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Wireless Sensor Networks (WSNs) have a wide range of applications scenarios in computer vision, from pedestrian detection to
robotic visual navigation. In response to the growing visual data services in WSNs, we propose a proactive caching strategy based
on Stacked Sparse Autoencoder (SSAE) to predict content popularity (PCDS2AW). Firstly, based on Soware De�ned Network
(SDN) and Network Function Virtualization (NFV) technologies, a distributed deep learning network SSAE is constructed in the
sink nodes and control nodes of the WSN network. �en, the SSAE network structure parameters and network model parameters
are optimized through training. �e proactive cache strategy implementation procedure is divided into four steps. (1)�e SDN
controller is responsible for dynamically collecting user request data package information in the WSNs network. (2)�e SSAEs
predicts the packet popularity based on the SDN controller obtaining user request data. (3) �e SDN controller generates a
corresponding proactive cache strategy according to the popularity prediction result. (4) Implement the proactive caching strategy
at the WSNs cache node. In the simulation, we compare the in�uence of spatiotemporal data on the SSAE network structure.
Compared with the classic caching strategy Hash + LRU, Betw + LRU, and classic prediction algorithms SVM and BPNN, the
proposed PCDS2AW proactive caching strategy can signi�cantly improve WSN performance.

1. Introduction

According to the latest Cisco release of the Visual Network
Index (VNI) [1] forecast, the number of devices connected
to the Internet of �ings (IoT) is projected to expand to
somewhere between 20 and 46 billion by 2021. �anks to
the simple deployment and various practical applications, the
potential bene�ts of wireless sensor networks (WSNs) con-
cern a wide range of application scenarios, from pedestrian
detection to robot vision navigation, from industrial systems
to home appliances. While billions of new devices connect to
the network in a short period of time inWSNs, there will have
huge data tra�c.�erefore, congestion control and data share
should be considered. As Figure 1 shows, the WSN network
is deployed for tra�c monitor, which composed of di�erent
network protocols that cannot be directly connected, and it
is di�cult to achieve fast sharing of sensing data to meet the
performance requirements of the system.

For speci�c applications, once the distributed WSN is
deployed for tra�c monitor, the sensor node handles not
only the sensing tasks but also maintenance of the route
status.With the solidi�ed resource management mode, when
the upper-layer application requirements change, it is very
di�cult to apply �exible changes according to the new
requirements. �erefore, it is seriously wasting resources
without realizing dynamic perception.

Soware-de�ned network (SDN) [2] as a new type of
network architecture attracting attention in recent years is
applied to future networks. �e core idea of SDN is the
separation of control plane and forwarding plane.�e control
plane is aware of network status and network resources,
and then the central controller �exibly and dynamically
con�gures the logic control functions and high-level policies
of the network. On the data plane, this con�guration can
be performed without a�ecting the normal network tra�c.
Network Function Virtualization (NFV) [3] applies the goal
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Figure 1: WSNs application in tra�c monitor.

of automated management and distributed deployment by
introducing virtualization technology. SDN and NFV are
introduced to improve the performance in WSNs [4].

To address the congestion issue, proactive caching [5, 6],
which wildly used in ICN, is introduced into the WSNs
[7]. Data package caching will improve the performance of
WSNs, including reducing packet latency, network tra�c, and
BER of transmission. Recently, proactive caching based on
content popularity prediction of Deep Learning (DL), has
attracted widespread attention in academia and industry [8–
13], which will signi�cantly bene�t cache e�ciency. Content
popularity prediction based on DL can automatically �nd the
rule from the data and use this rule to predict the unknown
data. �erefore, in WSN data, caching would signi�cantly
improve resource utilization and network performance.

�erefore, we propose an e�cient proactive cache strat-
egy based on distributed stacked sparse autoencoder inWSNs
(PCDS2AW) for data package content popularity prediction.
Firstly, NFV functions are used to virtual part of hardware
resources in the control node and sink nodes and routers
of general hardware. �en, based on those virtual hardware
resources, a distributed deep learning network, SSAEs, is
constructed. Next, the SDN controller works in conjunction
with global cache resources and SSAEs. At theWSNs network
level, the SDN controller can dynamically sense the cache uti-
lization information and periodically collect user data packet
request information. �ese historical requests and real-time
requested packet information are input into the distributed
SSAE for content popularity prediction. Finally, based on
the data package, popularity prediction the SDN controller
generates the proactive cache strategy and synchronizes it
to the WSNs cache nodes through the SDN �ow table to
implement content caching and replacement.

As a virtual technology, NFV can provide support for
referencemachine learning and can achieve seamless cooper-
ation with SDN [4]. SDN uses stream-based data forwarding,
with a focus on data exchange and forwarding, while WSN is

constrained by the speci�c type of sensor deployed, which is
essentially data-oriented. �erefore, based on NFV, machine
learning algorithms are used to predict network tra�c,
and SDN realizes fast forwarding and complements WSN’s
e�cient perception.

In order to implement cache strategy based on the
global data package content popularity prediction, the SDN
controller should know the popularity of all requested data
package information in WSNs. �erefore, the SDN/NFV
technology is used in upper-layer include sink nodes, control
nodes, and router to construct some virtual content request
and statistics servers.�ese statistics servers are con�gured to
collect the request data package information from the WSN
nodes. �e content request information is aggregated to a
virtual global content request statistics server. �erefore, the
control node collects a large amount of global data package
request information and uses the deep learning algorithm to
build a prediction content popularitymodel and then uses the
prediction model to guide the WSNs for e�cient caching to
reduce tra�c.

�e main contributions of this paper are as follows:(1) in the WSNs, we propose a method for constructing a
distributed stack sparse autoencoder deep learning network;(2) SSAEs use the spatiotemporal information of user request
data packets to predict the data packet popularity; (3) under
the cooperation of SDN controller, cache nodes implement
the proactive cache and replacement of the data packet
content of the whole network, which makes the utilization of
cache resources more reasonable; (4) simulation results show
that, compared with Betw [14], Hash [15], and Opportunistic
[16], the proposed proactive caching strategy could improve
the performance of WSNs.

�e remainder of this article is structured as follows.
In Section 2, related works are described. In Section 3, the
system model is proposed. In Section 4, some evaluation
metrics and the numerical simulation results are discussed.
Finally, we conclude in Section 5.
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2. Related Works

In order to meet the needs of the interconnection of all
kinds of objects, the distributed WSN for application design
is beginning to transform to support heterogeneous intercon-
nection, which is one of the root causes of SDN introduction
of WSN.

In 2012, Luo [17]and Mahmud [18] discussed the inte-
gration of SDN and WSN almost simultaneously and made
important contributions to the birth of SDWSN. Zeng et al.
[19] proposed a soware-de�ned sensor networks (SDSN)
architecture that supports “sensing as a service” combined
with cloud computing, in which architecture and the con-
trollers are wirelessly used for di�erent sensing tasks. In
[20], the author proposed Elon system which implements
the function of dynamically modifying the sensing node
code by means of replaceable components. Subsequently,
the author’s team further implemented the transmission on
the SDSN. In [21], based on a new event-triggered strategy,
the author proposed an event-triggered distributed multi-
sensor data fusion algorithm for wireless sensor networks
(WSNs). In [22], the authors deployed multiple controllers to
build a more �exible control channel, which greatly reduced
the average network control delay. �e dynamic rede�nition
function of the node function [23] could e�ectively extend
the network lifetime. In [24], the authors proposed a general
architecture for implementing the controller on the WSN
base station to enhance the intelligent management of the
network. In [25], the authors de�ned the cluster head as
a switch in the wired network, and the only controller is
deployed in the WSN base station to save the sensor node
energy. 0�e author [26] proposed UbiFlow, which was a
soware-de�ned IoT system for ubiquitous �ow control and
mobility management in a large number of heterogeneous
WSNs.

SDN and NFV are not combined standard, and they
provide di�erent aspects of network-based services. Inno-
vative network paradigms SDN and NFV have attracted
the interest of IoT network operators and service providers.
Some researchers have introduced SDN into the IOTnetwork
architecture, such as SDN-WISE [27], SDWN [28], TinySDN
[22], andUbiFlow [26]. However, many of these architectures
lacked virtualization methods. In [4], in order to quickly
respond to the challenges brought by �exible deployment of
the Internet of�ings, the author combined NFV technology
with SDN technology and proposed a general SDN-IoT
architecture. In [29], to verify and test the 6LoWPAN testbed,
a customized Soware De�ned–Network Functioning Virtu-
alisation (SD–NFV) is proposed.

As a kind of technology to improve network performance,
cache technology is widely used in future Internet and
communication. Recently, caching has also been a concern
in the Internet of things. In [30], the author introduced
the in-network caching to the IOT. Firstly, the author
de�ned the lifetime of IOT transmission data, which was
determined by application time and location tags, then a
trade-o� model between multi-hop cost and data fresh-
ness was proposed and applied to the content router of
the Internet of things. In [31], to adapt highly dynamic

environments with a coarse knowledge of car trajectories,
the author proposed a Mobility-Aware Probabilistic (MAP)
edge caching strategy. In [32], to enhance the service in
mobile ad hoc networks (MANNET), the authors proposed
a comprehensive strategy which includes cache placement,
cache discovery, cache consistency, and cache replacement
algorithms. In [33], the author developed a dynamic source
rate control algorithm based on cache awareness. Depending
on the network tra�c, the rate control algorithm used a cache
management policy (such as a cache elimination policy and
a cache size allocation) to move the transmission window
so that packet loss may be mitigated during high speed.
In [34], the caching mechanism which was applied to the
transport protocol would e�ectively reduce the number of
end-to-end retransmissions, node power consumption, and
packet delay to improve network performance. In [35], the
author had comprehensive evaluation of cache utilization
characteristics with the cache replacement techniques. When
caching techniques were applied in theWSNs, the simulation
results showed that the performance of packet loss rate, power
consumption, and packet transmission delay improved.

Content popularity prediction is one of the key points
for caching in which content should be storages; there is no
literature to mention in WSN �elds. �e author [36] used
the Markov model to predict sensor operation and proposed
a smart cache model based on sensor power to improve
cache hit ratios in the ICN-based IoT sensor networks. In
[15], based on content popularity, the author proposed a
caching decision policy, which allowed a single ICN router
to cache content more or less according to the popularity
characteristics of the content. In [37], the author proposed
a regression method that supported vector regression and
Gaussian radial basis functions to predict the popularity of
YouTube and Facebook online videos. Mao [38] proposed
a multitasking learning (MTL) module and a relational
network (RN). �e module’s general prediction model used
to predict TVdrama views. In [39], a bi-directional long-term
short-termmemory neural network (BiLSTM) was proposed
to predict the prevalence of online content. Studied in video
and news texts, data sets have shown that deep network
performance is greatly improved. In [40], the authors pro-
posed that content popularity predictions could translate
as classi�cation problems and then made the end-to-end
multimodal prediction based on the deep neural networks. In
the experiment, text information and visual informationwere
used to verify the validity of the models. In [41], to reduce
congestion of backhaul network tra�c, the authors proposed
to predict user request based on �le popularity and user and
�le patterns, during o�-peak request the system proactive
cached �les. �rough the acquisition of mobile subscriber
service data of multiple base stations within a few hours
interval, analysis was conducted on the big data platform to
study the extent of evaluation of the content popularity, and
proactive cachingwas performed [42].�e result showed that
the level of satisfaction with user requests could be increased,
while the backhaul network tra�c could be reduced.

Deep learning has raised concerns in WSN and IOT.
In SDN-IoT network [43], to forecast the congestion and
tra�c load, the author proposed a deep learning algorithm
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to predict the future tra�c load. In [44], in order to predict
the evolution of tra�c in the global network, the author
proposed a hybrid convolution long-term memory neural
network (CRS-ConvLSTMNN)model based on critical path.

Our research shows an e�ort to be combined with
SDN, NFV, DL, and WSN. �e proposed proactive cache
strategy provides a reliable and e�cient method to share the
network resource ofWSN cache devices.We propose a simple
structure of SDN / NFV combined with SSAEs to solve the
challenges of WSN, especially in tra�c load and congestion
management issues. �is will improve the network e�ciency
and �exibility of WSN applications.

3. Methods

3.1. Distribute Deep Learning Networks Architecture on the
WSN. �e distributed deep learning network system archi-
tecture is shown in Figure 2. In WSN, the upper-layer trans-
mission hardware consists of sink nodes, control nodes, and
routers. All of the elements are SDN-enabled architecture,
which realizes the separation of the control plane and the for-
warding plane. With calculation and caching function, these
network elements cooperate through the SDN controller.
�erefore, the NFV/SDN technology is utilized to construct
virtual distributed deep learning network architecture. In the
WSN, those devices which have cache resources, such as sink
node, router, sub-control node, and main control node, will
share partial hardware by NFV to construct the deep learning
network. �e sink node/router resource will be the input
part, and the main control node is the major calculation
resource. �en the SDN controller is constructed on the
main controller node. With SDN enabled in the WSN, SDN
community is with sink node and router through the �ow
table. �erefore, the main control node may be dynamically
aware of the status of the WSN.

On the distributed deep learning network, we construct
the SSAEs. �e hidden layers and output layer are on the
main controller. In our model, SSAEs will predict the data
package popularity in the future through historical user data.
�erefore, a statistics server will be a virtual construct on
the main control node. �ose sink nodes will collect the
local data package request information and send it to the
statistics server. During the training stage, the statistics server
will provide the historical data to the input layers. And
the prediction stage, the statistics service summarizes the
several timeslot request data for the input layers. �en the
SSAEs make a prediction for data package in the future.
�e SDN controller generates a cache strategy based on
the prediction. And the cache strategy is synchronized to
those cache nodes to implement proactive caching in the
period.

3.2. Deep Learning Network

3.2.1. SparseAuto-Encoder. As anunsupervised feature learn-
ing method is widely studied in the �eld of deep learning,
Sparse Auto-Encoder (SAE) has the capability to �nd a
concise and e�cient representation of complex data.

�e SAE network has three di�erent layers: input layer,
hidden layer, and output layer. In order to obtain the optimal
hidden layer parameters, that is, to minimize the SAE recon-
struction error, the SAE network requires that the output
layer be equal to the input layer. �e data procedure of SAE
is divided into encoding and decoding.

Encoding: �e encoding process is to obtain feature y of
the input layer value �. �e original user requirement data

is denoted as vector � = [�(1), �(2), . . . , �(�)]�; parameter �
means the total number of the input nodes.

� = � (�) = � (�� + �) (1)

where vector y = [�(1), �(2), . . . , �(�)]� indicated the feature
expression of the hidden layer, and parameter 	 denotes the
nodes of the hidden layers. Parameter � denotes the bias
vectors, and� represents the weight matrix from input layer
to hidden layer. �(�) represents the activation function.

Decoding: �e decoding process is to obtain the recon-
structed vector 
 of the output layer from the hidden layer
value �.


 = � (�) = � (��� + ��) (2)

where 
 = [
(1), 
(2), . . . , 
(�)]�, � denotes the feature
expression of output layer, and �� denotes the bias vector.

In the SAE feature learning process, in order to minimize
the loss caused by coding, the basic requirement is that the
reconstructed output is close to the input. In the process
of constructing the loss function, in order to learn more
optimized sparse features, the sparse penalty term is added
to the objective function of the encoder. �e feature learned
in this way is not simply repeated input. In fact, the role of
the sparse penalty term in the hidden layer is to control the
number of activated neurons.When the output of the neuron
is 0, the neuron is the inactive state. While its output is 1,
the neuron is active. Another goal in the feature learning
process is to reconstruct the input with fewer active nerves.
�e reconstruction loss function of SAE is as follows:

� = 1�
�∑
�=1
[12 (�(�) − 
(�))2] + �2

�∑
�=1

�∑
�=1
�2��

+ � �∑
�=1
[� log ��� + (1 − �) log 1 − �1 − ��]

(3)

�e loss function consists of three parts; the �rst parts
denotes mean square error between the reconstructed out-
put and the input. And the second part is �2 regulariza-
tion which used to control the over-�tting issue, and ���
denotes the weight. �e last part is the sparsity regulariza-
tion, where � denotes the desired target value, and �� =(1/	)∑��=1[��(�(�))], which mean the average activation out-
put. In the loss function, parameter � is to prevent over�tting,
and � is to control the sparsity penalty.
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Figure 2: Deep learning network structure in WSNs.

With the greedy layer-wise training and backpropagation
algorithm being used to obtain the parameters� and �, the
detail iteration process is as follows:

��� = ��� − � ����� � (4)

�� = �� − � ���� � (5)

�e hyperparameter learning rate � is used to control the
decreasing function of time. Aer training, SAE would learn
the e�ective sparse feature representations.

3.2.2. Stacked Sparse Auto-Encoder Plus So	max Classi
er.
In the WSN system, we will use the SSAE (Stacked Sparse
Auto-Encoder) deep learning network due to the limitation
of resources. �e SSAEs are a deep neural network which
consists of multiple layers of basic SAE. �e outputs of each
SSAEs layer are connected to the inputs of the successive
layer. As shown in Figure 3, the SSAEs are composed of two
layers SAE, where the �rst SAE is treated as an encoder,
and the second SAE is a decoder. �e output y 1 of the
�rst SAE will be the input value of the input layer of the
second SAE. When all the SSAE training �nished, the model
got the features parameter. And all the parameters of SSAEs
are utilized to initialize the Somax classi�er to classify the
objects.

3.3. Proactive Cache Strategy

3.3.1. Network Parameters of SSAEs. When we construct the
SSAEs, some systemparameter should be decided in advance,
such as the dimension of the input layer, the number of the

layers of the hidden layer, the number of neurons in each
hidden layer, and the activation function of each layer.

In the SSAEs model, we could use some data groups
to make a prediction. It is assumed that there has � width
window slide along the time axis. �e basic unit widow
is one timeslot. In unit windows, all the sink nodes will
report corresponding measure data, and those data contain
spatial distribute of the WSN sink nodes. If few sink nodes’
data missing, we consider the corresponding data is zero.
�erefore, if there is more than one timeslot, the measure
data contain the spatial-temporal information. If the timeslot
window is �, there are � × �measure data which will provide
for the input layers of SSAEs. And the � × � measure will
concatenate as a vector.

Especially, when the window � > 1, the prediction of
SSAEs will contain the spatial-temporal correlation of data
package popularity. �e measured data could present as �−1,  �−2, . . . ,  �−�, where � denotes the timeslot and �means
the past time. �erefore, we could use the past measure to
predict future data package popularity. �e input data of the
SSAE contain time dependence of content popularity. And
the � × � measure data represent the tra�c information of
sink nodes in the WNSs.

In this article, it assumes that the content popularity has! levels; therefore the output of the Somax classi�er is also! levels. �e output is present as the one-hot vector, and the
corresponding level is the level of data package popularity.

Based on the previous description, we do not discuss the
changes in the number of sensors in theWSN network. In the
SSAEs network model construction, information collection
is implemented at the sink nodes rather than directly on the
sensor because the sensor nodesmay change. In the �rst case,
the sensor node is reduced, which is manifested by the fact
that the sensor node loses connection with the WSN sink
node for various reasons. �is situation is similar to the fact
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Figure 3: SSAEs structure.

that the data obtained by the sink node from the sensor node
is zero, which does not a�ect the structure of the SSAE net-
work and does not a�ect the prediction results. In the second
case, new sensor nodes are added to theWSN network due to
the need to acquire new data. In this case, we can consider a
certain amount of node redundancy when initially building
the network model. �e measured data of these redundant
nodes may take the average of the measured values of the
WSNs sensors in the corresponding time slots as their values.

3.3.2. WSNs Data Package Popularity Prediction. Brie�y, the
popularity prediction procedure of SSAEs consist of initial-
ization, training, and running stages.

(i) Initialization Stage. In this stage, the greedy layer-wise
training and backpropagation algorithm is used to train the
SSAEs model. �erefore, the initialization stage should get
the labeling data, including the user request data vector
and the corresponding classi�ed information. As mentioned
earlier, the user data package of theWSNnetwork is collected
by the SDN controller. And the output value is a multi-
dimension one-hot vector which denotes the data package
popularity in the appointed timeslot in the future.

(ii) Training Stage. In this stage, the pre-training obtains
the general parameters, and �ne-tuning will optimize those
parameters. �e greedy layer-wise unsupervised learning
algorithm is executed from down to top. �en with the
gradient-based optimization technique the BP algorithm is
executed from top to down to �netune the SSAEs parameters.

When training is �nished, the optimized parameters of
SSAEs are �xed.

(iii) Running Stage. In this stage, the SDN controller will
dynamically input the user request data information; then
the SSAEs will make a prediction. And the data package
popularity prediction will send to the SDN controller to
generate cache strategy for the WSNs cache nodes.

3.3.3. Proactive Cache Strategy in WSNs. Based on the data
package popularity prediction and theWSNs status, the SDN
controller will generate the cache strategy.

In the SDN-enabled WSN, SDN controller reserves the
topology information of all the WSN nodes and the routing
information and is dynamically aware of the cache status of
the cache node. �e cache status information contains how
many cache spaces are available and what is the priority level
of the cache of each node.�ebasic principle of cache strategy
is to reserve the high-level content and replace the low-
level one. And those contents will be popular in the future
time period and not be replaced. �e SDN controller will
periodically update the strategy when the SSAEs dynamically
adjust the data package popularity prediction.

SDN controller generates the cache policies, and cache
nodes are only responsible for the execution of the caching
strategy.Due to the SDNcontroller taking thewhole topology
of WSN network and the cache status of all cache nodes into
consideration, the cache strategy will be e�cient to avoid the
waste of caching resources and reduce the communication
overhead between those cached nodes.

In the SDN-enabled WSN, SDN controller reserves the
topology information of all the WSN node and the routing
information and is dynamically aware of the cache status
of the cache node. �e cache status information contains
how many cache spaces are available and what is priority
level of the cache of each node. �e basic principle of
cache strategy is to reserve the high-level SDN controller
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and is not only responsible for the routine work but also
responsible for the deployment and maintenance PCDS2AW.
When the cache strategy is updated, the SDN controller
will update the routing forwarding table for content in
the WSNs node and synchronize it to WSN node. When
WSN node receives the routing forwarding table, that rout-
ing information will actively be inserted into the normal
switch routing table before the data packet arrives. �e
data package will be cached to the assigned space when
the high-level data packet arrives. Meanwhile, the low-
level data packet will be replaced if the cache space is not
enough.

WSN cache node addressing can work normally even if
the routing and forwarding tables are missing or incomplete.
�e input information of the neuron in the PCDS2AW
network is incomplete or some nodes are input timeout or
the data noise is large.�e PCDS2AW can still work properly
and can predict the data package popularity of the input user
request information.�erefore, PCDS2AW could show good
performance of robustness.

Algorithm 1 (the implementation of PCDS2AW for proactive
caching for WSN).

Initial: parameters of PCDS2AW
L = 3: Number of hidden layers
Ni = 1200: Number of input dimension
Nh = [300,200,100]: Number of hidden layer dimension
Ts=6: Number of timeslots
Sp = 0.1: Number of sparse parameters" = [1.2, 1.5]: the Zipf law parameter �: generate the data package request data based on

P( � = i) = i−	/∑
�=1 #−	.���: generate the weight parameter for each layer of SSAE.��: generate the bias parameter for each layer of SSAE.
Pn = 40000: the number of pre-training epochs;
Fn = 10000; the number of �ne-training epochs;
Training:
P = [Pn, Fn]
Repeat:

For Do L=1:3

(1) Input �,
(2) Calculate �� based on Formula (1); � = ��;
(3) Decode 
� based on Formula (2);

(4) Calculate cost function J based on Formula (3)

(5) Update���and �� based on Formula (4) and (5).

Pi = Pi -1;
Until (Pi=0)
Proactive Cache:
Input X�: the used request data information form slot t-i

to t.
Calculate the data package popularity $� based on

Formula (1) ∼ (3).
Sort $� = min[$��], for all cache node&�;
Replace the C�with $�.

4. Results

4.1. Experimental Environments. In our simulation, we use
the TensorFlow framework to construct the SSAEs deep
learning network. And the SDN is built on the OpenFlow
protocol which separates the control plane of the WSN
nodes from the data plane. Our simulation platform runs on
Ubuntu 14.04 with 4 GPU cards, NVIDIA GeForce TitanX
12G GDDR5, and 64G RAMmemories.

To simulate packet behavior in a WSN network, we
assume that the set of packet content throughout the network
is ' = �1, �2, . . . , �. �ese packets are generated by the
content server in the WSN network and they are represented
by the set * = -1, -2, . . . , -�. For ease of research, we assume
that each content packet is randomly generated by only one
content server, and each content server is only connected
to one network node. At the same time, assuming that all
content servers have the same size content unit, the cache
space of each cache node of the WSN is the same size, and
the cache slot in the cache memory can only accommodate
one content unit. In addition, it is assumed that the timing
of user packet content requests in the WSN system is subject
to the Poisson distribution process. Assuming the user sends
a packet request from a �xed virtual node, the overall user
packet request conforms to Zipf ’s law.�e frequency at which
the user requests the content popularity � (1 ≤ � ≤ 5) of the
data packet is as follows:

6 (� = �) = (�−	)$ ,
$ = 
∑
�=1
#−	 (6)

where5 is the total category of the data package content.
In the experiment, the user content request parameters

in the WSN network collected by the SDN controller are
�rst constructed as a one-dimensional sequence and then
subjected to [0, 1] normalization processing, and, �nally,
these measurement parameters are input to the input layer
of the SSAEs network.

In the active cache emulation, when the user requests the
content of the packet, the content matching is �rst performed
in the cache in the corresponding node of the WSN. If the
content is found, it indicates a cache hit; otherwise, the cache
is not hit. When the user requests that the data packet is
missed in the cache, the requested data packet content is
traversed throughout the content distribution path of the
content server. When the packet requested by the user is
grouped, the SSAEs predict the content popularity level based
on the measured values in the set slot segment. At the same
time, the content popularity prediction result is sent to the
SDN controller to generate a new cache policy. �e SDN
controller synchronizes the cache policy with theWSN cache
node data plane through the �ow table.

4.2. Evaluation Metrics. In this article, the research goal is
full use of the cache resources in the WSN network by
reducing the WSN cache node and increasing the storage
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Table 1: Architecture structure for SSAEs. Table 1 is reproduced from F. Lei et al. (2018) (under the Creative Commons Attribution
License/public domain).

Timeslot Dimension of input layer Hidden Layers Hidden Layers units MAPE (%) MAE RMSE

2 400 3 [300 200 100] 25.73 13.92 24.79

4 800 3 [300 200 100] 23.68 12.89 21.91

6 1200 3 [300 200 100] 22.11 13.95 20.24

8 1600 3 [300 200 100] 24.64 15.94 23.56

10 2000 4 [300 300 200 100] 26.32 16.28 25.73

content di�erence rate. �erefore, the evaluation criteria of
the proactive cache are the cache hit rate, cache route hop
count reduction rate. In addition, we also consider the impact
of the data packet content popularity Zipf parameters on
these evaluation metrics.

�e results of the SSAEs prediction model will directly
a�ect the generation of the caching strategy. �erefore,
it is necessary to evaluate the SSAEs model performance
indicators. We use three performance metrics: root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute error (MAPE). �e speci�c calculation formula for
these indicators is as follows:

895* = √ 1&
�∑
�=1
(;� − ��)2 (7)

5<9 = 1&
�∑
�=1

????;� − ��???? (8)

5<69 = 1&
�∑
�=1

????;� − ��????;� (9)

where ;� is the observed number of data package being
requested, �� is the predicted number of data package
content being requested, and N denotes the total number of
evaluation samples.�eRMSEmeasures the extremum e�ect
and the error range of the predicted values, and the MAE
measures the speci�city of the average predicted value. Both
of them evaluate the absolute error.MAPE re�ects the relative
error. When the MAPE is minimized, we consider the model
as the optimal structure.

�e proactive caching performance metrics is as follows.$@8 (Cache Hit Rate) is a traditional measure of caching
performance. �e CHR is de�ned as the ratio of the number
of hits requested by the user in the intermediate node to the
total number of packets requested by the user.

$@8 = $ABℎD@��E;�AF8D!GD-� (10)

where E;�AF8D!GD-� is the total data package content
requests in all WSN nodes and $ABℎD@�� is total number of
data package content request hit the cache nodes. It means
the higher the $@8, the higher the cache e�ciency.@88 (Hop Reduction Ratio) is the ratio of the number
of hops when requesting a data packet hit the cache node to

the number of hops from the request data packet to the data
source node.

@88 (�) = ∑�=1 ℎ� (�)∑�=1@� (�) (11)

where @�(�) and ℎ�(�) mean the hops that user get the
request data package from source nodes and cache node in
timeslot [�, � + H], respectively. And if there are not cache
resources in WSNs, ℎ�(�) = 0, then@88 = 0.
4.3. SSAEs Architecture Structure. Before performing content
prediction, it is necessary to determine the appropriate SSAE
architecture structure parameters, including the input layer
dimension, the number of hidden layers, and the number of
neurons in each hidden layer. We assume that cache nodes
(including sink nodes, router, and control node) are 100 in
theWSNnetwork, and sink node is connected to 200 sensors,
so 200 measurement data can be collected in each time slot.
�erefore, the dimension of the appropriate input data can
be determined by studying the number of slots. In the WSNs
network, the SDN controller collects the WSN network node
to input the user request data to the SSAE network every
k time slot. As reported in [6, 10], we set the SSAEs deep
learning with 3 hidden layers. We compare the time slot
k from the set {2, 4, 6, 8, 10}, which means that the input
dimensions range from 400 to 2000. When the MAPE is
minimum, we obtain the optimal SSAEs structure for our
prediction system model.

�e SSAE network architecture test results are shown in
Table 1. As the time slot increases from 2 to 10, the dimension
of the input parameters is gradually increased.When the time
slot is increased from 2 to 4, that is, the dimension of the
input parameter is increased from 400 to 800, the MAPE
reduction is signi�cant. When the time slot is 6, the input
dimension is 1200, and the MAPE reaches the minimum
value, which is about 22.11%. Subsequently, as the time slot
increases, that is, the input dimension increases, the MAPE
increases. In subsequent experiments, the input dimension of
the SSAEs network was set to 1200 and the three-layer hidden
layer unit was [300 200 100]. In this process, the number
of time slots represents the time-dependent characteristics
of the number of inputs. If the number of time slots is too
small, the correlation of the data cannot be re�ected. If the
time slot is too large, additional potential irrelevant inputs
will be introduced, making it more di�cult for the network
architecture to learn a good representation.
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Figure 4: Sparse parameter of SSAEs.
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Figure 5: �e impact of content popularity on caching.

�e e�ect of sparse parameter of the SSAEs is compared,
as shown in Figure 4.When the spare target is 0, whichmeans
no sparse target for the SSAEs, the MAP is about 62.18%.
With the sparse target increase from 0 to 10%, the MAP is
the minimum, 22.11%. With the sparse target increase from
10% to 50%, the MAP also increases to 78.86%. In the SSAEs,
the sparse keep as 10%.

4.4. Experimental Results. In the simulation, we also assume
that there are 100 cache nodes in the WSN network, 200
measurement data can be collected in each time slot. �e
other design parameters are as follows: the quantity of users’
data package request is set to 120000, the average data package
content size is the 1k bit, and the unit size of node cache is the
1k bit. All the following results are the average of 10 rounds
simulation.

We study changes in network performance due to
PCDS2AWprediction and generalization capabilities. Firstly,
we compare PCDS2AW with traditional classic caching
strategies that do not support SDN, such as Betw + LRU,
Hash + LRU, and Opportunistic. At the same time, we also
compare PCDS2AW with caching strategies that support
SDN, such as SDN + BPNN (Back Propagation Network),

SDN + SVM (Support Vector Machine). BPNN is a classical
neural network that learns features through hidden layers.
SVM is a widely used classic prediction model. In these
comparative experiments, we used the same training set and
test set as PCDS2AW to train and test these models.

Figure 5 shows the CHR (cache hit ratio) comparison of
Betw, Hash, SDN, SDN+SVM, SDN+BPNN and PCDS2AW
schemes when alpha =1.2 and alpha =1.5 are used. As the
alpha value increases, the data distribution requested by the
user is more concentrated, and the probability of the data
packet hitting the cache is also improved, which shows that
the CHR in all schemes is correspondingly improved. For
Hash-LRU, all the nodes in the domain collaborate and realize
the cooperative caching of the response content. Although the
content cannot be optimized, the hit rate of the cache content
is enhanced, and the cache hit rate increases by 27.5%. As for
the Betw-LRU, the cache hit rate increases by 29.1% with the
user’s content request more centralized. In the SDN, because
SDN’s network perception function further makes full use
of the storage space of all caching nodes, increasing the
probability and utilization of caching content, CHR reaches
61.4% and 70.3%, respectively. And with the SVM to predict
the popularity, theCHRof SDN+SVM is higher 1.1% and 2.1%
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than SDN. �e SDN+BPNN cache hit rate reach 64.2% and
76.4%. �e PCDS2AW achieves the best than others; CHR
reaches 69.6% and 80.3%, respectively.

Figure 6 shows the e�ect of cache size on the cache
hit ratio. As the size of the cache space of the cache node
increases, the cache hit ratio in all cache schemes also
increases.�is is because as the cache storage space increases,
the cache node can cache more data content packets, so
there is a higher probability of bu�ering the data packets
requested by the user. As the cache space increased from
10kb to 320kb, the cache hit rate for CEE increased from
19.9% to 32.5%; the cache hit rate of the Betw scheme
increased from 25.9% to 47.5%; Opportunistic increased
from 34.1% to 53.4%; the cache hit rate of SDN increased
from 61.4% to 79.1%; CHR of SDN+SVM increased from
62.3% to 82.4%, the SDN+BPNN increased from 63.7%
to 84.7%, and the PCDS2AW increased from 69.3% to
90.1%.

Figure 7 shows the in�uence of the content popularity
parameter " on the cache hit rate in the Zipf distribution.
With the increase of content popularity, the concentration
of requests for user content is increasing. In the case of
cache space, the probability of the content in the cache is
increased and the cache hit rate is increased. In Figure 6,
cache popularity alpha increased by 1.8 from 0.5; the cache hit
rate increased from 13.30% to 89.98% for SDN cache scheme
and from 21.5% to 95.7% for PCDS2AW.

Figure 8 shows the CHR and HRR relation of PCDS2AW
with the Zipf distribution. With Zipf increase, the CHR and
HRR also increase. When cache popularity alpha equals 1.7,
the HRR reaches the maximum about 91.88%.

Computational complexity: �e PCDS2AW algorithm is
mainly divided into two stages: o�ine feature model training
and online content popularity prediction. In the o�ine phase,
SSAEs feature training ismainly used to obtainmodel param-
eters. �e online stage directly predicts the input value input
into the model for content popularity prediction.�e predic-
tion model SSAE in this paper is three layers [300, 200, 100],
and the parameter dimension of the input layer is 1200. �e
sparse parameter in ourmodel is 0.10. Because multiplication
is the most time-consuming, we only estimate the number
of the multiplications of the online prediction in our model.
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�e number of multiplications in the prediction process is
(1200∗300+300∗200+200∗100)∗0.10=44000. In our simula-
tion, the predicted time was 0.0435 s. �erefore, the model
can meet the needs of online prediction.

5. Conclusions

�is paper presents a simple frame structure of SDN/NFV
coupled with SSAEs to address the challenges of WSNs
particularly in the issues of tra�c loads and congestion
management.We construct the distributed deep learning net-
work, SSAEs by SDN/NFV technical. Aer detail analyzes the
architecture parameters, the unsupervised trainingmethod is
used to obtain the prediction model. �e experiments show
that the SSAEs can greatly improve the prediction accuracy,
and then the performance ofWSN can be improved based on
proactive caching.

In the future, we plan to combine the SSAEs with Incre-
mental Extreme LearningMachine (IELM) to online training
and update the SSAE network parameter, while the user
request dynamic changes to get data package prediction and
continues to optimize our model to get better performance.

Data Availability

�e data used to support the �ndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

�is research was funded by the National Natural Science
Foundation of China [U170120078, 61571141, 61702120, and
61672008], the Scienti�c and Technological Projects of
Guangdong Province [2017A050501039], the Guangdong
Provincial Key Laboratory Project [2018B030322016], the
Guangdong Provincial Application-Oriented Technical
Research and Development Special Fund Project[2015B010131017, 2015B090923001, 2016B010127006, and

2017B010125003], the Guangdong Province General Colleges
and Universities Featured Innovation [2015GXJK080],
and the Qingyuan Science and Technology Plan Project[170809111721249 and 170802171710591].
References

[1] Cisco VNI, Cisco Visual Networking Index: Global Mobile Data
Tra�c Forecast Update, 2016-2021, 2017.

[2] B. Raghavan, T. Koponen, A. Ghodsi, M. Casado, S. Rat-
nasamy, and S. Shenker, “Soware-de�ned internet architec-
ture:decoupling architecture from infrastructure,” in Proceed-
ings of the 11th ACM Workshop on Hot Topics in Networks
(HotNets ’12), 2012.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: state-of-the-
art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[4] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT architecture
with NFV implementation,” in Proceedings of the GLOBECOM
Workshops, 2016.

[5] G. Paschos, E. Bastug, I. Land, G. Caire, andM. Debbah, “Wire-
less caching: Technical misconceptions and business barriers,”
IEEE Communications Magazine, vol. 54, no. 8, pp. 16–22, 2016.

[6] W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, and J. Cai, “Content
popularity prediction and caching for ICN: a deep learning
approach with SDN,” IEEE Access, vol. 99, p. 1, 2017.

[7] N. Abani, T. Braun, and M. Gerla, “Proactive caching with
mobility prediction under uncertainty in information-centric
networks,” in Proceedings of the 4th ACM Conference on
Information-Centric Networking, ICN ’17, ACM, 2017.

[8] Y. L. Cun, B. Boser, J. S. Denker et al., “Handwritten digit
recognition with a back-propagation network,” Advances in
Neural Information Processing Systems, vol. 2, no. 2, pp. 396–
404, 1990.

[9] A. Krizhevsky, I. Sutskever, andG. E.Hinton, “Imagenet classi�-
cation with deep convolutional neural networks,” in Proceedings
of the International Conference onNeural Information Processing
Systems, 2012.

[10] F. Lei, Q. Dai, J. Cai et al., “A proactive caching strategy based on
deep Learning in EPC of 5G,” in Proceedings of the International
Conference on Brain Inspired Cognitive Systems, Springer, 2018.

[11] G. Wu, J. Han, and Y. Guo, “Unsupervised deep video hashing
via balanced code for large-scale video retrieval,” IEEE Transac-
tions on Image Processing, vol. 28, no. 4, pp. 1993–2007, 2019.

[12] G. Wu, J. Han, and Z. Lin, “Joint image-text hashing for fast
large-scale cross-media retrieval using self-supervised deep
learning,” IEEE Transactions on Industrial Electronics, 2018.

[13] G. Ding, Y. Guo, K. Chen, C. Chu, J. Han, and Q. Dai,
“DECODE: deep con�dence network for robust image classi-
�cation,” IEEE Transactions on Image Processing, 2019.

[14] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge:Design aspects, challenges, and future directions,”
IEEE Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[15] K. Suksomboon, S. Tarnoi, J. Yusheng et al., “PopCache: Cache
more or less based on content popularity for information-
centric networking,” in Proceedings of the 38th Annual IEEE
Conference on Local Computer Networks (LCN ’13), pp. 236–243,
2013.

[16] X. Hu and J. Gong, “Opportunistic on-path caching for named
data networking,” IEICE Transactions on Communications, vol.
E97B, no. 11, pp. 2360–2367, 2014.

[17] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor open�ow: enabling
soware-de�ned wireless sensor networks,” IEEE Communica-
tions Letters, vol. 16, no. 11, pp. 1896–1899, 2012.

[18] A. Mahmud and R. Rahmani, “Exploitation of OpenFlow in
wireless sensor networks,” in Proceedings of the International
Conference on Computer Science and Network Technology, 2012.

[19] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Sensing as a service model for smart cities supported by inter-
net of things,” Transactions on Emerging Telecommunications
Technologies, vol. 25, no. 1, pp. 81–93, 2014.

[20] W. Dong, Y. Liu, C. Chen, L. Gu, and X. Wu, “Elon: enabling
e�cient and long-term reprogramming for wireless sensor
networks,”ACMTransactions on EmbeddedComputing Systems,
vol. 13, no. 4, pp. 1–27, 2014.



12 Complexity

[21] L. Jiang, L. Yan, Y. Xia, Q. Guo, M. Fu, and L. Li, “Distributed
fusion in wireless sensor networks based on a novel event-
triggered strategy,” Journal of �e Franklin Institute, 2018.

[22] B. T. De Oliveira, C. B. Margi, and L. B. Gabriel, “TinySDN:
Enabling multiple controllers for soware-de�ned wireless
sensor networks,” in Proceedings of the Communications, 2014.

[23] T. Miyazaki, S. Yamaguchi, K. Kobayashi et al., “A soware
de�ned wireless sensor network,” in Proceedings of the 2014
International Conference on Computing, Networking and Com-
munications (ICNC ’14), 2014.

[24] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor
network management based on soware-de�ned networking,”
in Proceedings of the Communications, 2014.

[25] P. Jayashree and F. Infant Princy, “Leveraging SDN to conserve
energy in WSN-An analysis,” in Proceedings of the 3rd Inter-
national Conference on Signal Processing, Communication and
Networking, ICSCN ’15, 2015.

[26] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A.
McCann, “UbiFlow: Mobility management in urban-scale so-
ware de�ned IoT,” in Proceedings of the IEEE Conference on
Computer Communications, 2015.

[27] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-
WISE: Design, prototyping and experimentation of a stateful
SDN solution for WIreless SEnsor networks,” in Proceedings
of the 2015 IEEE Conference on Computer Communications
(INFOCOM ’15), pp. 513–521, 2015.

[28] S. Costanzo, L.Galluccio, G.Morabito, and S. Palazzo, “Soware
de�ned wireless networks: unbridling SDNs,” in Proceedings of
the 2012 European Workshop on So	ware De
ned Networking,
pp. 1–6, 2012.

[29] B. R. Al-Kaseem andH. S. Al-Raweshidyhamed, “SD-NFVas an
energy e�cient approach forM2Mnetworks using cloud-based
6LoWPAN Testbed,” IEEE Internet of �ings Journal, vol. 4, no.
5, pp. 1787–1797, 2017.

[30] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R.
Tafazolli, “In-network caching of Internet-of-�ings data,” in
Proceedings of the IEEE International Conference on Communi-
cations, 2014.

[31] A. Mahmood, C. Casetti, C. F. Chiasserini et al., “Mobility-
aware edge caching for connected cars,” in Proceedings of
the Conference on Wireless On-Demand Network Systems and
Services, 2015.

[32] C. Jayapal, S. Jayavel, and V. P. Sumathi, “Enhanced service dis-
covery protocol for MANET by e�ective cache management,”
Wireless Personal Communications, pp. 1–17, 2018.

[33] M. I. Alipio and N. M. C. Tiglao, “Dynamic source rate control
for cache-based transport protocol inwireless sensor networks,”
Computer Communications, vol. 113, pp. 14–24, 2017.

[34] M. Alipio, N. M. Tiglao, A. Grilo, F. Bokhari, U. Chaudhry, and
S. Qureshi, “Cache-based transport protocols in wireless sensor
networks: a survey and future directions,” Journal of Network
and Computer Applications, vol. 88, pp. 29–49, 2017.

[35] C. Panagiotou, C. Antonopoulos, and S. Koubias, “A com-
prehensive evaluation of cache utilization characteristics in
large scaleWSN considering network driven cache replacement
techniques,” in Proceedings of the MATEC Web of Conferences,
EDP Sciences, 2018.

[36] R. Sukjaimuk, Q. N. Nguyen, and T. Sato, “A smart con-
gestion control mechanism for the green IoT sensor-enabled
information-centric networking,” Sensors, 2018.

[37] T. Trzcinski and P. Rokita, “Predicting popularity of online
videos using support vector regression,” IEEE Transactions on
Multimedia, vol. 19, no. 11, pp. 2561–2570, 2017.

[38] Y. Mao, Y. Shen, G. Qin, and L. Cai, “Predicting the Popularity
of Online Videos via Deep Neural Networks,” https://arxiv.org/
abs/1711.10718, CoRR, 2017.
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