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Abstract—Over the past decade, machine learning techniques
and in particular predictive modeling and pattern recognition
in biomedical sciences, from drug delivery systems to medical
imaging, have become one of the most important methods of
assisting researchers in gaining a deeper understanding of issues
in their entirety and solving complex medical problems. Deep
learning is a powerful machine learning algorithm in classification
that extracts low- to high-level features. In this paper, we employ a
convolutional neural network to distinguish an Alzheimers brain
from a normal, healthy brain. The importance of classifying
this type of medical data lies in its potential to develop a
predictive model or system in order to recognize the symptoms of
Alzheimers disease when compared with normal subjects and to
estimate the stages of the disease. Classification of clinical data
for medical conditions such as Alzheimers disease has always
been challenging, and the most problematic aspect has always
been selecting the strongest discriminative features. Using the
Convolutional Neural Network (CNN) and the famous architec-
ture LeNet-5, we successfully classified functional MRI data of
Alzheimers subjects from normal controls, where the accuracy of
testing data reached 96.85%. This experiment suggests that the
shift and scale invariant features extracted by CNN followed by
deep learning classification represents the most powerful method
of distinguishing clinical data from healthy data in fMRI. This
approach also allows for expansion of the methodology to predict
more complicated systems.

Keywords—Deep learning; Alzheirmer’s Disease; fMRI

I. INTRODUCTION

Alzheimers disease is an irreversible, progressive neuro-
logical brain disorder. It is a multifaceted disease that slowly
destroys brain cells, causing memory and thinking skill losses,
and ultimately loss of the ability to carry out even the
simplest tasks. The cognitive decline caused by this disorder
ultimately leads to dementia. For instance, the disease begins
with mild deterioration and gets progressively worse as a
neurodegenerative type of dementia. Diagnosing Alzheimers
disease requires very careful medical assessments, such as
patient history, a mini mental state examination (MMSE),
and physical and neurobiological exams. In addition to these
evaluations, resting-state functional magnetic resonance imag-
ing (rs-fMRI) provides a non-invasive method of measuring
functional brain activity and changes in the brain [13]. There

are two important concepts regarding resting-state fMRI. First,
because patients do not perform any tasks and there is no
simulation, the procedure is more comfortable than a normal
fMRI. Second, rs-fMRI data acquisition can be performed
during a clinical scan, and most researchers are interested
in brain network analysis and extraction from rs-fMRI data
[8][9][11][6][2]. However, development of an assistive tool
or algorithm to classify fMRI data and, more importantly,
to distinguish brain disorder data from healthy subjects has
always been of interest to clinicians. Any machine learning
algorithm that is able to classify Alzheimers disease will assist
scientists and clinicians in diagnosing this brain disorder. In
this work, the convolutional neural network (CNN), which is
part of the Deep Learning Network architecture, is utilized in
order to distinguish Alzheimers brains from healthy brains and
produce a trained, predictive model.

II. BACKGROUND AND ALGORITHMS

A. Data Acquisition and Preprocessing

In this work, 28 Alzheimer’s disease (AD) patients and
15 normal control (NC) subjects (24 female and 19 male)
with a mean age of 74.9 5.7 years were selected from the
ADNI1 dataset. The AD subjects’MMSEs were reported to
be over 20 by ADNI, and normal participants were healthy,
with no reported history of medical or neurological conditions.
Scanning was performed on a Trio 3 Tesla, which included
structural and functional scans. First, anatomical scans were
performed with a 3D MP-RAGE sequence (TR=2s, TE=2.63
ms, FOV=25.6 cm, 256 x 256 matrix, 160 slices of 1mm
thickness). Next, functional scans were obtained with an EPI
sequence (150 volumes, TR=2 s, TE=30 ms, flip angle=70,
FOV=20 cm, 64 x 64 matrix, 30 axial slices of 5mm thickness,
no gap). The fMRI data were pre-processed using the standard

1*Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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modules from the FMRIB Software Library v5.0 [10]. Pre-
processing steps for the anatomical data involved the removal
of non-brain tissue from T1 structural images using the Brain
Extraction Tool. Preprocessing steps for the functional data
included motion correction (MCFLRIT), skull stripping, and
spatial smoothing (Gaussian kernel of 5-mm FWHM). Low-
level noise was removed using high-pass temporal filtering
($sigma=90.0 sec). Functional images were then aligned to
individual high-resolution T1-weighted scans, which were
subsequently registered to the Montreal Neurological Institute
standard space (MNI152) using affine linear registration and
resampled at 2mm cubic voxels. The end results of the pre-
processing step were 45x54x45x300 images, from which the
first 10 slices of each image were removed, as they contained
no functional information.

B. Deep Learning

Hierarchical or structured deep learning is a modern branch
of machine learning that was inspired by the human brain. This
technique has been developed based on complicated algorithms
that model high-level features and extract those abstractions
from data by using neural network architecture that is similar
but much more complicated. Neuroscientists have discovered
that the neocortex, which is a part of the cerebral cortex con-
cerned with sight and hearing in mammals, processes sensory
signals by propagating them through a complex hierarchy over
time. This served as the primary motivation for developing
deep machine learning that focuses on computational models
for information representation which exhibits similar charac-
teristics to those of the neocortex [1][4][3].

1) Convolutional Neural Networks (CNNs / ConvNets):
Convolutional Neural Networks that are inspired by the hu-
man visual system are similar to classic neural networks.
This architecture has been specifically designed based on
the explicit assumption that raw data is comprised of two-
dimensional images that enable us to encode certain properties
and also reduce the amount of hyper parameters. The CNN
topology utilizes spatial relationships to reduce the number
of parameters that must be learned and thus improves upon
general feed-forward back propagation training. Equation 1
demonstrates how Error is calculated in the back propagation
step, where E is error function, y is the ith, j is the neuron, x
is the input, l represents layer numbers, w is the filter weight
with a and b indices, N is the number of neurons in a given
layer, and m is the filter size.
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In CNNs, small portions of the image (dubbed local receptive
fields) are treated as inputs to the lowest layer of the hierar-
chical structure. One of the most important features of CNN
is that the complex architecture provides a level of invariance
to shift, scale and rotation, as the local receptive field allows
the neuron or processing unit access to elementary features
such as oriented edges or corners. This network is basically

constructed of neurons having learnable weights and biases
and forming a Convolutional Layer. It also includes other
network structures, such as a Pooling Layer, a Normalization
Layer, and a Fully-Connected Layer. As briefly mentioned
above, the Convolutional Layer, or so-called CONV, computes
the output of neurons that are connected to local regions in
the input. Each computes a dot product between its weight
and the region it is connected to in the input volume. The
Pooling Layer, or so-called POOL, performs a down sampling
operation along the spatial dimensions. The Normalization
Layer, or RELU, applies an element-wise activation function,
such as the max (0, x), thresholding at zero. This layer
does not change the size of the image volume. The Fully-
Connected Layer, or FC, computes class scores, resulting in
the volume of the number of classes. As with ordinary Neural
Networks, and as the name implies, each neuron in this layer
is connected to all of the numbers in the previous volume [1]
[4]. The Convolutional Layer plays an important role in CNN
architecture and is the core building block in this network.
The CONV layers parameters consist of a set of learnable
filters. Every filter is spatially small but extends through the
full depth of the input volume. During the forward pass, each
filter is convolved across the width and height of the input
volume, producing a 2D activation map of that filter. During
this convolving, the network learns of filters that activate when
they see some specific type of feature at some spatial position
in the input. Next, these activation maps are stacked for all
filters along the depth dimension, which forms the full output
volume. Thus, every entry in the output volume can also
be interpreted as an output of a neuron which only looks
at a small region in the input and shares parameters with
neurons in the same activation map [1] [4] [3]. A Pooling
Layer is usually inserted between successive Convolutional
Layers in ConvNet architecture. Its function is to reduce (down
sample) the spatial size of the representation in order to control
the amount of network hyper parameters, and hence to also
control overfitting. The Pooling Layer operates independently
on every depth slice of the input and resizes it spatially using
the MAX operation. Recently, more successful CNNs have
been developed, such as LeNet, AlexNet, ZF Net, GoogleNet,
VGGNet and ResNet. The major bottleneck of constructing
ConvNet architecture is the memory restrictions of GPU [1]
[4] [3]. As is evident in Figure 3, LeNet-5 was first designed
by Y. LeCun et al. [4], and this famous network successfully
classified digits and was applied to hand-written check num-
bers. The application of this network was expanded to more
complicated problems, and the hyper parameters were adjusted
for new issues. However, more sophisticated versions of LeNet
have been successfully tested. In this work, we addressed a
very complicated binary classification of Alzheimers data and
normal data. In other words, we needed a complicated network
for two classes, which compelled us to choose LeNet-5 and
adjust this architecture for fMRI data.

The implemented network is shown in Figure 2 in detail.

III. RESULTS AND DISCUSSION

The preprocessed fMRI 4D data in Nifti format was
concatenated across z and t axes and then converted to a stack
of 2D images in JPEG form using the neuroimaging pack-
ages Nibabel (http://nipy.org/nibabel/) and Python OpenCV
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Fig. 1: LeNet-5 architecture adopted for fMRI data

(opencv.org). Next, images were labeled for binary classifi-
cation of Alzheimers vs. normal data. The labeled images
were converted to lmdb storage databases for high-throughput
to be fed into a Deep Learning platform. The LeNet model
which is based on Convolutional Neural Network architecture
from Caffe DIGITS 0.2 - deep learning framework (Nvidia
version) was used to perform binary image classification. The
data were divided into three parts: training (60%), validation
(20%), and testing (20%). The number of epochs was set to
30, and the batch size was 64, resulting in 126,990 iterations.
The LeNet was trained by 270,900 samples and validated and
tested by 90,300 images. In order to achieve the robustness and
reproducibility of the deep neural network, the cross validation
process was repeated five times (fivefold cross validation). This
is presented in Table I. The mean of images was removed

TABLE I: Accuracies achieved from CNN across 5 runs

Run1 Run2 Run3 Run4 Run5 Mean

96.858 96.857 96.854 96.863 96.8588 96.8588

from data in the Deep Learning preprocessing step. In the
training phase, loss of training and testing, as well as accuracy
of the validation data, was measured. The learning rate fell
dramatically following the 10th epoch and decreased slightly
after the 20th epoch, as is shown in Figure 4. The Deep
Learning LeNet model successfully recognized the Alzheimers
data from the normal control data, and the average accuracy
rate reached 96.8588%, as is depicted in Figure 3. The training
and testing processes were performed on NVIDIA GPU Cloud
Computing, which significantly improved the performance of
the Deep Learning classifier.

Figure 4 demonstrates how the learning rate drops by 10
epochs during each of the training sets. We began with 0.01
and divided this by 10 for each of the 10 epochs.

Most challenges in traditional medical image processing
and analyses have involved the selection of the best and most
discriminative features, which must be extracted from data, and
the process of choosing the best classification method. One
important advantage of Deep Learning methods, especially
the Convolutional Neural Network used in this study, is the
ability to contain those two characteristics simultaneously. It
is possible to visualize the results of filters (kernels) in each
layer. Figures 5, 6 and 7 illustrate some of the final filter
results from different layers. CNN is a strong feature extractor
because of its convolutional layers, which are able to extract
high-level features from images. This deep learning method is
also a powerful classifier because of its complicated network
architecture. The present solution, which is based on fully
advanced preprocessing steps followed by CNN classification,
improved the accuracy of AD data classification from 84%

Fig. 2: LeNet-5 network implemented for fMRI data

using Support Vector Machine (SVM) reported in the literature
[14] [5] [12] to 96.86%. However, deep learning solutions have
very few problems, such as high algorithm complexity and
expensive infrastructure.

IV. CONCLUSIONS

In this paper, we successfully classified AD data from
normal control data with 96.86% accuracy using CNN deep
learning architecture (LeNet), which was trained and tested
with a massive number of images. This deep learning solu-
tion and the proposed pipeline not only open new avenues
in medical image analyses, but also enable researchers and
physicians to potentially predict any new data. It is also
possible to generalize this method to predict different stages
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Fig. 3: Loss train, Accuracy Validation (Test), Loss Validation
for Run5

Fig. 4: Learning Rate dropping each 10 epochs

of Alzheimers disease for different age groups. Furthermore,
this deep learning-based solution allows researchers to perform
feature selection and classification with unique architecture.
The rate of accuracy achieved in this work was very high,
confirming that the network architecture was correctly selected.
However, more complicated network architecture encompass-
ing more convolutional neural layers is recommended for
future work, and for more complicated problems.
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VI. APPENDIX I

Data collection and sharing for this project was funded
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-
2-0012). ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengi-
neering, and through generous contributions from the fol-
lowing: AbbVie, Alzheimer?s Association; Alzheimer’s Drug
Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Bio-
gen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai

Fig. 5: Statistics and Visualization for data and scale of
Alzheimer’s Disease sample

Fig. 6: Statistics and visualization for first convolution layer
of Alzheimer’s Disease sample

Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated
company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO
Ltd.; Janssen Alzheimer Immunotherapy Research & Devel-
opment, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co.,
Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neu-
rotrack Technologies; Novartis Pharmaceuticals Corporation;
Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceu-
tical Company; and Transition Therapeutics. The Canadian
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Fig. 7: Statistics and visualization for second convolution layer
of Alzheimer’s Disease sample

Institutes of Health Research is providing funds to support
ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of
Health (www.fnih.org). The grantee organization is the North-
ern California Institute for Research and Education, and the
study is coordinated by the Alzheimer’s Disease Cooperative
Study at the University of California, San Diego. ADNI data
are disseminated by the Laboratory for Neuro Imaging at the
University of Southern California.
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