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Abstract: Recently, the dangers associated with face generation technology have been attracting much
attention in image processing and forensic science. The current face anti-spoofing methods based on
Generative Adversarial Networks (GANs) suffer from defects such as overfitting and generalization
problems. This paper proposes a new generation method using a one-class classification model to
judge the authenticity of facial images for the purpose of realizing a method to generate a model
that is as compatible as possible with other datasets and new data, rather than strongly depending
on the dataset used for training. The method proposed in this paper has the following features:
(a) we adopted various filter enhancement methods as basic pseudo-image generation methods for
data enhancement; (b) an improved Multi-Channel Convolutional Neural Network (MCCNN) was
adopted as the main network, making it possible to accept multiple preprocessed data individually,
obtain feature maps, and extract attention maps; (c) as a first ingenuity in training the main network,
we augmented the data using weakly supervised learning methods to add attention cropping and
dropping to the data; (d) as a second ingenuity in training the main network, we trained it in two
steps. In the first step, we used a binary classification loss function to ensure that known fake facial
features generated by known GAN networks were filtered out. In the second step, we used a one-class
classification loss function to deal with the various types of GAN networks or unknown fake face
generation methods. We compared our proposed method with four recent methods. Our experiments
demonstrate that the proposed method improves cross-domain detection efficiency while maintaining
source-domain accuracy. These studies show one possible direction for improving the correct answer
rate in judging facial image authenticity, thereby making a great contribution both academically and
practically.

Keywords: Multi-Channel Convolutional Neural Network (MCCNN); face anti-spoofing; attention
learning; self-attention; data augmentation; deep learning; Generative Adversarial Network (GAN);
Weakly Supervised Learning (WSL)

1. Introduction
1.1. Fake Image Generation Technology

In response to rapidly developing fake image generation technology, existing re-
searchers have developed/introduced many effective methods and discussed various
problems encountered in the research and development process. The purpose of digital
image forensics research is to identify a forged image to avoid damage caused by the
image. In this paper, the main purpose is to detect fake images generated by Generative
Adversarial Networks; therefore, we discuss the recent developments these networks below
in some detail.

Most detection algorithms for fake faces are performed at the pixel level. As this prob-
lem is essential for image analysis and works under the umbrella of binary classification,
using a conventional Convolutional Neural Network (CNN) is a practical approach. This
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method uses a high-pass filter to preprocess the image and then a five-layer neural network
to train the processed data (2018) [1]. Although it is a simple CNN model, its performance
is good enough for recognizing fake images with homology problems. However, a major
drawback is the fragility of the method. To counter this problem, Cozzolino et al. (2018) [2]
proposed a new network structure containing two fully connected layers that act as the en-
coder and decoder for the downsampling and upsampling functions, respectively. The fun-
damental principle behind this approach is the difference between real and fake images
after downsampling and upsampling, however, the fatal flaw of this method is that it can-
not satisfy the detection of larger images. Quan et al. (2018) [3] introduced an approach for
detecting the presence of subtle generative traces in fake images by cropping large images
that are difficult to train and feeding them into a neural network. Later, they cropped the
images again to a fixed size during the neural network transfer process, then used a voting
mechanism to determine the authenticity of the images.

Goodfellow et al. (2014) [4] proposed a new training model for unsupervised learning,
the so-called Generative Adversarial Networks (GANs). The other proposed model is the
discriminative model. One of the ideas mentioned in the above paper is that when the
performance of both the generative model and the discriminative model is good enough,
the generative model must beat the discriminative model, which is the convergence of
the generative adversarial network. Initially, GAN networks can only generate images of
unknown meaning.

Subsequently, GAN networks have seen considerable development thanks to their
significance in forensic science. Radford et al. (2015) [5] first considered a GAN network
using a deep neural network structure, called a Deep Convolutional Generative Adversarial
Network (DCGAN). The same consideration was taken into account for extending the CNN
network. To accomplish this task, the generator of the GAN network uses the ReLU (Recti-
fied Linear Unit) activation function and the Tanh (Hyperbolic tangent) activation function,
and the discriminator uses the activation function of Leaky ReLU (Leaky Rectified Linear
Unit). This approach has demonstrated excellent results, gradually making GAN networks
controllable in the field of image generation (see Figure 1). Later, Isola et al. (2017) [6]
delineated the possibility of GAN networks in the field of “style migration”. They first
proposed the Pix2Pix network, which was not very mature initially. This network requires
a certain similarity between the image in the source domain and the image in the target
domain itself. Furthermore, the proposed CycleGAN (2017) [7] introduces the concept of
an attention mechanism, which has become popular in the field of GAN networks.

Figure 1. High-quality face photos generated by GAN [8].
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Goodfellow et al. (2019) [8] proposed the concept of the adaptive GAN network model,
a novel style transfer architecture that helps in learning normalized latent representation.
Similarly, Brock et al. (2018) [9] proposed the BigGAN model, which improved the variety
and stability of the images generated by the GAN model and reduced the model training
time. Later, the multi-headed attention mechanism proposed by Daras et al. (2020) [10]
solved the computational speed problem by sparsifying the attention feature map. In 2019,
the ProGAN network model proposed by Gao et al. (2019) [11] made the fake image
generation technology by the GAN networks more practical. They proposed a new training
mechanism, starting from 4 × 4 images and gradually making the generated images more
prominent, and proposed a smooth transition. This approach is more stable, and efficiently
builds a GAN model that can generate high-quality large images. Recently, the StyleGAN
(2019) [12] model proposed by NVIDIA has shown a mature face generation effect. This
model inherits Gao’s idea and adds a style block module to control the image’s striking and
obtained features. However, due to the “droplet artifact” problem in StyleGAN, Karras et al.
(2020) [13] referred to the Multi-Scale Gradients-GAN (MSG-GAN) (2019) [14] to avoid the
problem of over-representation of certain features during training by abandoning the fully
connected layer and using a hopping approach. In this regard, the development of GAN
networks in recent years has gradually gone from uncontrollable to controllable, from a
single domain to cross-domain, and from small images to larger ones.

Due to the continuous development of GAN networks, generated virtual images have
gradually become challenging to discern with human eyes alone, and can even have uses
beyond humans. Recently, fabricated images of various avatars, celebrities, and even
politicians have been released on many different media platforms, often while the audience
is unaware of it [15], having a relatively negative influence on society. For example, the so-
called “deepfake” is a technology that relies on the concept of deep learning technologies
to create forged content. In 2018, comedian Jordan Peele made news when he posted a
deepfake video of former U.S. President Obama insulting former U.S. President Trump,
warning of the dangers of deepfake media [16]. Therefore, based on various contemporary
technologies in the field of image recognition, researchers began to conduct considerable
related research on this network, using features such as pixel points, frequency maps, co-
occurrence matrices, manual feature extraction, and neural networks to construct detection
tools leading to existing GAN models becoming more powerful. Although there are already
many effective methods for attaining solutions, the problems of low accuracy and difficult
generalization remain, leaving room for further improvement.

1.2. Problem Statement and Motivation

(1) Vulnerability of existing models in realistic application scenarios
The existing generative adversarial neural networks demonstrate excellent perfor-

mance in detecting images generated by individual kinds of GAN networks; however, their
major shortcoming is that the proposed models are generally very fragile. That is, if the
method of generating fake faces (images) is replaced, then the detection performance of the
whole model is drastically reduced and can even directly fail. This leads to the effectiveness
of the detection model being drastically reduced in real-world settings.

(2) Dataset limitations
There are different ways to discuss such problems in general. For example, industrial-

grade detection systems use millions of data items or even more as training sets to con-
tinuously improve the model, such as in target detection and image quality restoration.
However, the resulting features of fake images generated by GAN networks may appear
unrelated due to differences in the generation method used by the individual network.
If the method uses large-scale datasets, obtaining results comparable to the general model
is impossible. Therefore, the general nature of building a dataset of fake images is a
challenging problem to overcome.

(3) Difficulty in ensuring accuracy and generalization ability at the same time
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Marra et al. (2019) [17,18] considered the generalization problem by introducing
the reinforcement learning method based on distillation learning. In this approach, after
distillation of the neural network trained in one source domain, it is added to another
target domain for re-training by retaining several key parameters that perform well in both
domains. However, as the number of GANs is very large, the practical applications of this
approach are limited. In other words, the difficulty in solving this problem is the existence
of various GAN networks and complex feature extraction from fake images. Hence, it is
not easy to maintain recognition accuracy while simultaneously maintaining generalization
ability and robustness.

1.3. Contributions and Paper Outline

This research aims to develop a method under the umbrella of a one-class classification
problem to successfully judge facial image authenticity. The contributions of this paper can
be summarized as follows:

• We adopt Gaussian blur, Gaussian noise, and Homomorphic filter enhancement
methods as basic pseudo-image generation methods for data enhancement.

• An improved Multi-Channel Convolutional Neural Network is used as the main
network to accept multiple preprocessed data individually, obtain feature maps,
and extract attention maps.

• Data are augmented using weakly supervised learning methods to add attention
cropping and dropping to the data.

• The main network is trained in two steps, employing (a) a binary classification loss
function to ensure that known fake facial features generated by known GAN networks
are filtered out and (b) a one-class classification loss function to deal with different
GAN networks or unknown fake face generation methods.

• A comparison of our proposed method against four recent methods in cross-domain
and source-domain along with a numerical and graphical demonstration of the experi-
mental results.

This paper consists of five parts. In Section 2, we introduce the technical background
on which this paper is based, including the attention mechanism in WSL networks, the com-
position and structure of MCCNN, and the principle and application scenarios of the
self-attention layer. Next, the overall proposed network architecture and the proposed
improvements are disclosed. All the details are discussed in this section, including the
training process and the data augmentation method of the Multi-Channel Convolutional
Neural Network. A one-class classification model trained in two steps is presented here
as well. In Section 3, the applied dataset used for training and testing is delineated, and
the training environment of the device and the evaluation metrics are presented. Finally,
Section 4 offers an overall summary of works related to this paper, introduces the future
development and exploration of the topic and related research, and lists the main current
problems in the field.

2. Proposed Methods

This section introduces the method proposed in this paper in detail. In Section 2.1,
we discuss the background knowledge of the techniques proposed in this paper. First,
the technical background of the effective data augmentation method is introduced. This can
be used to address the shortcomings of the fake face dataset and avoid being limited to local
features. Next, we describe the MCCNN that we use to increase the model’s robustness
and discover the different features that may appear under different treatments. Section 2.2
introduces the process and structure of the proposed MCCNN-based discriminant model
in this paper. Section 2.3 provides a detailed explanation of the data augmentation and
application methods based on WSL. Section 2.4 discusses the selection of the proposed
methods for improving the accuracy of the final model and assisting in feature extraction.
Finally, Section 2.5 introduces the generation method of the entire model, which is a
one-class model using two loss functions.
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2.1. General Definition and Technical Background
2.1.1. Weakly Supervised Learning

In order to prevent the occurrence of over-fitting and to further improve the overall
performance of deep learning training models, data augmentation is generally used to
increase the number of features as well as the variability of the dataset [19,20]. Furthermore,
data augmentation methods are often applied in the computer vision domain, e.g., cropping,
flipping, scaling, and Gaussian noise, respectively [21]. The principles of their respective
roles are as follows.

Cropping/random cropping: one of the parts from the original data image is randomly
cropped, and after the sample crop is then expanded to the size of the original data image
for data input [22].

Flipping: rotates the image to a certain angle, with the center as the axis.
Scaling: similar to cropping in visual effect, the image is enlarged or reduced in

proportion and then intercepted or enlarged in a certain area.
Gaussian noise: a noise class in which the probability density function follows a

Gaussian distribution. Neural networks may train meaningless high-frequency features,
leading to overfitting phenomena. The method of artificially adding noise is adopted to
distort the image artificially. Gaussian noise is one of the more common methods of this
type [23].

These conventional data augmentation methods often use a random approach to the
data augmentation mechanism. The ”Weakly Supervised Data Augmentation Network
(WS-DAN)” proposed by Hu et al. [24,25] introduces the idea that Weakly Supervised
Learning (WSL) can be used to generate an “attention map” that indicates the salient
features of the target to be detected/recognized during training. This generated “attention
map” is later used in the subsequent training to perform targeting data augmentation.

2.1.2. Bilinear Attention Pooling

The method proposed by WS-DAN for extracting attention maps is called Bilinear
Attention Pooling (BAP). This method is based on the principle of bilinear pooling [25].
This is the most fundamental module among WS-DAN and the raw material used for
subsequent operations. The key strategy of BAP is to obtain the feature map and the
attention map through the network backbone. The attention map’s main part delineates
the target’s specific part, which is the coordinates of the main feature. The corresponding
distribution of feature maps can be obtained using the dot product of the elements of the
attention map and the feature maps. The method is summarized in Equation (1):

Ff ean = Fattn � Ff ea (n = 1, 2, . . . , Q) (1)

where Ff ea represents the feature map and Fatt represents the attention map. The � product
delineates element-wise multiplication. Suppose there are a total of P feature maps and Q
attention maps, resulting in the nth part feature map.

Afterward, an additional feature extraction function K(•) is required to extract the
obtained local features, such as the global average pooling, global max pooling, or direct
convolution. Thus, the attention feature corresponding MAP to the nth can be obtained,
which is the so-called Q-dimensional vector. It is summarized in Equation (2):

MAPn = K
(

Ff ean

)
(2)

Finally, the feature maps of each division are combined to obtain the feature matrix of
our target, which is calculated using Equation (3):
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T = λ(Fatt, Ff ea) =


K
(

fatt1 � Ff ea

)
K
(

fatt2 � Ff ea

)
. . .

K
(

fattQ � Ff ea

)

 =


PAF1
PAF2

. . .
PAFQ

 (3)

PAF is the part of feature map λ(Fatt, Ff ea), denoting the final generated bilinear
attention pool, which is the discriminative feature T computed by the discriminative model
for the object; T is an PQ-dimensional vector.

2.1.3. Attention Regularization

Thanks to the mutual integration of multiple feature maps, this approach avoids the
mutual influence caused by completely different features for the same object in the same
situation. Thus, it is necessary to ensure that the features extracted in this case are the same.
A loss function based on center loss [26] is used here, as illustrated in Equation (4); Pc is the
global feature center, and the loss function is denoted as Latt:

Latt =
Q

∑
n=1
‖PAFn − Pcn‖

2
2 (4)

Here, Pcn can be initialized to 0, and the value is updated using the Equation (5), while
δ controls the update rate of Pcn :

Pcn+1 = Pcn + δ(PAFn − Pcn) (5)

2.1.4. Coordinate Location of Essential Features Based on Feature Attention Map

In image recognition, especially in deep learning, background noise other than the
target to be recognized can significantly impact the final result. In addition, there is a need
to avoid making the features one-sided due to an inevitable feature of a class of data being
too prominent. The random attention maps generated by BAP can be defined as FA to
guide the data augmentation. Later, this attention map is normalized. The normalization
process summarized in Equation (6):

F#
An

=
FAn −min(FAn)

max(FAn)−min(FAn)
(6)

Figure 2 illustrates the architecture of the Attention Guide (AG). For the attention
feature maps generated by BAP, we performed two operations: Attention Cropping and
Attention Drop.

Attention
Maps

Augmentation
Map

Crop Mask

Drop Mask
Attention 
Dropping

Attention 
Cropping

Images

Augmented 
Image

Figure 2. The architecture of Attention Guide [25].

We processed F#
An

in two ways. The first was used to obtain the crop mask directly
from F#

An
, which was calculated using Equation (7). Then, we used a minimum bounding

box to cover all the ones in the MCROP and MDROP masks. Next, we went through the
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bounding box to crop the training data. After that, the training data were scaled to the
original data size in order to clarify the more critical information. This process is known as
attention cropping, where ηcrop is the set threshold:

MCROPn(i, j) =

{
1, F#

An
(i, j) > ηcrop

0, otherwise.
(7)

We masked the most prominent feature coordinates in order to explore other features.
The calculation method is summarized in Equation (8). This process is the so-called
attention dropping:

MDROPn(i, j) =

{
0, F#

An
(i, j) > ηdrop

1, otherwise.
(8)

The main scenario of attention dropping deals with the situation where one feature
of a data is too prominent, and multiple attention maps may only pay attention to the
same coordinate where the feature is located. Attention dropping can significantly alleviate
this problem.

2.1.5. Multi-Channel Convolutional Neural Network

George et al. [27] proposed a novel Multi-Channel Convolutional Neural Network
architecture based on LightCNN [28] for problems related to portrait detection. This
network architecture addresses the inability to train a deep architecture from scratch when
the dataset is limited. A proposed multi-channel neural network that utilizes a pre-trained
face recognition model is thus constructed. The structure of the network is illustrated in
Figure 3.

Unlike the common intention of uncovering high-level features for a particular task,
Pereira et al. [28] proposed an approach where the shared high-level features are hetero-
geneous and retrained only for the lower layers. They delineate in their work that the
parameters of the CNN can be segmented, with a part shared among different channels as
higher-level features and only the lower-level features (Domain-Specific Elements) adjusted.
Furthermore, George et al. [29] improved on this by choosing not to make the information
representation of multiple channels the same, instead choosing to obtain complementary
information jointly obtained by multiple channels. The features from different channels
can then be linked; the decision boundaries are represented by backpropagation using a
fully connected layer.

Visual(RGB)

Channle-2

Channle-3

Channle-4

Face and 
landmark detection

Preprocessing

Preprocessing

Preprocessing

Preprocessing

Adaptive layers
Domain Specific Units

(DSU)

Shared layers

Full connected layers

Concatenated feature
(1024 D)

10 Nodes

1 Node

Images from 
synced cameras

Figure 3. Architecture of Multi-Channel Convolutional Neural Network (MCNN) [27].

This MCCNN model is designed based on the LightCNN model. LightCNN [28] has
the characteristics of using fewer parameters and pre-trained face features. LightCNN does
not use the common ReLU activation function, instead employing the Max-Feature Map
(MFM) [30] operation to suppress low-activation neurons in each layer. LightCNN uses
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a pre-trained model on face data expanded to four channels for data reception. After the
features from multiple channels are convolved and mixed using Domain Specific Units
(DSU), they are input to a fully connected layer using a sigmoid activation function for final
feature extraction. The fully connected layer is adjusted for the problem of faces. In cases
involving a large amount of data, the weights of the pre-trained face recognition network
can be used. The goal is to deal with possible overfitting problems. The fully connected
layer is then divided into two layers; the first layer has ten nodes, and the second layer has
only one node.

2.2. Architecture of the Proposed Network

The overall architecture of the proposed network is shown in Figure 4. The basic
structure of the network is inspired by Multi-Channel Convolutional Neural Network
(MCCNN) [27]. It includes a data augmentation module based on WSL and a one-class
classification module taking into account two training sessions: (a) binary classification
and (b) one-class classification, as well as the basic training process of the original network.

It is divided into four blocks.
Block A—data input represents the input of the entire network.
Block B—the main network, which is the core structure of the network, including the

convolution pooling layer and the fully connected layer.
Block C—weakly supervised data augmentation, which shows the flow of the data

augmentation method utilizing attention mapping.
Block D—a two-step training and evaluation process; the single-class discrimination

model is generated using the two-class loss function and the single-class loss function
together to fix the features.

In this paper, we introduce a weakly supervised learning mechanism for fine-grained
classification to discover the apparent differences between real and fake faces, considering
the difficulty of generalization and building a complete dataset for the problem of fake
faces generated by GANs. Furthermore, we connect the binary classification problem of
recognizing real and fake faces with the traditional portrait anomaly detection problem [29].
Known fake face types and unknown fake face types are sliced using the training of the
two-category classifier and the one-class classifier. Here, the two categories are True and
NotTrue; the NotTrue category includes the fake face category and the unknown category.
Finally, a feature model of the real faces generated by the GAN is finally obtained and a
traditional judgment based on probability is applied; if the probability is greater than 50%,
a face can be judged as True.

As shown in Block B in Figure 4, the proposed MCCNN is a multi-channel convolu-
tional neural network that can accept multiple pre-processed data separately for feature
recognition. This network convolves the features of each channel separately using Domain-
Specific Elements (DSEs), then sums the features with complementary properties. At first,
the features are directly fed to the fully connected layer for feature fixation and the feature
map is obtained. Later, the attention map is extracted and the data are augmented using
WSL methods to add cropping and dropping attention maps into the initial training data.

Moreover, in Block C, the data are augmented using WSL, and the cropping attention
map and dropping attention map are added to the initial training data. Finally, in Block D,
we employ the self-attention layer to construct pixel–dot connections and then add the
features to the fully connected layer after obtaining the complementary features in this
training. After obtaining the final features, we use the loss function of binary classification
and the loss function of one-class classification for training. First, the known fake face
features generated by known GANs are excluded, then the real face features are aggregated
to deal with other types of GANs or unknown false face generation methods.

This approach generates a discriminative model that allows the detection of false faces
generated by GANs without limiting the features of a particular GAN and can be separated
from the false face dataset by discovering the “differential features” of real faces to continue
to determine the results. Therefore, it is possible to improve the generalization ability and
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reduce the vulnerability of the overall model while maintaining the accuracy of recognition
of the source domain. Figure 4 explains the overall training process, data augmentation,
and discriminative model generation. After these processes, a one-class classification model
that improves generalization performance while maintaining accuracy is produced.

Figure 4. The architecture of the whole network. In this figure, the fake face is from the open-source
StyleGAN dataset and the real face is from the open-source FFHQ dataset.

2.3. Data Augmentation and Preprocessing

Following Block A in Figure 4, there are two main data augmentation and prepro-
cessing modules, one of which is the primary data augmentation module. The key role of
this module is to preprocess the original data image, increase the robustness of fake face
recognition by manually adding noise to the original image, and try to avoid detecting
only a single feature. We screened out the following five preprocessing methods based on
previous research and experiments.

Gaussian blur: known as Gaussian smoothing, its primary generation method can be
summarized as convolution with a normal distribution, a so-called low-pass filter for the
image.

Gaussian noise: Gaussian noise is a kind of hand-added noise, which includes un-
dulating noise, cosmic noise, thermal noise, and scattered grain noise. The probability
distribution function of the noise follows a normal distribution.

Motion blur: known as motion blur, it stimulates the apparent traces of blurring and
dragging when the image shows motion effects.

Homomorphic filter enhancement: homomorphic filtering acts in the frequency do-
main. Its role is to adjust the image’s grayscale range to enhance image detail by eliminating
uneven illumination without losing image detail in bright areas. It can compress the image
brightness range and enhance image contrast, and attempts to suppress the low-frequency
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energy, which reduces the dynamic range and increases the higher frequencies, enhancing
the image’s contrast.

Fourier transform (magnitude spectrum): Fourier transform mainly turns the signal
in the time domain into the signal in the frequency domain, which is used for image noise
reduction, enhancement, and other processing.

As summarized in Table 1, we used our models to screen each of these five prepro-
cessing methods using ProGAN as the source domain and cross-domain StyGAN2 as the
detection generalization performance. The five preprocessing methods are:

1. Gaussian blur
2. Gaussian noise
3. Motion blur
4. Homomorphic filter enhancement
5. Fourier transform (magnitude spectrum)

Table 1. Results of different combinations.

Combination ProGAN StyleGAN2
1 + 2 + 3 98.3% 82.4%
1 + 2 + 4 98.5% 83.7%
1 + 2 + 5 98.3% 82.1%
1 + 3 + 4 98.9% 85.1%
1 + 3 + 5 98.3% 80.9%
1 + 4 + 5 98.2% 83.4%
2 + 3 + 4 98.4% 84.1%
2 + 3 + 5 95.1% 81.9%
2 + 4 + 5 98.3% 82.4%
3 + 4 + 5 98.5% 82.1%

The results disclosed in Table 1 demonstrate the accuracy rates (in percentages) of
different combinations of preprocessing methods. Here, the combination of Gaussian
blur, motion blur, and homomorphic filter enhancement has the highest accuracy rate,
followed by the combination of Gaussian blur, Gaussian noise, and homomorphic filter
enhancement and the combination of Gaussian noise, motion blur, and homomorphic filter
enhancement, both for source-domain and cross-domain performance. Thus, we chose
these three methods as our primary data augmentation method. The preprocessed data are
labeled as DATA1 in Figure 5. After preparing DATA1 (which includes both preprocessed
and original data), they were imported into the MCCNN model. Later, we obtained the
attention map through basic training, which is shown in Figure 5. This part uses a basic
MCCNN architecture; after the second fully-connected layer assigns the data weights, we
get the feature map, which is the basis for the next step of data augmentation.

2.3.1. Data Augmentation Based on Weakly Supervised Learning

As illustrated in Figure 5, for Block C, the feature map is obtained from the fully
connected layer. We define the obtained feature map as Ff ea.

Following the idea proposed by CNN visualization [31], we obtained the coordi-
nates for feature extraction. We take the forward calculation method and perform a 1× 1
convolution operation for Ff ea. The resulting process is illustrated using Equation (9):

Fatt = F(Ff ea) =
TOL⋃
Q=1

FattQ (9)

where TOL represents the total number of generated attention maps, as the attention model
is composed of multiple overlapping combinations of attention maps. This is proportional
to the total number of attention maps for the accuracy of the whole model. According
to Hu et al. [27], the accuracy of the whole model stabilizes when the number reaches
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32; thus, we set TOL to 32. Then, we used the attention map to obtain the DATA2, as
shown in Figure 5. Later, we performed attention cropping (sometimes known as interest
domain selection) and attention dropping on the obtained attention map by setting a
hyperparameter. If the value of a pixel is greater than this hyperparameter, it is changed to
1, and if it is less than this, it is changed to 0. The part that becomes 1 is the area to focus
on. After obtaining this region, it is resampled to the original image size and used as an
enhanced dataset for training. Attention dropping is used to erase this part from the image
and use the rest as the training set to participate in the training of the model [25].

Figure 5. The process of data augmentation and preprocessing. In this figure, the fake face is from
the open source StyleGAN dataset and the real face is from the open source FFHQ dataset.

2.3.2. Removing Low-Impact Influence Part

Hu et al. [27] proposed using the attention map to eliminate the influence of the
low-impact part when using the attention map for fine-grained classification in object
detection. As shown in Figure 6, with the information obtained by the attention map, we
can obtain the concentrated area of the face to better discriminate between true and false
information. We then can focus on this part of the area for training. As we have located the
face and eliminated almost all the background information, we only select 80% of the parts
for interception. After processing, most low-impact information on the face is eliminated.
Then, the corresponding features are processed in the next step.

Figure 6. GAN network low-resolution to high-resolution feature mapping. In this figure, the fake
face is from the open source StyleGAN2 dataset.
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2.4. The Process of Training

We obtained the desired data through the basic training process of the MCCNN and
data augmentation. After acquiring these data, we began the formal model training, with
the underlying network architecture the same as that used for data augmentation based
on the Weakly Supervised Attention (WSA) mechanism. The formal training process is
illustrated in Figure 7. The two main points worth mentioning are (a) the inclusion of
a self-attention layer to account for global features and (b) the training of a particular
one-class classification model that borrows two loss functions together. These two points
are introduced in detail in the following sections.

Figure 7. The process of training. In this figure, the fake face is from the open source StyleGAN
dataset and the real face is from the open source FFHQ dataset.

2.4.1. Self-Attention Layer

As shown Block B in Figure 7, after obtaining enough data and locating the feature
coordinates of the image, we need to think about how to maximize the use of these data.
There is another essential difference between the fake image generated by the GAN network
and the real face image, namely, the difference in the overall texture features of the image.

Reason for using self-attention layer: Figure 8 shows one of the weaknesses of con-
temporary GAN network-generated images, as summarized by Mi et al. [32]. They point
out that during the development of GAN networks, the developers chose transposed
convolution to provide the most suitable upsampling method for GAN networks [33].
However, such a sampling method has a severe problem because of a basic general genera-
tion process in the existing best GAN generation networks which requires re-upgrading a
low-resolution image layer by layer and then expanding it into a high-resolution image.
Figure 8 shows the relationship between small and large feature maps. We can find that the
overlapping part is minimal and the non-overlapping part comes from learning separate
local information, which has independent randomness. Therefore, the conclusion is that
the images generated by GAN networks lack the global features of real images. In simple
terms, it is not easy to distinguish an image generated by the GAN network from a real face
image when viewed by human eyes, as it consists of many features from the real image
in the local area. These local features are combined to deceive the human eye. Although
Odena et al. [34] have proposed a number of methods to compensate for the lack of global
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features, it does not solve the fundamental problem. The global features are a weakness of
GAN network generation that can be an essential reference for detection.

Figure 8. GAN network building images [29].

Principle of self-attention layer: Figure 9 shows the basic structure of the self-
attention layer. The essence of the attention mechanism is to provide a focus similar
to that of humans in machine learning rather than using a single machine cycle in the
training process. Vaswani et al. [35] originally proposed the application of a self-attention
layer in the field of natural language to allow the model to take into account the overall
meaning of a sentence rather than being limited to only the relationship between adjacent
words. The convolutional neural network’s convolutional kernel covers a minimal area,
and it is only by stacking multiple convolutional layers that the perceptual field of the
network can be expanded. This has the same limitations as natural language processing,
where only the relationships between adjacent words can be noticed at the beginning.
The purpose of using the self-attention layer is to consider the relevance of any two pixels
in the image, allowing the global features of the whole image to be obtained.

In Equation (10), n is the coordinate of the calculated pixel point. The operation
matrix is the same Query, Key, and Value as used for attention [35]. The uniqueness of the
self-attention layer is that Query and Key are extracted from a sample pool. By placing
the Query into the original sample, comparing with all the keys, and then comparing the
similarity, the ultimate goal is to obtain the correlation value of all the pixels to the selected
pixels in the feature map. Here, Wei is the weight matrix and Ff ean is the features of pixel n.

Quen = Ff ean ·Weique

Keyn = Ff ean ·Weikey

Valn = Ff ean ·Weival

(10)

The attention Fatt can be obtained by normalizing and weighting the sum of the
correlation values among all combinations using Equation (11):

Fatt
m
n = softmax(E) =

Standardize
(
Quen · skT

t
)

∑t Standardize(Quen · skT
m)

(11)

Then, we can obtain the global features FOA f ea using Equation (12):

FOA f ea = ∑
t

Fatt
t
n ·Valt (12)

This approach treats all the effective pixels as neighboring pixels after summarizing
them, in other words, after reducing most non-active pixel points. However, the problem is
broken by using global features that are difficult to focus on in GAN networks.
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Figure 9. The operating principle of self-attention [29].

2.4.2. Two-Step Training of One-Class Classification

Due to the variety of GANs and the speed of update iteration (see Block D), it is
difficult to improve the robustness of the whole model even if it has good performance for
the source domain dataset, which is insufficient to generate images in practical applications
with a large number of rapidly updated GANs. Therefore, we consider the one-class
classification method here.

Binary Classification Loss–Binary Cross-Entropy: In this step, we use the BAP to
combine the feature map and the attention map to generate the feature matrix, then use the
loss function to fix the weights for training. The first is the most traditional loss function
for binary classification, namely, binary cross-entropy, which is calculated by Equation (13),
with positive samples labeled as 1 and negative samples labeled as 0:

LossBCE = −(y log(Fpos)) + (1− y) log(1− Fpos) (13)

where y is the dataset marker (marked as 1 when it is an accurate picture and 0 when it
is a false picture), Fpos is the probability of both occurring, and the sum of positive and
negative samples is 1.

One-Class Loss Function: In this step, following the ideas of Wen et al. [26] and
Hadsell et al. [36], a loss function is summarized that considers both the distance within
a class and the distance between classes (called the OCCL) [29]. The main principle is to
concentrate on a certain class by increasing the distance between classes in the loss function.

The formula for the loss function can be expressed by Equation (14), where Fwei denotes
the weight, Flab is the label of the selected class target, P is the selected operation’s target,
FdisPC is the distance from the target to the center, Lenline is the margin, PC is the coordinates
of the center, λ is a scalar that prevents changes in the center of the class on a small scale,
and n is the displacement from the last batchPc that occurred during the training process:

LossOCCL(Fwei, Flab, P) =Flab
1
2

F2
disPC + (1− Flab)

1
2

max(0, Lenline − Flab)
2 (14)

FdisPC =
√∥∥Pi − PC

∥∥2
2

(15)

PC = P̂C(1− λ) + λ
1
N

N

∑
i=1

ni (16)
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2.5. Final Model–Gaussian Mixture Model

The final loss function used to fix the training weights is illustrated by Equation (17);
here, θ is set to 0.5:

Loss = (1− θ)LossBCE + θLossOCCL (17)

After this, we build the final classification model using the Gaussian mixture model.
The Gaussian mixture model combines M multivariate single Gaussian models. This
mixture model has good mathematical properties and excellent computational performance.
Following [37], it can be expressed using Equation (18).

Fpsum(P | Θ) =
I

∑
I=1

FpI (18)

Here, P is the selected target, Fpsum is the probability of the overall model, Fp is the prob-
ability of the individual Gaussian model, and Θ is the expectation, variance/covariance,
and probability of occurrence in the mixture model for each sub-model. For the Gaus-
sian mixed discriminant model, the parameters were chosen to maximize the expectation
and five objectives were chosen, that is, I = 5 for each objective for the covariance matrix.
The calculation of scores selects the log-likelihood score using Equation (19), as summarized
below:

Fsco = log(Fpsum(P | Θ)) (19)

3. Datasets, Experiments, and Results

This section mainly discusses the proposed model’s performance using two sets of
experiments. Experiment 1 aims at the essential discrimination accuracy and evaluates the
model’s performance for the source domain (the same type of data as the training data set).
Experiment 2 tests the model’s generalization ability and then measures and compares its
detection ability for cross-domain data.

Section 3.1 illustrates the types and characteristics of the datasets used. In Section 3.2,
the experimental setting and parameters are discussed. Section 3.3 delineates a rough
introduction of the recent methods for making such comparisons and presents the experi-
mental results, followed by a summary. Finally, Section 3.4 summarizes the findings and
conclusions of the whole experiment.

3.1. Dataset

The datasets used in the experiment are public datasets and data generated by GANs,
as described in Section 1.1.

Flickr-Faces-High-Quality (Flickr-Faces-HQ): This dataset [12] itself was created as
a benchmark for coping with GANs. NVIDIA has made it open source for the community
since 2019. It incorporates 70,000 high-definition face images in PNG format with a resolu-
tion of 1024× 1024. Among the differences are age, race, and image background. As shown
in Figure 10, the attributes of faces include age, gender, race, skin color, expression, face
shape, hairstyle, face pose, with or without eyes (i.e., sunglasses), hats, hair accessories,
scarves, etc., for a full range of variations. This database is widely used for classifying
face attributes or semantic segmentation models of faces. It is sourced from Flickr by
crawling, uses dlib for face alignment and cropping, and removes non-real face images
such as statues.

ProGAN: A model proposed by Gao et al. (2019) [11]. NVIDIA uses ProGAN to
generate images with 1024 × 1024 resolution. The GAN model generates efficient and
stable images gradually growing larger in size.

StyleGAN: This GAN model proposed by NVIDIA in 2019 is based on ProGAN [12],
which removes the input layer, takes the model of a nonlinear mapping network as an
input, and enhances it by first generating eye-catching features and then generating detailed
features. The resolution is 1024 × 1024 pixels.
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Figure 10. FFHQ Dataset [12].

StyleGAN2: NVIDIA’s latest proposal to address the shortcomings of StyleGAN.
In StyleGAN2 [14], they modify the generator architecture and the sample normalization,
thus removing the artificial traces and making the generation results more controllable.
The resolution is 1024 × 1024 pixels.

BigGAN: DeepMind proposed BigGAN [9] in 2018, with the primary goal of closing
the gap in fidelity and diversity between images generated by GANs and real-world images
from the ImageNet dataset. BigGAN trains generative adversarial networks at the most
significant scale and investigates the instabilities specific to this scale. The resolution is
1024 × 1024 pixels.

DeepFake: In late 2017, a Reddit user named “deepfakes” [38] used celebrity faces
to generate pornographic video conversions and posted them on the web. This quickly
spread across media and networks, and many new deepfake videos have begun appearing.
The resolution is 1024 × 1024 pixels.

DCGAN: DCGAN is a combination of a deep convolutional network and GAN pro-
posed by Radford et al. (2015) [5]. It mainly replaces the generative and discriminative
networks with two convolutional networks (CNN). The purpose is to improve the quality
of the generated samples and the convergence speed of the network. The resolution is 1024
× 1024 pixels.

VQ-VAE 2.0: In response to the possible problems of mode collapse and insufficient
diversity in BigGAN, DeepMind proposed the VQ-VAE-2 generative model (2019) [39].
The variational autoencoder “VAE” is an unsupervised learning method that belongs to a
robust variant of AutoEncoder.

3.2. Environment Settings

The operating system of our experiments was Ubuntu 18.06, and the device’s CPU
was an Intel(R) Core(TM) i9-10940X CPU@3090GHZ. The GPU used in this work was an
NVIDIA Corporation GA102 (GeForce RTX 3090). The variable values of the CNN network
were referred to as LightCNN [28]. The size of all images was set to 256× 255. The nodes of
the fully connected layer were set to 10 and 1, and the variable θ that assigns weights to the
two loss functions was set to 0.5. Furthermore, the training data were randomly selected
from the original dataset and the test data were randomly selected from the remaining
data. After several trials and errors, 50, 100, 150, 200, 250, 350, 500, and 250 were selected
as epochs. Each set of experimental data was tested seven times, then the average of the
middle five times was obtained after removing the best and worst performances.

3.3. Experiments and Results
3.3.1. Experiment 1: Scrutinizing Performance of the Source Domain

Experimental parameters: As summarized in Table 2, we examined the performance
of the recent methods in the source domain (FFHQ, ProGAN). Referring to [40], a standard
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selection of measures was used, namely, (a) accuracy: the percentage of data that correctly
classify fake and real faces in the entire test dataset; (b) precision: the proportion of ground
truth real faces among all predicted real faces; (c) recall: the proportion of data successfully
predicted as a real face in all ground truth real face data; and (d) F1-Score: the harmonic
mean of precision and recall for each method for evaluation. For this experiment, we
trained the model with 12,000 real faces from FFHQ and 12,000 fake faces from ProGAN
with resolution 1024× 1024, with the images bilinearly interpolated and transformed to
256× 256 size. The test was conducted with 2000 real faces from FFHQ and 2000 fake
faces from ProGAN with the resolution of 1024× 1024, and the images were bilinearly
interpolated and converted to 256× 256 size.

Table 2. Result 1: performance of the source domain.

Method FFHQ ProGAN

Ours

Accuracy 0.994 0.989
Precision 0.990

Recall 0.994
F1-Score 0.992

CNN+Self-attention (2020)

Accuracy 0.991 0.974
Precision 0.984

Recall 0.991
F1-Score 0.987

Pupil regular recognition+Boundary IoU score (2022)

Accuracy 0.995 0.988
Precision 0.988

Recall 0.995
F1-Score 0.992

Dual-color spaces+improved Xception model (2021)

Accuracy 0.994 0.981
Precision 0.981

Recall 0.994

F1-Score 0.988

MaskCNN+RAN (2022)

Accuracy 0.989 0.975
Precision 0.975

Recall 0.989

F1-Score 0.982

Experimental results: The obtained results show that our detection accuracy for real
face images (FFHQ) ranks second overall with 0.994, slightly lower than the Pupil regular
recognition+Boundary IoU score (2022). Furthermore, for fake face detection in the source
domain, our method ranks at the top with 0.989, and the F1-Score of our method ties for
first with the Pupil regular recognition+Boundary IoU score (2022) method with 0.992.

Summary of Experiment 1: Although our method does not have excessive perfor-
mance differences in the source domain compared to recent methods, the detection accuracy
of fake face images is slightly better than the other methods. Among them, the results of
Pupil regular recognition+Boundary IoU score (2022) are better than ours, though the gap
is minimal. Accuracy is a separate test on this dataset, and other statistical measures are
the results obtained by randomly mixing and identifying the data of real and fake faces.

3.3.2. Experiment 2: Scrutinizing Cross-Domain Performance

Experimental parameters: We tested the performance of our method in cross-domain
detection against recent methods (e.g., StyleGAN, StyleGAN2, BigGAN, DCGAN, Deep-
Fake, VQ-VAE2.0). For each method, we measured the accuracy, precision, recall, and F1-
score for evaluation. In this experiment, we trained the model with 12,000 real faces from
FFHQ and 12,000 fake faces from ProGAN with resolution 1024× 1024, with the images bi-
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linearly interpolated to 256× 256 size. The test uses a fake face dataset of 2000 images, each
generated by the StyleGAN, StyleGAN2, BigGAN, DCGAN, DeepFake, and VQ-VAE2.0
models; the resolution of images are 1024× 1024, and the images are bilinearly interpolated
and transformed to 256× 256 size.

Experimental results: The performance results on cross-domain datasets are demon-
strated in Tables 3 and 4. Among the methods similar to the ProGAN principle, the accuracy
of StyleGAN reached 0.872, and the corresponding F1-Score reached 0.937. The accuracy of
StyleGAN2 reached 0.851, and the F1-Score achieved 0.928. Among the other four kinds of
GAN networks, the worst performance is demostrated by VQ-VAE2.0, with an accuracy of
0.809 and an F1-Score of 0.910. The best performance is demonstrated by DCGAN, with an
accuracy of 0.931 and an F1-Score of 0.964.

Table 3. Results 2.1: cross domain performance.

Method StyleGAN StyleGAN2 BigGAN

Ours

Accuracy 0.872 0.851 0.827
Precision 0.886 0.870 0.852

Recall 0.994 0.994 0.994
F1-Score 0.937 0.928 0.917

CNN+Self-attention (2020)

Accuracy 0.514 0.497 0.551
Precision 0.671 0.663 0.688

Recall 0.991 0.991 0.991
F1-Score 0.800 0.795 0.812

Pupil regular recognition+
Boundary IoU score (2022)

Accuracy 0.861 0.754 0.817
Precision 0.878 0.802 0.845

Recall 0.995 0.995 0.995
F1-Score 0.933 0.888 0.914

Dual-color spaces+improved
Xception model (2021)

Accuracy 0.769 0.728 0.657
Precision 0.811 0.785 0.743

Recall 0.994 0.994 0.994
F1-Score 0.893 0.877 0.851

MaskCNN+RAN (2022)

Accuracy 0.507 0.501 0.751
Precision 0.667 0.665 0.799

Recall 0.989 0.989 0.989
F1-Score 0.797 0.795 0.884

For data comparison results, the accuracy of our proposed method in cross-domain
detection is improved by more than 30% against the CNN+Self-attention (2020) method.
Although the Pupil regular recognition+Boundary IoU score (2022) method performs
equally well, it has similar results to ours. The worst performance is demonstrated by
VQ-VAE2.0, with an accuracy of 0.722, which shows that its performance does not remain
stable when faces are generated using various GANs with different principles. This is
because it relies on the instability of GANs for the generation of human eyes, and this
instability has different effects on the fake faces generated by different types of GANs.

Summary of Experiment 2: Following the experiments, we can conclude that our
method has relatively good performance and stability compared to recent fake face detec-
tion methods, even considering cross-domain problems. Similar to Experiment 1, accuracy
is a separate test on this dataset, and other statistical measures are the results obtained by
randomly mixing and identifying the data of real and fake faces.
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Table 4. Result 2.2: cross domain performance.

Method DCGAN DeepFake VQ-VAE2.0

Ours

Accuracy 0.931 0.897 0.809
Precision 0.935 0.906 0.839

Recall 0.994 0.994 0.994
F1-Score 0.964 0.948 0.910

CNN+Self-attention (2020)

Accuracy 0.412 0.532 0.461
Precision 0.628 0.679 0.648

Recall 0.991 0.991 0.991
F1-Score 0.769 0.806 0.783

Pupil regular recognition+
Boundary IoU score (2022)

Accuracy 0.921 0.874 0.722
Precision 0.926 0.888 0.782

Recall 0.995 0.995 0.995
F1-Score 0.959 0.938 0.875

Dual-color spaces+improved
Xception model (2021)

Accuracy 0.834 0.787 0.614
Precision 0.859 0.824 0.720

Recall 0.994 0.994 0.994
F1-Score 0.920 0.901 0.835

MaskCNN+RAN (2022)

Accuracy 0.745 0.671 0.719
Precision 0.795 0.750 0.779

Recall 0.989 0.989 0.989
F1-Score 0.881 0.853 0.871

In separate but related work, we performed three types of preprocessing on the images
in the initial data preprocessing stage, corresponding to the four input pipelines of MCCNN,
as shown in Figure 11.

Figure 11. Face data preprocessing. In this figure, the fake face is from the open-source StyleGAN
dataset.

Figures 12 and 13 demonstrate detection cases. The feature distinction between real
and fake images is concentrated on the hair, eyes, and bridge of the nose and mouth.

Figure 12. Face images detected as real. In this figure, the real face is from the open-source FFHQ
dataset.
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Figure 13. Face images detected as fake. In this figure, the fake face is from the open-source StyleGAN
dataset.

Figure 14 shows the effectiveness of tuning attention for other feature discoveries.
More areas of the face, forehead, etc., are considered.

Figure 14. Face images detected as fake (attention change). In this figure, the fake face is from the
open-source StyleGAN dataset.

3.4. Findings

Source domain performance: Our proposed method maintains acceptable accuracy
close to other recent methods on the source domain, and performs better on fake images.
When the test data use the same data as the training data, the identification of real images
in FFHQ with the detection result reaches 99.4%, slightly lower than the Pupil regular
recognition+Boundary IoU score (2022) method. Nonetheless, it maintains an excellent
level among the detection methods. Next, for detecting the fake face images in the source
domain, which are the data from the ProGAN dataset, our accuracy rate reaches 98.9%
compared to Pupil regular recognition+Boundary IoU score (2022), which demonstrates
98.8%. The F1-Score of our method, at 0.992, outperforms the selected recent detection
methods.

Cross-domain performance: The cross-domain performance of the method proposed
in this paper is dramatically improved compared to the original detection method, though
there is room for improvement in practical application. We employed StyleGAN, Style-
GAN2, BigGAN, DCGAN, DeepFake, and VQ-VAE2.0 as our unknown fake face generation
methods, and used FFHQ as the real default face. For cross-domain detection performance,
the accuracy of our proposed method exhibits 87.2% on StyleGAN, 85.1% on StyleGAN2,
82.7% on BigGAN, 93.1% on DCGAN, 89.7% on DeepFake, and 80.9% on VQ-VAE2.0,
respectively. Compared to other recent detection methods, especially methods that do
not consider generalization ability, our accuracy improves on them by 5% to 30% and in
F1-Score by 105% to 205%.

4. Conclusions and Future Work
4.1. Conclusions

This paper proposes a one-class classification model for detecting fake faces generated
by various GAN networks. It aims at the problems of high vulnerability in fake face
detection and difficult cross-domain detection. The model mainly focuses on exploiting
the avoidance of extracting only local data features and fine-grained extraction of existing
features. In addition, this research deals with images of human faces, and explores a
method to distinguish whether the image is a real face or a fake artificial image. All facial
image data used here were collected from public datasets. We do not authenticate that an
image is a specific individual from the face image, nor do we identify individuals from the
face images. Therefore, there are no ethical issues in this study.
(1) Method and main process of the model
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The proposed approach first uses the basic Gaussian blur, Gaussian noise, and ho-
momorphic filter enhancement methods for data augmentation to increase the model’s
robustness. In the first round of feature extraction, a WSA mechanism was used to enhance
the data by modifying the key regions of the model discriminator. Then, we removed the
low-impact information with the help of the obtained attention map. After all the data were
obtained, they were used as the input of multiple channels of an MCCNN. A self-attention
layer was employed to build the connection between pixels, improving the recognition
accuracy. The final discriminative model was generated by employing (a) a Binary Cross-
Entropy loss function, (b) one-class classification loss among the fixed features, (c) two loss
functions, and (d) the Gaussian mixture model. Then, the final features of the real face was
obtained.
(2) Experiments and evaluation

To test cross-domain and source domain performance separately, in the experiments
we compared our proposed method to four recently published methods. We used real
face images from FFHQ and fake face images from ProGAN as source data for system
training and used ProGAN as a known fake face generation method against unknown fake
face generation methods such as StyleGAN, StyleGAN2, BigGAN, DCGAN, DeepFake,
and VQ-VAE2.0. The model’s performance was judged following standard statistical
measures, e.g., accuracy, overall accuracy, precision, recall, and F1-score. Through our
experiments, it is confirmed that the proposed method performs well in both the source
domain and cross-domain.

4.2. Future Work

There are two key points for further consideration in future works.
(1) Considerations focusing on one certain facial feature

Although we have tried very hard to consider the influence of removing the back-
ground and other irrelevant factors on the results, nonetheless, the different amounts of
information contained in different parts of the face are a significant problem in the field of
fake face detection.
(2) GANs considering different principles

Our experiments show that ProGAN, StyleGAN, and StyleGAN2 are based on the
same principle. Although the model has been upgraded, our detection accuracy remains
stable. However, for other GAN networks with completely different principles, the accuracy
rate fluctuates to a certain extent. The solution to this problem is a topic for future work
that needs to be considered as a next step.
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