although our deep-learning-
based model was generally successful in performing muscle segmentation on full-leg plain
radiographs, it tended to slightly overestimate the number of pixels in the muscle layer.
Moreover, the model had difficulty in segmenting the medial and the upper margin of the
thigh muscle region (gluteal fold).

The small dataset size and homogeneity of the training set may have affected the per-
formance and robustness of the model and given rise to the above issues. Specifically, the
difference in patient distribution between the training set (healthy volunteers with no
history of osteoarthritis or trauma) and test set (patients with end-stage osteoarthritis
undergoing TKA) may have decreased model performance. In addition, several images
did not have a distinct gluteal fold and were therefore labelled with reference to the op-
posite side during the annotation process, to create the ground truth segmentation mask.
Such annotation inconsistency may have contributed to the ambiguity in the training pro-
cess. Therefore, extensive training of the model with additional full-leg plain radiographs
from a wide array of patients is required to improve the accuracy of the model.

Secondly, due to fatty infiltration of skeletal muscle in patients with sarcopenic obesity,
the estimated muscle mass of patients may not always represent the actual muscle mass [54].
Features such as radio-opacity of the plain radiographs, which may reflect fatty infiltration,
will be incorporated in future studies.

For the classification model of sarcopenia, an external validation was not performed,
which raises questions regarding its validity when applied to other cohorts. In addition, the
predominance of females in our study population may have adversely affected the model
feature selection process. As the study population consisted only of patients undergoing
TKA, the key features and performance of the model may not generalise to preoperative
settings for other surgical procedures. Further studies are required to expand the number
of available training sets; the proposed model should also be applied to independent test
datasets from other institutions to verify its validity.

As the diagnostic criteria involve not only muscle mass, functional tests of muscle
strength and physical performance, such as gait speed, muscle grip strength, the get-up-
and-go test and peak expiratory flow, should also be included in the sarcopenia screening
process [33]. We expect that incorporation of such tests in future studies will render our
approach to screen sarcopenia using full-leg plain radiographs more legitimate.

In a population of 90,438 patients who had undergone primary TKA, Ardeljan et al.,
reported that 16.7% had sarcopenia. The patients with sarcopenia had longer hospital stays
and increased odds of falls, lower extremity fracture, reoperation, 2-year implant-related
complication rates, higher surgery costs and higher rates of postoperative blood transfusion
and complications within 90 days [17]. As it is an indicator of the risk of adverse events
during the postoperative period, cases considered at high-risk of sarcopenia could be
confirmed by dual-energy X-ray absorptiometry (DEXA) if necessary, which is the gold
standard for quantifying muscle mass [10]. As a modifiable risk factor [55,56], patients
suspected of having sarcopenia based on screening can also be managed prior to TKA
to improve clinical outcomes. After TKA, they should be treated with more caution and
attend more frequent follow-up visits.

5. Conclusions

Here, we presented a novel method for screening sarcopenia in the preoperative
clinical setting, using a fully automated deep learning model to automatically segment
and quantify the muscle layer on full-leg plain radiographs, and validated its potential to
predict sarcopenia in patients undergoing TKA. In the preoperative clinical setting, wherein
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laboratory tests and radiographic imaging are available, our model showed high sarcopenia
screening performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11133612/s1, Table S1: Baseline characteristics and sarcopenia
markers of sarcopenic and nonsarcopenic patients, Table S2: Laboratory data of sarcopenic and
nonsarcopenic patients, Table S3: Performance assessment of the model on Cohort A (training set)
and Cohort B (test set).
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