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Abstract: In recent years, autonomous vehicles have become more and more popular due to their
broad influence over society, as they increase passenger safety and convenience, lower fuel consump-
tion, reduce traffic blockage and accidents, save costs, and enhance reliability. However, autonomous
vehicles suffer from some functionality errors which need to be minimized before they are completely
deployed onto main roads. Pedestrian detection is one of the most considerable tasks (functionality
errors) in autonomous vehicles to prevent accidents. However, accurate pedestrian detection is a very
challenging task due to the following issues: (i) occlusion and deformation and (ii) low-quality and
multi-spectral images. Recently, deep learning (DL) technologies have exhibited great potential for
addressing the aforementioned pedestrian detection issues in autonomous vehicles. This survey pa-
per provides an overview of pedestrian detection issues and the recent advances made in addressing
them with the help of DL techniques. Informative discussions and future research works are also
presented, with the aim of offering insights to the readers and motivating new research directions.

Keywords: self-driving cars; pedestrian detection; deep learning; CNN; faster R-CNN; MobileNet-
SSD; multi-spectral pedestrian detection

1. Introduction

Pedestrian detection is a computer vision technique and one of the most important
functions for autonomous vehicles to be able to detect human motion in their path, which
is helpful to ensure the safety of the people, recognizing and pursuing a culprit in a crowd,
preventing accidents and avoiding moving vehicles and obstacles. Such detection tasks can
be performed with the help of an advanced combination of sensors such as radar, camera,
and light detection and ranging (LiDAR). In recent years, a system named Advanced
Driving Assistance System (ADS) has been introduced that is helpful in the prevention of
unpredictable accidents. This system has many features to substructure multiple tasks such
as the protection of the commuter, environment, and drivers. Pedestrian detection is one of
its established features. Subsequently, engineers added this feature to autonomous cars.
However, with this feature, pedestrian detection still faces a lot of issues that need to be
resolved. Through different innovations, many researchers have tried to solve these issues.
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These challenging problems are poor obstacle detection under different lighting conditions
such as clear visibility problems at night time, occlusion conditions, low resolution, tiny
size occurrence, and the tracking and recognition of pedestrians [1–4]. These problems
are sorted with the help of different techniques that can be seen in Figure 1. Figure 1
demonstrates the number of papers related to pedestrian detection from 2000 to 2021. In
the beginning, traditional techniques such as machine learning techniques were used due
to their tremendous results from 2005 to 2015, however, from 2015 to 2017, researchers
moved to new “hybrid” approaches because these approaches yielded the best result;
however, they also suffered from the same issue as previous traditional techniques, i.e., the
features were not manually extracted. Recently, the use of deep learning (DL) has become
much more popular compared to previous traditional algorithms because of its great
performance, results, and the expertise it has established. Jones and Viola increased the real-
time detection capabilities and effectiveness through the famous VJ infrared [5]. Romero
and Antonio [6] mostly described DL algorithms, however, some of them were outlined
and failed to present the abundant and clear characteristics of the design, for example, the
technique and databases it used, problems in its behavior, and the results obtained.

Figure 1. The number of papers affiliated with pedestrian detection increased from 2000 to 2021.

Zhu et al. [7] investigated key issues in long-distance pedestrian detection by the
combination of background subtraction and DL techniques. This method has two process-
ing steps. In the first step, this model provides the facts of machine learning detachment
frameworks. In the second step, the execution of the identification of small pedestrians
by the RefineDet apparatus is enhanced using the attention module. In order to ensure
validity when using this technique, it is mandatory to use additional benchmarks that
have been gathered from various cartographic locations, with an abundant amplification of
pedestrian traffic. In [8], the authors presented YOLOv3, faster R-CNN, and MobileNet-
SSD algorithms to determine the true false pedestrian. This approach uses the KITTI
and Waymo benchmarks where 110 random samples were marked to verify the actual
pedestrian with a learning rate of 0.5–0.9. Moreover, to further enhance this model, data
augmentation techniques were utilized and employed the three numerous size dimensions
indicator systems 14 × 14, 27 × 27, and 53 × 53 to identify the target. Another study by [9]
attempted to determine the difficulty of pedestrian detection using the YOLO configuration.
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In particular, the authors refined the real YOLO configuration by initiating a new web
design, which they called YOLO-R to more precisely mark pedestrian identification. In the
framework proposed by the authors, they enumerated three more transition layers and in-
terchanged the aggregate of the layers that linked in the root layer. The authors investigated
their construction on the INRIA benchmark [10] and were able to boost the correctness of
pedestrian detection. Some wide-ranging and abundant day–night datasets were proposed,
for instance, CityPersons, KITTI, and the color NightOwls datasets by Zhang et al. [11],
Neumann et al. [12], and Geiger et al. [13], respectively, to detect pedestrians through a
wider size annotation. In [14], a brightness perception model was developed to determine
whether it was under day or night conditions. Subsequently, RGB cameras were used to
detect pedestrians during the day, while thermal depiction cameras were utilized at night.

Additionally, for a moderate resolution, a deep convolutional generative adversarial
networks (DCGANs) approach was suggested in [15] to enhance the attributes of the videos
and images because the targets in the interspace largely fade in the videos or images, which
causes false detection. This model aimed to detect small-size pedestrians and indeterminate
optical features. From deeper surfaces to shallow surfaces, Zhang et al. [16] introduced a
saliency loss detection framework that transferred general information about an image.
In [17], Navarro et al. used sensor-based automation systems to recognize pedestrians in
the applications of autonomous vehicles. Li et al. [18] presented an SAF RCNN model
in 2018 based on the knowledge theory. The aim of this approach was to effectively
boost the performance of pedestrian detection at various ranges. It can also upgrade
the capacity to detect the ordinary target, but since the target-scale variations are more
habitual in pedestrian detection areas, the improvements in ordinary target detection are
restricted. In addition to this, deep learning technology has also been used to control
microbial electrochemical systems such as MFC [19], MEC [20], MDC [21], and MRC [22].
Moreover, a summary of pedestrian detection development in different aspects based
on DL approaches such as YOLOv3 and faster R-CNN is outlined in Table 1. The main
goal of this survey paper was to review pedestrian detection using the DL approach in
autonomous vehicles.

Table 1. Developmental summary of pedestrian detection based on different perspectives.

Authors Challenges Area Models Results

Kim et al. [23] 2020
Pedestrian detection issues

in smart towns

Facing issues due to complex
environmental components, parameters,

and discord in images

Utilized CNN to build
up the advance VGG-16

and vision-based techniques
High accuracy up to 98.8%

Chen et al. [24] 2020
Su Hang et al. [25] 2015

Difficult to identify the pedestrian
because the images are captured from
one position; no paradigm to stimulate
the operations against the movements

operated by pedestrians

Pedestrian detection evolution
in intelligent transport design

Used the support vector
machine (SVM) R-CNN to

identify the one- and two-step
patterns with the help of

Google AVA, Hollywood2, KTH,
and UCF sequence

The accuracy rate is 85.5%

Dinakaran et al. [26] 2019
Tian et al. [27] 2015

Reduce long-distance low-resolution
problems and control the occlusion
handling in pedestrian detection

Detection of vehicles, cyclists,
and pedestrians in smart towns

due to security issues in
transmission generated in IoT systems

Presented a new DCGAN model
with cascaded single short
detectors (SSD) based on

Canadian Institute for
Advanced Research (CIFAR) datasets;

presented a DeepParts model
to handle the occlusion issue
based on KITTI and Caltech

datasets

Accuracy rates are 80.7% and
70.49%

Wang et al. [28] 2020

An occluded pedestrian
resulting in missing information

leading to the identification
of a false negative pedestrian

The bad reaction of pedestrians
to traffic conditions in urban

areas of China

Proposed different methods
such as FichaDL, THICV-YDM,

DH-ARI, and EM-FPS based
on KITTI and Caltech datasets

The accuracy rate on the
KITTI dataset is 88.27% while
that on the Caltech dataset is

81.73%

Hbaieb et al. [29] 2019

To overcome the
time response issues

in pedestrian detection during
the change of weather

situations and various road
circumstances

Camera quality effects in
urban areas

Detection was performed
based on support vector

machine (SVM), histogram
of oriented gradients (HOG),
and Haar cascade techniques

The accuracy rate is up
to 90% to 93.43%

Navarro et al. [17] 2016

To reduce the
pedestrian detection challenges

based on a sensors system
under real driving

circumstances

Perceptions were performed in
crowded places

Proposed machine learning (ML)
approaches such as SVM,

k-nearest neighbors (kNN),
Naïve Bayes classifier (NBC)

The accuracy rate is 96.2%

Aledhari et al. [30] 2021

To reduce the poor performance
of algorithmic bias in the detection

of human skin for instance poor detection
due to a darker skin color under

a complex situation such as variations
in images and illuminations;

moreover, a darker skin color also
causes occlusion and other issues

Darker skin tones cause serious
accidents in some areas of America

Proposed K-Means Cluster, YOLOv3,
and CNN for the classification of
skin tones based on the Caltech

pedestrian detection dataset
The mAP is 43%
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In this survey paper, we discuss the three main issues of pedestrian detection with the
help of the DL approach, namely occlusion, low-quality images, and multi-spectral images,
and present an evaluation of the pedestrian detection performance. Initially, from LiDAR
and camera sensors, various benchmark datasets are composed by gathering data from
real statistics using DL techniques to solve the pedestrian problem. The second approach
consists of applying DL algorithms including CNN, MobileNet-SSD, faster R-CNN, and
YOLO versions such as YOLO, YOLOv3, and YOLOv4 to capture the images. Finally,
the metrics are illustrated to estimate the execution of the paradigm evaluation. In the
evaluation, different image sources including RGB, thermal, and multi-spectral formats are
compared for the performance of pedestrian detection.

The rest of this paper is organized as follows. Section 2 presents related works relevant
to pedestrian detection. Section 3 provides a short overview of datasets. Section 4 discusses
the pedestrian detection structure. Section 5 provides traditional vs. DL approaches.
Section 6 describes occluded pedestrian detection. Section 7 provides a comparison of
various approaches on different datasets. Finally, Section 8 offers a detailed discussion
along with directions for future works, followed by the conclusion in Section 9. For more
clarity, the organization of the paper is given in Figure 2.

Figure 2. The organization of the paper.
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2. Related Work
2.1. Outlook of the Pedestrian Detection

Pedestrian detection in a difficult situation, for instance, occlusion, nighttime condi-
tions, and low resolution is an issue that is still far from being resolved. These shortcomings
make it difficult to implement vision-based approaches in applications that require 24/7
operation, such as autonomous driving. To address these issues, different kinds of sensors
have been developed in addition to visual optical cameras (VISs), such as depth cameras
and infrared (IR) cameras. For the detection of pedestrians, thermal images typically
capture the sharp contours of the human body [31,32]; on the other hand, visual optical
cameras provide a magnificent visual explanation of human specimens. In fact, thermal
and color perception media provide additional facts. Numerous previous studies have
solely focused on the detection of pedestrians in color or thermal perception [33–35]. Some
current papers use both color and thermal images [36–38]. Nguyen et al. [39] reviewed
the progress and problems of the pedestrian detection algorithm. They discussed the
latest algorithms during the years 2010 and 2015 and were mainly grounded in traditional
approaches. He negotiated that the performance of the pedestrian detection algorithm is
heavily dependent on feature extraction which is utilized to create identifiers. The authors
solely focused on trained and tested algorithms with the use of the Caltech dataset.

Another study performed by Rajesh and Ragish [40] proposed a comprehensive
overview that covered the certain necessity for an advanced driver assistance systems
structure. For the detection of pedestrians, they shield the DL and traditional approaches
in which various matrices were tested. Furthermore, for pedestrian detection algorithms,
they presented trends and tips for future work. However, the indicated DL algorithms, e.g.,
a recurrent neural network (long short-term memory), were insufficient, and despite the
framework of the encoder and decoder, the objects were not declared. On the CityScape
and Caltech datasets, the models were trained and tested. However, with the passage
of time, convolutional neural networks (CNNs) have gained a significant advantage in
finding common objects on a network, such as on MS COCO datasets [41], Pascal datasets,
and ImageNet [42]. Li et al., in 2018, presented the situation analysis framework RCNN
grounded in the perception hypothesis [18], which successfully enhanced the accomplish-
ment of pedestrian detection at various scales. Now, CNN was further extended to detail
the major challenges of pedestrian-like occlusion manipulation by labeling the various
body parts, low-quality resolution images, and multi-spectral images including color, RGB
images, thermal images, and simultaneous facts in their entirety. Some major previous
tasks performed by researchers regarding these issues are given below.

2.1.1. Occluded Pedestrian Detection

Occlusion often occurs in the real world and it is very difficult to find occluded pedes-
trians, especially in autonomous driving scenarios. Many researchers have used different
information for the body parts, for instance, the leg, arm, and head, in addition to other
approaches to detect pedestrians with the help of complete body gestures. However, to
solve the occlusion problem, researchers have divided pedestrian detection into two kinds
of categories: namely traditional methods and the deep neural network approach. In the
traditional approach, different methods are used which are the histogram of oriented flow
and gradient [10,43], Haar wavelet [44], local binary variant, support vector machine [45],
etc., to extract features. However, these methods have limited generalization capabilities to
handle handicraft attributes. As such, for further desirable results, researchers have had to
move towards adopting DL methods to solve the issue of occluded pedestrian detection.
Pedestrian detection based on DL approaches such as MobileNet-SSD, R-CNN, fast-RCNN,
and faster R-CNN has created a landmark by enhancing the performance including by
manipulating the difference in the radiance level and composite situation with various
pedestrians. Zhang et al. [46] presented the occlusion-perceptive R-CNN to enhance the
accuracy of the pedestrian in the crowd. On the contrary, various additional works were
presented by Zhang et al. [47], Ouyang and Wang [48], to comprehend several occlusion
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designs in a joint procedure that reforms the abundant testing and training time. Nonethe-
less, the final choice is even now being carried out by integrating numerous module scores,
which when combined, can make the entire operation more difficult and rigid to train. On
the other hand, a constant focus vector that is accessible to train and has a low cost is also
being studied.

2.1.2. Multi-Spectral Image Pedestrian Detection

In 2015, Huang et al. [36] developed a multi-spectral pedestrian dataset. After their
publication, more work on the multi-spectral approach was published later. Choi et al. [49]
simultaneously extracted the thermal and RGB images in DNN. In addition, a single shot
(SSD) was used for multi-spectral pedestrian tracking [50,51]. Furthermore, Zhang et al. [52]
utilized the extended decision trees for the categorization project. Converting thermal
and RGB images into a regional proposal network (RPN) may yield a better outcome. For
the tracking of a pedestrian on thermal images at night, Chen et al. [53] implemented a
carefully controlled encoder–decoder CNN.

2.1.3. Low-Quality Constancy Image Pedestrian Detection

Based on DL [54], the super-resolution began to start using CNN [55] and was named
a SRCNN model for the first time for high-resolution reformation. By adopting the end-to-
end three-terminal deep convoluted network, resulting in state-of-the-art high-definition
performance, Chao et al. [56] presented FSRCNN and suggested that the network be
allowed to learn direct denoising filters, thus further increasing speed and correctness.
A very deep super-resolution VDSR [57] was the uppermost means of putting spherical
residues into super-resolution, which significantly increases the training rate and greatly
upgraded the peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM) diagnostic measures.

3. Short Overview of Datasets

Datasets have played an essential role throughout the history of object identification re-
search. It is not just a common point used to measure and compare algorithms/competitors’
performances, but it also being increasingly promoted in the field of research concerned
with complex and challenging issues. Especially recently, DL technology has enabled a
great success for humankind. Many visual recognition issues and many more interpreted
data successfully perform a vital role to access a large number of images on the Internet. A
comprehensive dataset can be created to capture the abundance and diversity of objects
that have achieved unparalleled efficiency in object identification. Constructing large
datasets with minimal deviation is essential for the development of modern computer vi-
sion algorithms. In object detection, many well-known datasets and benchmarks have been
published in the previous 10 years, and counting public object detection work, pedestrian
tracking has its special characteristics. Familiar pedestrian detection datasets currently are
the EuroCity [58], TUD known as Brussels Pedestrian Dataset [59], Caltech [60], CityPer-
sons [11], INRIA [10], KITTI [61] and ETH datasets. Some special datasets for pedestrian
detection, which are commonly used in experiments, are listed in Table 2.
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Table 2. Summary of a few pedestrian detection datasets which are commonly used.

Datasets Methods Training Images Testing Images

KITTI
PCN [62], ECP faster R-CNN [58],
faster R-CNN [63], Sub-CNN [64] 7481 images 7518 images

INRIA
PCN [62], SAF R-CNN [34]

2LDCF [65], RF3+LDCF [65]
614 is used as a positive image and

1218 used as a negative image 288 images

Caltech
PCN [62], RPN+FRCNN [63]
SAF R-CNN [34], HOG [10] 350,000 images 2300 images

CityPersons Adam solver ImageNet Model [66] 2975 images 500 images

TUD-Brussels Part-based model [67] 218 images used as negative 508 images used as positive

ETH
Part-based model [67]
Faster RCNN [68,69] 499 used as positive images 1804 negative images

The characteristics of each of the datasets listed in Table 2 are given as:
(1) The KITTI dataset comprises pedestrians of various perspectives, degrees of oc-

clusion, and sizes. For detection, it enhances the DL training; (2) The INRIA dataset is
used to verify the model generalization abilities; (3) The Caltech dataset is the most famous
dataset which gives the best performance in occlusion handling such as in limited and
dense occlusion conditions; (4) The CityPersons dataset manifests high divergence; (5) The
TUD-Brussels dataset works efficiently in contrast to deformation; and (6) The ETH dataset
works efficiently in contrast to deformation.

KAIST is a dataset that is used as a multi-spectral pedestrian dataset [36]. This dataset
contains thermal and RGB images which recorded the data of colleges, rural areas, and
roads using three types of labels, for example, human beings, motor-bikers, and people.
These data recorded the day and night situations. For training purposes, 14,100 pictures
were used in the daytime, and 8058 pictures were used in nighttime situations. It is difficult
to find detailed labels for body parts in public datasets, such as the Caltech or CityPersons
datasets, which do not have labels for any part of the body to detect pedestrians. In contrast,
the Penn–Fudan dataset [70] can easily label different parts of the body. However, there are
some shortcomings to the Penn–Fudan dataset. As it is a generated dataset of 1500 images
with complete body parts, it must divide the whole body arch into three sections: the legs,
the heads, and the arms. This comprises a large part of the pedestrian’s body. Furthermore,
the data were collected from around the world which caused changes in the dataset (for
instance, between the USA, Bangladesh, Malaysia, and India). INRIA is another dataset that
was used to train the SAF R-CNN, advanced FCF, and PCN. The miss rate was used as an
evaluation metric. The execution of these frameworks was compared to the other 11 models.
The error rate ranges between 6.9% and 17.28%. In the models’ comparison, the ACF has a
bad execution with an error rate of 17.28% and on the other hand, PCN yields the greatest
result with an error rate of only 6.9%. Furthermore, benchmarks such as WiderPerson [69],
CrowdHuman [71], and Wider Pedestrian [69] are comprised of images on the web to
provide more variety and density. This allows the detector to more sharply comprehend
the characterization of pedestrians with greater generalization expertise. CityPersons [72]
is a more divergent dataset in contrast to CityPersons [65]: whilst the Caltech dataset is
registered in 27 various German cities and adjacent countries, in contrast to CityPersons, it
is based on approximately 31,000 comments on bounding boxes, and in addition, contains
2975, 500, 1575 images for its training, testing, and validation groups, respectively.

The ETH dataset [68] contains three layouts for testing (1804 images in total). Because
the film was shot in the middle of the city, it can accommodate large crowds, making it
a suitable testing ground for occluded pedestrian detection. Finally, EuroCity Persons
(ECP) [73] is a current dataset for pedestrian detection which outperforms the Caltech
dataset and CityPersons dataset in terms of difficulty and heterogeneity. It is noted that it is
based on data from 31 towns across 12 states in Europe. Europe has day and night photos
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(therefore acting as an umpire, as ECP is called daytime and ECP is called nighttime). The
defined limit box is higher than 200K. In ECP [73], all examinations and comparisons were
performed during the daytime in collaboration with other approaches. A diagnostic server
is available. However, test sets and frequency submissions are limited.

4. Pedestrian Detection Structure

Pedestrian detection algorithms mainly follow the primary framework as shown in
Figure 3.

In the first step, the sensor system collects the data in the formation of images. In
the second step, a regional proposal approach is put into it. ROIs are also known as
the region of interest, which has been used as a generally visual technique, for instance,
in camera and stereos. However, this is the first and essential step in system tracking.
Elements such as borders, lines, and figures are extracted and refined using classifiers
to determine the class of a target (for example, whether the target is a human being or
not). The ROIs are presented in an image that is suggested to identify pedestrians at the
scene. For searching ROIs, different techniques are used such as the sliding window, locally
de-correlated channel features (LDCF), and selective search. Then, the ROI features are
extracted in the third step. For object detection, the algorithms used for classification
and feature extraction are manual or DL-based object detection techniques. Hand-crafted
approaches for feature extraction are deployed on models built on lower-level features
to manually recommend ROIs [74]. Handcrafted approaches can be bounded and not
extremely vigorous as complicated features may be tough to handcraft. DL methods enables
the network to specify properties. This can furnish the top level of extraction. At the end of
the classifier, features are augmented into the last step. The output element produced by
the subtraction step is entered into the classifier to determine whether pedestrians or other
obstacles in the form of binary tags are present in the proposed area. However, with the
development of DL, more CNN-based sequencing methods are being used for classification
compared to previous classifiers, for instance, SVM and AdaBoost.

Figure 3. Primary Pedestrian Detection System Framework.
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4.1. Pedestrian Sensing

Sensors are an important part of automotive computerized control systems. Automo-
tive triggers must strike a complicated stability between reliability, robustness, manufactur-
ing, compatibility, and low cost. Any pedestrian modeling system should start by gathering
sensor information about pedestrians. Detection, tracking, and well-known models can all
rely on detailed knowledge at this lower level. Table 3 summarizes the typical autonomous
vehicle pedestrian detection sensors and their accuracy and range. Here, we present an
overview of LiDAR and camera sensors because the camera is often the most operated
sensor as the fundamental element of the pedestrian detection system and LiDAR provided
the best accuracy compared to radar, mostly under bad conditions under 200 m.

Table 3. Accuracy and Range of Common AV sensors for the detection of pedestrians.

Sensors Range Accuracy

STEREO CAMERAS
Ranges from five hundred centimeters to
various tens of centimeters [75]
Several tens of meters [75]

Divergence delusion of 1/10 pixels
(corresponds to approximately 1 m range delusion
if the target is 100 m out of the way) [76]

INFRARED From a minor centimeter to various centimeters [77,78]
Temperature precision of +/−10 °C,
can calculate the temperature up to 3000 °C [77]

ULTRANSONIC Starting from 20 mm up to 5000 mm [79,80] Approximately 0.03 cm [79,80]

RFID Certain meters [81,82] Certain centimeters [81,82]

LIDAR Starts range onward 300 m [83,84] Starts onward from 2 cm [84,85]

RADAR

Short range: 40 m, angle 130° [86–88]
Middle range: 70 m–100 m, angle 90° [86,87]
Long-range automotive radar:
From below 1 m onwards to 300 m
(beginning gradient onward +/−30°,
a comparative velocity scale of
onward +/−260 km/h) [85,86,89]

Short range: below than 15 cm or
1 % [86–88]
Middle range: below than 30 cm or 1% [86,87]
Long range: 10 cm such as Long-Range-Radar LRR3
Bosch 77 GHz, scale from 250 m [85]

Although humans primarily use their vision and hearing depending on the driving
system, there is a method of artificial perception. There are many ways to overcome the
shortcomings of a sensor. With a broad variety of detectors used in autonomous vehicles,
we divided the reviews into passive and operational detectors. Operational detectors
including LiDAR, radar, and sonar actively forward vibration to the surrounding area
after which they are identified and reflected; on the other hand, passive detectors, such as
monocular and stereo cameras, detect physiological phenomena that already exist in the
environment. The idea of AVs is mainly focused on the research of cameras and LiDAR. In
the follow up, we narrate the two schemes which were used to gather information from the
camera and LiDAR for pedestrian categorization. A more comprehensive current sensor
report on AV applications can be found in [89,90].

4.1.1. LiDAR vs. Camera

LiDAR is alike to traditional detectors in that it uses the vibration of infrared light
to identify the nearby pedestrian. Traditional detectors use an electromagnetic spectrum.
LiDAR uses beams to observe nearby circumstances. LiDAR flashes its laser at an object
at the speed of millions of beams per second to generate a 3D graph using an on-board
operating system to accommodate the car with knowledge of its neighborhood; this layout—
which has a 360-degree vision—assists in operating the car in any kind of situation and
measures the change in the car’s distance from the object when the laser pulse bounces
off and hits the car. The system must be accurate to make quick decisions with a faster
response time than humans. A common LiDAR framework, for instance, the HDL-64L [52],
uses a series of rotating ray emissions to achieve a 3D point cloud within 360 degrees and
a radius of up to 120 m. These detectors can yield 120,000 localities per frame, which is



Electronics 2022, 11, 3551 10 of 23

equivalent to 1.2 billion localities per second at 10 Hz frame per second. Velodyne have
now released the VLS-128 approach [53] with 128 ray emissions, high angular resolution,
and a 300 m orbit limit. Some techniques depend on LiDAR and camera modes. Before
combining these approaches, the sensor must be calibrated to obtain a single local reference
frame. Park et al. [54] recommended using planner boards in the hope of identifying both
methods and produce accurate 3D and 2D connections and obtain the correct sequence.

4.1.2. Benefits of LiDAR

• Among the key benefits of LiDAR are its precision and correctness. The aim is
for Waymo to protect its LiDAR structure through its accuracy. Navigate reports
that Waymo’s LiDAR is very up-to-date, and that it can determine the position of
pedestrians and can estimate their movement. Equipped with a Waymo LiDAR, the
Chrysler Pacificas can tell which way a cyclist should turn by looking at the gestures
used by cyclists.

• Another advantage of LiDAR is that it provides a 3D image for autonomous vehicles.
LiDAR is more accurate than cameras because the laser will not be confused by
daylight, blazing, shadows, or entering the car front lights.

• In conclusion, LiDAR liberates computing capacity. LiDAR can instantly notify of
the distance and direction of an object, while the camera-form program must first
take pictures and then examine the images to regulate the distance and velocity of the
object, which requires more computing power.

4.1.3. Limitations of LiDAR

• LiDAR also has limitations, as there are still many systems that cannot penetrate
well through fog, snow, and rain weather conditions. Ford, which is extraordinarily
superior in making self-driving cars, has established a design that can help its LiDAR
network distinguish between isolated dewdrops and avalanches. Apart from that, the
self-driving car will interpret the avalanche falling in the highway medium as a wall.
Ford demonstrated their courage in the Michigan test, but its strategy still has much
to comprehend.

• Furthermore, LiDAR does not provide data that the camera can normally see, such as
text on signs or the shade of traffic lights. The camera is more suitable for this type
of information.

• At last, LiDAR systems are very heavy because they need a laser rotation system to be
installed throughout the vehicle, whereas the camera system used in existing Tesla
cars is almost invisible.

If one wants to navigate through something such as a crowd of humans, the visible
identification of objects is the strategy to proceed with. This is the general reason for using
the camera system. The images provided by the camera can be used for high-accuracy
analysis using AI software. In Tesla models, the camera is used to yield a 360-degree
vision of the surroundings through its autopilot function. It is completely optical and
does not depend on range and detection as LiDAR does. Rather than using illumination
vibration, the camera uses visible information from the lens optics to return to the onboard
software for further inspections. With the evolution of neural networks and computer
vision algorithmic programs, the target can be recognized while driving to provide vehicle
information. This can assist cars by aiding them in preventing crashes, slowing down in
traffic, changing lanes, and using optical character recognition (OCR) to study text on the
pavement or highway signs. To date, Tesla has proven that self-driving vehicles can operate
in the absence of a LiDAR that uses a camera.

Monocular cameras present comprehensive knowledge about the pixel intensity, dis-
play shape, and appearance properties. The appearance and shape data can be applied
to determine the roadway geometry, object class, and road signs. The disadvantage of
monocular cameras is the absence of depth knowledge needed to assess objects of the
correct size and location. One can use the stereo camera to reset the deep channel. This
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algorithm requires finding the correspondence between two images and calculating the
depth of every position at a slower pace than the camera’s additional processing intensity.
Other modal cameras that provide depth evaluation are time-of-flight cameras, where
the depth is derived by calculating the delay in the middle of transmitting and collecting
moderate infrared radiation. This technology has been used in vehicle safety applications
but still has a lower cost of integration and algorithmic complexity compared to the stereo
camera solution.

4.1.4. What Are the Main Reasons for Camera’s Popularity?

First, cameras are considerably cheaper compared to LiDAR systems, which lowers
the cost of self-driving vehicles, though mostly for end users. They are also easy to integrate
(The Hyundai Tesla has eight cameras throughout the car) because on market video cameras
are widely available. Tesla could easily buy and improve commercial cameras instead
of giving out and innovating some brand-new technologies. Another advantage is that
the camera will not turn a blind eye to weather circumstances such as fog, rainfall, and
snowflakes. Software improvements should be made to enhance in Ford’s LiDAR ability
under severe circumstances, however, Tesla’s cameras do not have problem resembling
as LiDAR’s temporal restrictions. Regardless of where the human passenger desires to
go, the camera system will follow. The camera can observe the world like a human, and
theoretically, unlike LiDAR, it can read road signs and interpret colors. Finally, the camera
can be easily integrated into the layout of the car and made invisible among the structures
of the car, making it more attractive in consumer vehicles.

In the detection of pedestrians, self-driving cars have a software element that is
common to both LiDAR and the camera. Both systems use artificial intelligence technologies
such as machine learning and neural networks to investigate information. As the algorithm
improves, the result should generate higher accuracy in object recognition and enable self-
driving vehicles to manufacture better commitments. It can distinguish between accidents
and safe driving.

4.1.5. Limitation of Cameras

• When the lighting conditions change so that the subject becomes blurred, the camera
encounters the same problem that humans face, e.g., a situation where intense shadows
or glare from the sun or upcoming cars can create chaos. This is a common reason
for which Tesla is still adding radar to the forefront of its car to provide further input
(which, compared to LiDAR systems radar, is much cheaper).

• Cameras are also relatively “dumb” sensors because they lay out the system with only
raw image data, without the exact distance and location of objects as LiDAR does.
This means that the camera system must depend on strong machine learning (such as
neural network or DL approach) computers that can operate these images to precisely
regulate where to place them. As our human brain acts on stereo perception with the
eyes to regulate the distance and position.

• To date, neural networks and machine learning systems are not strong enough to
transfer massive amounts of data from cameras so that all the information could be
prepared in time to make management decisions. Nevertheless, the growth of neural
networks has become increasingly complex and can handle real-world inputs better
than LiDAR.

5. Traditional vs. DL Approaches

The algorithm for the pedestrian detection structure is divided into three parts: one is
the traditional method, the second one is the DL method and the third one is the hybrid
method. The hybrid method combines both traditional and DL approaches. Further
description of the traditional and DL approach is described in the next part. Moreover, the
analysis of this investigation was performed with the help of thermal cameras and HDL-64E
Lidar. For target detection, the HDL-64E LiDAR sensor leads to high performance and
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resolution, while thermal imaging cameras can be used to overwhelm the few limitations
of stain cameras such as these cameras not being simulated by the conditions of lighting.
Various surveys are using thermal features to detect and monitor pedestrians [91,92].

5.1. Traditional Approach

Different algorithms were created to detect the tasks of pedestrians; for example, in
2000, Haar was suggested by Poggio and Papageorgiou. It can demonstrate the change
in the gray level of the image, which includes four groups: border function, line function,
central environment function, and special diagnostic line functions. Haar is the basis of
pedestrian detection automation, which in addition to Haar and histograms of oriented
gradients (HOGs) [93], originated because this approach classified the target by acquiring
functional data from the image via edge direction distributions [94]. Moreover, SVMs
are used for classification [93]. In addition, Zhang et al. created a new attribute set with
the AdaBoost classifier known as Shapelet for pedestrian detection [95]. The traditional
detection approach has been used in the design of artificial features and classification.
First of all, features must be extracted from the image, comprehending gray-scale, border,
complexion, gradient histogram, and further information for the target. Then, the goal of
the classifier is to decide which attributes are associated with the pedestrians. In addition,
there are two ways in which traditional techniques deal with the main three pedestrian
problems—namely (i) occlusion; (ii) multi-spectral images; and (iii) low-quality images
problems. First, the objects are divided into various parts, and the visual portion can
determine the positions of pedestrians. Second, pedestrians are trained on a specific
general classifier to reduce the impact of disruption on daily life and carefully estimate the
location of pedestrians. However, from 2015, the work of traditional approaches on different
datasets such as the Caltech dataset started to reduce just because of the development of
advanced technology such as DL and hybrid technology.

5.2. DL Approaches

In the 1990s, DL was first introduced as the sub-branch of machine learning and
artificial intelligence [96]. Compared to the traditional approach, DL can gain a high
quantity of abstraction, higher precision, and run time [97]. This is the main advantage of
using DL for the detection of any object. However, with the advancement, evolution, and
success of DL in pedestrian tracking, detection correctness has improved. The algorithm
for the detection of a pedestrian using DL is comprised of three mainframes which are (i)
recurrent neural network (RNN); (ii) based on depth belief network (DBN); and (iii) CNN.

The detection of pedestrian DL is divided into two groupings: (i) single-stage detector
known as “non-regional proposal method” and “dense prediction”; and (ii) two-stage de-
tector known as “regional proposal method” and “sparse prediction”. Single-stage detector
joins all the work into a single system structure; on the other hand, a two-stage detector has
split the system for choosing regional data, classification, and positioning. A few regional
proposal approaches include faster R-CNN [98], regional-fast convolutional network (R-
FCN) [99], and region-CNN (R-CNN) [100]. On the other hand, the non-regional approach
includes YOLO [101] and SSD [102–104]. These pedestrian detection approaches are the
root of CNN, thus becoming the grade for pedestrian detection. However, nowadays,
YOLO [105] and faster R-CNN [106,107] are the two main state-of-the-art tools in DL-based
pedestrian detection.

6. Occluded Pedestrian Detection

In pedestrian detection, occlusion has been demonstrated to be one of the crucial
drawbacks. Because it is still difficult to find pedestrians who are being stopped by an
obstacle or other pedestrians when the number of occluded pedestrians increases, the
detection of pedestrians becomes complicated. CNNs are broadly used in pedestrian
detection algorithms. In the DL algorithm, there are two schemes to handle the occlusion
problem. The first approach is to present the design of the components of the neural
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network in a particular layer; and the second one is the neural optimization network
diagnosis procedure. The framework of DL performs well on the whole body parts of a
pedestrian due to their generalization competency. However, as an occluded pedestrian,
the performance of the DL is not good enough. For the better performance of the detection
of occluded pedestrians, the fusion process combines MobileNet-SSD and faster R-CNN to
enhance the performance of occluded pedestrians by taking the whole-body information
from public datasets such as Caltech, CityPerson, KITTI, and INRIA. The performance
of this network is divided into two groups: one is a classifier and the second one is a
localizer. At the structure measure, the detection method can be thought of as a sub-module
of the detection system and the camera and LiDAR are used for the detection of nearby
occluded pedestrians, so that a warning may be generated by the control system in possible
accident situations. The main reason for using faster R-CNN and MobileNet-SSD is that
faster R-CNN presents an optimization approach to employ a greater network depth and
range in the system which extends the computational cost. The performance can be further
enhanced by increasing the number of convolutional layers and reducing the size of the
convolutional filters [108]. On the other hand, MobileNet-SSD has the same advantage
as it reduces the computational difficulty in contrast to the further conventional CNN. It
supplies bounding boxes and records as a result. The position of the whole body part is
indicated by the bounding boxes and the probability of the targeted parts is indicated by the
record within the boxes [109,110]. However, mainly for occlusion detection, the network
is trained with the whole body using CNN subgroups such as faster R-CNN, YOLO and
MobileNet-SSD. In the training phase, the dataset is labeled into different parts such as
arm, limb, head, and person. The main aim of labeling the datasets is to easily distinguish
the occluded pedestrian. For further enhancement, some data were also collected from the
crowded environment. The training phase consists of a total of 1500 images using different
datasets such as CityPersons, Caltech, Penn–Fudan, and self-created datasets which contain
full-body data from various conditions such as the difference in lighting and size, inside
and outside conditions, and occlusion obstacles. Nevertheless, the model results in more
incorrect detection at a lower threshold, however, with the increase in the threshold up to
0.8, the incorrect detection is minimized.

Moreover, the other reason for the poor performance of occlusion in the detection
of pedestrians is the lower ratio of occlusion instances during the training phase. A data
augmentation approach was applied which remarkably upgraded the pattern and the
amount of the occlusion, diversified the instances in the training phase, and effectively
verified the model.

7. Comparison of Various Approaches on Different Datasets

The model prediction is mainly performed with the help of evaluation matrices such
as average precision, precision, accuracy, recall, F1-score, and miss rate. Some of the
predictions in terms of accuracy, precision, recall, and F1-score are given in Figure 4. From
Figure 4, it is clear that faster R-CNN performs better compared to MobileNet-SSD in terms
of accuracy, recall, and F1-Score; on the other hand, MobileNet-SSD performs better in
terms of precision. Despite this, faster R-CNN predicts better results overall.
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Figure 4. Prediction rate between MobileNet-SSD and faster R-CNN.

7.1. Low Quality and Multi-Spectral Image Pedestrian Detection

Pedestrian detection is performed with the help of multi-spectral image information
because it contains the RGB, thermal, and color image data. The main aim of multi-spectral
images is to reduce the restrictions in pedestrian detection such as insufficient lighting
conditions and instances of small-sized pedestrians. However, the performance of multi-
spectral images needs to be improved to manage these pedestrian-related issues. Therefore,
an effective approach is used in multi-spectral images by combining the information from
thermal and color images, and that effective approach is CNN. However, the question that
arises here is that of how thermal and color data are meant to deal with the huge and tiny
obstacles in pedestrian detection. The solution is based on a simple frame that consists
of a duplets sub-network known as “Network-In-Network (NIN)”. The implementation
of this network is grounded in region-based fully convolutional networks (R-FCN). The
main purpose of using two sub-networks was that one tackles the whole image to detect
the huge pedestrian obstacles and the other one is used to handle and detect the small
obstacles in pedestrians in a midway tiny image portion. Then, the information from
both sub-networks’ tiny and huge sizes using color and thermal data are then fused by
network-in-network. This model has two main benefits: one is that, in the lighting situation,
the pedestrian attributes become more dissimilar, and secondly, one can easily handle the
small obstacles compared to the traditional region-based fully convolutional networks. This
model can easily catch the ordinary attributes of pedestrians of various sizes because this
model, as input, extracts the whole and sub-images and presents the detection aggregate
as an output. Moreover, the detection of small obstacles is very difficult compared to that
of large obstacles, which can be improved using the small-obstacle-detection RPN which
is very efficient and successful in detecting small as well as large obstacles. To enable the
detection of large-sized obstacles, this approach merges with Conv5; and for the detection
of small-sized obstacles, this approach merges with Conv4; after combining with Conv4,
the detection of small-sized obstacles is performed with Conv5. Conv4 and Conv5 are the
layers of the CNN.

Nonetheless, multi-spectral images also try to solve the detection of pedestrians under
bad lighting conditions and weather situations using different DL approaches such as
YOLO. Lighting conditions are also an object in pedestrian tracking, as at night, human
eyes cannot recognize obstacles because human eyes are oversensitive to illumination
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sources. Many designs were introduced to increase foresight at night. The first design
was based on infrared sensors which comprise far-infrared and near-infrared. Under
dim light, Piniarski et al. [111] used these two sensors to detect the obstacles with the
help of connected component labeling feature schemes. After the first design, the second
design was presented by Kumar and Chebrolu [112], which was known as the “ brightness
perception model”. This model utilized the RGB-deploy model to enhance the obstacle
detection in daytime while the thermal-deploy model was used to enhance the pedestrian
at nighttime. After the second design, the last design was implemented which is called
the “multi-spectral framework“ or “Fusion design”. This approach starts framing due to
the release of multi-spectral pedestrian datasets. Anyhow, for lighting situations, image
inventor is the best option for pedestrian detection. With the help of image sources, the
performance of pedestrian detection needs to be improved in terms of precision and
processing time. The image inventory includes thermal, multi-spectral, and RGB image
data. Then, for model better enhancement, the YOLO algorithm needs to be optimized
because it can handle the obstacle data into three propositions; in both cases, either the
pedestrian stood near the camera or far from the camera because when obstacles stood near
to the camera, it appear excessively large; or when it stood far way, then the obstacle size
becomes excessively small, which is the main reason for the detection of a pedestrian using
YOLO algorithm. This algorithm is one of the greatest one-stage detectors due to its rapid
speed. Another system detection YOLO algorithm was replaced by their YOLO v3 version
because it can track one or multiple obstacles that are near to one another in a robust way;
this version was presented in 2018. The YOLO algorithm mainly uses the KAIST dataset
because this dataset contains data in a multi-spectral form, which is why this dataset is also
called the “KAIST Multi-spectral Pedestrian Dataset” [112]. Moreover, for small obstacles,
further enhancement was performed including four layers of YOLO as an output attribute
which are YOLO-3L and YOLO-4L after the YOLO v3 optimization process.

After the detection of huge, tiny obstacles and the detection of obstacles during day-
time and nighttime, another drawback that arises in pedestrian detection and surveillance
illustration is that of low-attribute images, because in low-quality images, it is difficult
to discriminate pedestrians from behind the scenes or discriminate which images which
are taken with low-design cameras, and had a blurred view or dense weather. To sort
out this issue, a new dataset was presented known as playground (PG). The PG dataset
contains images which were taken from two kinds of cameras at various times which
comprised daytime and nighttime periods. A super-resolution detection network was
also implemented to improve the resolution of low-quality images and can help track the
blurry pedestrian behind the scene. After, when the image enhancement was performed
by the SRD algorithm, the faster R-CNN model was used to help out the reluctant block
pedestrian. The PG dataset is used to validate the effectiveness of the SRD model because
this dataset lays out the heavy, occluded, high, and attribute resolution pedestrian data re-
garding gesture blurring and light intervention under daytime and nighttime conditions as
compared to previous datasets, for example, the KITTI [113] and CityPersons dataset [114],
because previous datasets lacked some data during the day and nighttime.

7.2. Execution Comparison

On the KAIST datasets, the network-in-network yields better results during the day
and at night compared to previous work on different datasets such as R-FCN and including
four faster R-CNN fusion strategies which are available in [115], whilst the range of the
previous and network-in-network approach lies between 58% and 84%. NIN successfully
achieved higher accuracy through the use of thermal and color data ranges between 40%
and 43%. The main reason for the failure of a faster R-CNN on the MS COCO and PASCAL
VOC datasets is that it cannot discover the pedestrian under conditions of a small-sized
pedestrian and low resolution; moreover, this identical situation happened when work
was being performed in multi-spectral pedestrian tracking. Although this was without
NIN, the R-FCN has the same problem as it cannot detect the small-sized pedestrian.
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Further explanations of the NIN, faster R-CNN, and R-FCN based approaches are available
in [106,115,116].

Due to low-light conditions, the KAIST dataset was divided into training and testing
phases containing more than 50,000 pedestrians. This dataset contains the records of
colleges, highways, and midtown which are further comprised of three labels namely
human beings, people, and motor-biker. Multi-spectral is considered to be the best solution
for huge and tiny obstacle detection, however, with the addition of YOLO-4L, the detection
improved during daytime and nighttime compared to the earliest YOLO algorithm [112].
The performance range of YOLO-3L and YOLO-4L during the daytime and nighttime
is shown in Figure 5. In addition, this processing time needs to be improved with the
help of compressed design, and the excellent framework achieved 22.76% refinement but
still needs to improve the accuracy from 22.76% to 70.7%. Nevertheless, there seem to be
some conflicts in which RGB images perform better during daytime while thermal images
perform well during nighttime.

As shown in Figure 6, faster R-CNN based on SRD yields the best results on the
PG dataset compared to YOLOv3, YOLO v4, SSD, faster R-CNN, and improved faster
R-CNN [117], because this model helps to gain more accurate pedestrian tracking under
low-attribute images.

Figure 5. Performance comparison of YOLO v3, YOLO v4, and over all executions after processing time.



Electronics 2022, 11, 3551 17 of 23

Figure 6. Detection comparison of the pedestrian using faster R-CNN based on the SRD algorithm
with other models.

8. Discussion and Future Work
8.1. Discussion/Key Findings

In this study, we discussed the progress made in DL in terms of pedestrian detection.
During the study, we found that there are still some main key findings in the generated
approach. From the studies, YOLOv3, YOLOv4, and YOLOv5 have undergone peer review,
where some writers argued that YOLOv4 is effective while others argued that YOLOv5
is effective, and some writers argued that YOLOv4 and YOLOv5 are similar in terms of
detection speed. The reason for various outcomes being declared could be due to numerous
factors, for instance, various datasets being used, reform meta parameters, etc. These
contradictions stem from specific methods studied by other researchers. To overcome this
gap, we will contrast those algorithms by contemplating the effecting circumstances in
the future. In practical applications, it is necessary to maintain an equal detection balance
between the speed and accuracy because the recent methods have a higher accuracy rate
but the speed of detection is lower. Therefore, it is necessary to implement such approaches
which can maintain the detection speed and accuracy equally and meet the demands of
speed and accuracy according to practical application.

Additionally, there also seem to be some other conflicts as some contend that RGB im-
ages perform better in the daytime while thermal images perform well at nighttime during
the identification of pedestrians under low illumination factors. Thus, there is a need to sort
out this issue based on YOLOv5 on different datasets to verify the enhancement. Datasets
play an important role in model performance. In the same model, one dataset performs well
and the other datasets maybe perform badly, for instance, PG datasets may boost the en-
hancement in low weather conditions during the day and night as compared to KITTI [113]
and CityPersons [114]. This issue is caused because the divergence of the current datasets
is not sufficient. In this case, it is suggested that data augmentation approaches are applied
to enrich the divergence of datasets which can enhance the generalization and strength of
the frameworks in practical applications. Sensor-based detection is also another important
tool to identify the correct pedestrian, as low-quality cameras are affected by urban areas
and cause false detection. To overcome this issue, high-quality cameras were implemented
which lead to a great computational cost. There is a need to adopt different approaches
which may reduce the computational cost.
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8.2. Future Research

• For pedestrian detection, better outcomes have been attained with the help of DL
approaches. However, to date, the present algorithms are still facing the issue of
the detection of small, moderate, and occluded objects. In the future, one can con-
sider/address the aforementioned issues.

• In addition, there is still insufficient work examining how to enhance the detection
production under bad lighting and weather conditions. In the future, this problem
can be tackled by training both models with daytime and nighttime models as one
paradigm and thus increase the generalization abilities.

• Furthermore, there is a need to investigate more techniques that are put together
into the detection algorithms to improve the accuracy enhancement. In the future,
some powerful techniques can be combined to improve the accuracy of pedestrian
detection systems.

• Fuzzy logic-based algorithms can be combined with DL algorithms to improve the
pedestrian detection process.

• An interesting future work may be to consider/combine 3D measures with 2D infor-
mation in order to improve detection and classifications.

• Multi-class approaches should be incorporated, not only to consider different pedes-
trian models but also to check for other targets (e.g., vehicles) and increase the robust-
ness of the system.

• A DL algorithm-based pedestrian detection has overcome many issues in pedestrian
detection, however, these are very slow, and interpretability is very low. As such, the
major issue in pedestrian detection is speed and accuracy. Future research may focus
on improving the speed of computation and accuracy in detection.

9. Conclusions

This survey paper surveyed DL approaches for pedestrian detection in autonomous
vehicles. We first studied pedestrian detection under some critical circumstances including
occlusion, low-quality images, detection of light illumination, small- and large-sized obsta-
cle detection by the grip of multi-spectral pedestrian detection. After that, we discussed
the framework of pedestrian detection and the importance of pedestrian sensors. Then, we
presented an overview of traditional approaches and DL approaches for pedestrian detec-
tion. We found that DL has accommodated the more effective techniques for pedestrian
tracking as compared to traditional approaches. In addition, we analyzed the pedestrian
key issues and challenges using DL approaches which mainly include YOLOv3, YOLOv4,
faster R-CNN, and MobileNet-SSD models as well as outlined the best solution based on the
best performance. Faster R-CNN estimates better results as compared to MobileNet-SSD
regarding evaluation metrics under the low-attribute images. Furthermore, we negotiated
that multi-spectral images are the foremost solution for the detection of small- or large-sized
pedestrians with the addition of the YOLO version under different lighting conditions.
Finally, we presented a useful discussion along with some future research directions.
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