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Deep learning‑based pupil 
model predicts time and spectral 
dependent light responses
Babak Zandi* & Tran Quoc Khanh

Although research has made significant findings in the neurophysiological process behind the 
pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or 
chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a 
static diameter at the equilibrium‑state for spectra along the Planckian locus. Neither the temporal 
receptor‑weighting nor the spectral‑dependent adaptation behaviour of the afferent pupil control 
path is mapped in such functions. Here we propose a deep learning‑driven concept of a pupil model, 
which reconstructs the pupil’s time course either from photometric and colourimetric or receptor‑
based stimulus quantities. By merging feed‑forward neural networks with a biomechanical differential 
equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm 
from polychromatic (2007 ± 1 K, 4983 ± 3 K, 10,138 ± 22 K) and chromatic spectra (450 nm, 530 nm, 
610 nm, 660 nm) at 100.01 ± 0.25 cd/m2. This non‑parametric and self‑learning concept could open the 
door to a generalized description of the pupil behaviour.

�e development of a generalized human pupil model, which is able to predict the pupil aperture depending on 
photometric or physical quantities, has not been �nished. Starting with the �rst pupil studies by  Blanchard1 and 
 Reeves2 in 1918, a�er more than 100 years of research, no valid model has been developed that summarizes the 
pupil control path’s essential dependencies. Since the discovery of the intrinsically photosensitive retinal ganglion 
cells (ipRGCs), research has mainly focused on the understanding of the neurophysiological process behind the 
pupil light re�ex but less on summarizing this outcome in a combined model. Even before the ipRGC-turning-
point, it is noticeable that the parameters of time and wavelength dependence, including the chromatic adaptation 
e�ect, were not considered in the development of pupil models.

Clyde Keeler showed in 1926 that blind and rod-less mice still exhibited a persistent pupillary light  response3. 
He indicated that a part of the a�erent pupil path is controlled by a mechanism which might be independent of 
 vision3. Studies with monochromatic light stimuli con�rmed Keeler’s hypothesis by showing that the pupil light 
response’s wavelength sensitivity cannot be described by the photopic luminous e�ciency function V(λ)  alone4–6. 
�e pupil light re�ex’s wavelength sensitivity has a temporal in�uence, exhibiting a shi� of the peak sensitivity 
with increasing adaptation time from 510 nm to the short wavelength range of 470  nm7,8. Such an e�ect could 
only be explained a�er the discovery of intrinsically photosensitive ganglion cells in the  retina9,10, which have a 
peak sensitivity of approximately 470–480 nm.

Six di�erent subtypes of ipRGCs (M1–M6)11,12, project to the olivary pretectal  nucleus13,14, the dorsal lateral 
geniculate  nucleus15–17, and the suprachiasmatic nucleus of the  hypotalamus18,19. �e M1-ipRGCs are part of the 
a�erent control path, responsible for the sustained constriction mechanism through the olivary pretectal nucleus 
and the Edinger-Westphal  nucleus9,20. In the inner retina, M1-ipRGC dendrites receive and integrate extrinsic 
synaptic  signals21 from rods, with an additive contribution of L- and M-cones and separate inhibitory input 
from S-cones10,11,22–30. Additionally, investigations with sinusoidal or rectangular modulated stimuli showed an 
inhibitory contribution of M-cones31,32 and in�uences from the parvocellular pathway with chromatic red-green 
signals, which might be a post receptoral  mechanism33–35. Depending on which spectral, spatial and temporal 
stimulus modality is used, the receptors are weighted di�erently in controlling the a�erent pupil control path.

At photopic adaptation with a steady-state light stimulus, the outer classical photoreceptors manage the phasic 
pupil diameter, while the ipRGCs dominate the tonic pupil  diameter36–38. Up to the equilibrium state of the pupil, 
the weighting proportion of the classical outer retinal photoreceptors and the ipRGCs is time  dependent38. �e 
period at which the equilibrium state is reached depends signi�cantly on the retinal irradiance and the spectral 
power distribution of the  stimulus7,25,39,40. Pupil examinations showed that the equilibrium state is reached faster 
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with short-wavelength stimuli than with longer-wavelengths25,39,41. �us, a distinction must be made between a 
phasic and a tonic pupil light response.

Historically, these notable �ndings have had little impact on pupil modelling research. �e origin of pupil 
modelling begun with the functions of  Holladay42 and  Crawford43, each based on investigations of unknown age. 
With their ground-breaking works, they set the requirements for upcoming pupil models; developing a model 
that can predict the pupil diameter as a function of a V(λ) weighted quantity. It was indirectly assumed that the 
pupil control path is managed by an additive combination of L- and M-cones. �is assumption is the basis of all 
published pupil models until the year 2012. Moon and  Spencer44 and De Groot and  Gebhard45 created combined 
models based on previously published data sets. �ese two models di�er mainly in the predicted pupil diameter 
at high and low luminance. �e models from Crawford and Moon and Spencer both used a hyperbolic tangent 
�tting function, taking care of the minimum and maximum pupil diameter. De Groot and  Gebhard45 believed 
that an intense saturation of the pupil diameter at high luminance using a hyperbolic tangent function does 
not correspond to the pupil’s physiological nature. However, a high raw data variance between all authors up to 
the year 1952 is noticeable, which is justi�ed by Stanley and  Davies46 with di�erently sized adaptation surfaces. 
�erefore, Stanley and  Davies46 proposed a pupil model that integrates the adaptation �eld size as an additional 
dependent parameter. Watson and  Yellot47 reviewed all pupil formulas and developed an uni�ed pupil model 
with the additional parameters “age” and “number of eyes”. Including the model from Watson and  Yellot47, all 
formulas predict the static sustained pupil diameter in millimetres at the equilibrium state, caused by white light 
from thermal radiators. �e time and spectral dependency of the a�erent pupil control path were not taken into 
account in any of these models, although these are essential dependence parameters. In 2017, Rao et al. published 
a pupil model that takes into account the in�uence of ipRGCs by using a cirtopic luminance as an additional 
 parameter48. �e model was based on pupil examination, which used white light from phosphor-converted LEDs 
with an exposure time of 80 s. However, using the model requires knowledge about the measured stimulus spec-
trum, which complicates its application compared to L- and M-cone based pupil models. �erefore, the more 
rigorous application must make a signi�cant contribution to the prediction accuracy, justifying the extra work. 
In a recent study, it was found that at 60 s exposure time, the mean prediction error of the Watson and Yellot 
pupil model with polychromatic white light of di�erent correlated colour temperatures ( ∼ 2000 K, ∼ 5000 K, ∼ 
10,000 K) is less than ± 0.5  mm25. At one second exposure time, it was 0.71 ± SD 0.15  mm25. Furthermore, with 
chromatic spectra of the peak-wavelengths 450 nm, 530 nm, 610 nm and 660 nm, the averaged prediction error 
at one second adaptation time was 0.94 ± SD 0.12  mm25.

�erefore, adding a static ipRGC-component for the steady-state pupil diameter for longer exposure times like 
in the model from Rao et al. is not su�cient. �e temporal in�uence is much more signi�cant than the spectral 
impact when using white polychromatic light  spectra25.

Neither the dynamic receptor weighting nor a time-dependent prediction of pupil diameter is possible with 
any state-of-the-art pupil model. Even with spectra along the Planckian locus, pupil models reveal �awed pre-
dictions due to the missing time dependence, showing that being able to reconstruct the wavelength-dependent 
time course of the pupil light response would be the next  step25. Moreover, the history of pupil modelling showed 
that parametric model approaches with �xed functions are not sustainable. When adding additional dependent 
parameters or renewing the data, the whole structure of the model has to be changed. With this work, we aim 
for a non-parametric and data-driven model approach, which can consider additional stimulus dependencies 
without changing the model structure itself. �is could make it possible to build a self-learning pupil model 
based on a publicly accessible database, leading to a general pupil behaviour function. �e published standards 
in pupil research have created a basis for the vision of such a pupil light  database49.

Here, we developed a concept for a deep learning-based pupil model that can consider the temporal and 
adaptive weighting dependence of the retinal receptors. We combined time-variant and time-invariant model 
approaches with a data-driven non-parametric neural network to link model parameters with spectral stimulus 
quantities, making it possible of reconstructing the pupil light response up to its’ equilibrium-state by using only 
photometric and colourimetric, or receptor-based stimulus quantities.

Materials and methods
The requirements for a time‑ and wavelength‑dependent pupil model approach. �e structure 
of state-of-the-art pupil model approaches needs to be changed when additional exogenous in�uencing param-
eters inside the function are necessary. For instance, the age of subjects y signi�cantly a�ects the pupil diameter 
dp , because the maximum aperture decreases with rising  age50. To take this achromatic e�ect into account, Wat-
son and Yellot had to modify the function of Stanley and Davies by embedding it into another function to derive 
the age dependency y in the uni�ed pupil model dp,Watson(L, y, e,α) . Such a strategy is not e�ective and would 
not have been necessary for a data-driven non-parametric pupil model.

Given the pupil’s dependency parameters, it is foreseeable that cognitive in�uences will be included to improve 
the prediction accuracy in the future. Such cognitive in�uencing parameters can cause intersubject or intrasu-
bject scatter in the measured raw data. Studies have shown that the intrasubject variance of a single participant 
reaches from ± 0.3 mm to ± 0.6  mm51,52. A higher variance of up to ± 1.5  mm43,50 is associated with intersubject 
 studies43,50. �us, a pupil model can never be more accurate than these variances. Large sample sizes behind a 
pupil model lead to an improved model quality since the mean of the population is approximated more accu-
rately. A generalised pupil model would not actively decrease the prediction error of a single observer. However, 
by knowing the pupil diameter’s distribution of a population at a given stimulus, a con�dence measure could 
be modelled too.

Non-parametric functions that have su�cient degrees of freedom are the key to make a data-driven model 
possible. Before cognitive in�uences can be modelled, an approach must be found to model the complex 
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properties of the exogenous in�uences to the a�erent pupil path. In this area, there is a gap that has not been 
closed.

�e a�erent pupil path’s mechanism a�ects the temporal constriction and dilatation of the pupil di�erently 
depending on the radiance Le,� of the stimulus spectrum x(�) for �ǫ[380, 780], and exposure time tL . When 
using short exposure times ( 0 < tL ≤ 2 seconds), the pupil reacts a�er a latency time τ of 220 ms to 550 ms and 
contracts up to a  peak53 diameter dPeak , followed by a re-adaptation phase in which the pupil diameter dilates 
back to its pre-stimulus state (Fig. 1A).

When a stimulus spectrum x(�) is constant, the latency τ , constriction velocity and peak constriction depends 
on the used radiance Le,� or luminance L of the light source. As the luminance L increases, the constriction 
velocity and peak constriction increase while the latency time τ  reduces53–55 (Fig. 1A). �e a�erent pupil control 
path starts adapting to the stimulus x(�) itself a�er the peak constriction when the exposure time of the stimulus 
tL is increased. In this adaptation phase, the in�uence of the L-, M- and S-cones decreases and the melanopsin-
activated ipRGC signal reaches its  dominance7. �is adaptive weighting of the receptors causes the decrease 
("pupil escape") of the initial peak constriction with increasing adaptation time (Fig. 1B). When steady-state 
light stimuli with constant luminance L but di�erent chromatic spectra x(�) are used, the pupil light response’s 
wavelength dependency becomes more apparent. Studies have shown that both the latency time τ and the peak 
constriction dPeak(L, �) are wavelength dependent. �e pupil contracts stronger and faster at short wavelengths 
than at long  wavelengths36,56–58. Additionally, the chromatic pupil adaptation mechanism at longer wavelengths 
takes more time to reach the equilibrium  state39,59,60 (Fig. 1C). �erefore, the pupil light response can be de�ned 
as dp(t, x(�)) . Existing L- and M-cone based pupil models only predict a static pupil diameter dp(L) with the 
luminance L at the equilibrium-state.

Neurophysiological or practical models derived from empirical data are conceivable to describe these time- 
and wavelength-dependent processes. �e neurophysiological approach would have the goal of deriving the 
photons to photoreceptor relationships all the way up to the transmission of frequency-coded action potentials 
via the a�erent pupil path and the regulation of the iris muscles by the Edinger-Westphal nucleus, allowing to 
reconstruct the complex temporal pupil responses (Fig. 1A–C). Although such an approach would have the 
advantage of modelling the neurophysiological �ndings in recent years, it would make its application consider-
ably more di�cult for the latter, since knowledge of the spectrum and calculated receptor signals would be the 
prerequisite. It must be taken into account that the prediction of L- and M-cone based pupil models are �awed, 
but o�en used, since they can calculate the pupil diameter by using standard measurement equipment. �erefore, 
an alternative pupil model must be able to compensate for the de�cits of current L- and M-cone models and give 
the possibility of adding additional model dependencies.

Participants. We used the data from an intra- and intersubject pupil experiment with chromatic and poly-
chromatic spectra to develop and train the proposed data-driven pupil model  approach25. �e complete pupil 
data used in this manuscript are from the authors’ previous  publication25. �erefore, the methodology in the 
collection and pre-processing of the participants’ data is reported from the previously conducted  experiments25. 
�e pupil experiments were split into a chromatic and polychromatic stimuli session. �e subjects in the chro-
matic trial had an age between 19 to 25 y, mean age 21.95 SD ± 1.73 y. In the chromatic session, the observers 
were 19 to 25 years old, mean age 22.2 SD ± 1.77 y. One subject was tested in-depth with twelve repetitions (Age: 
33 y). Participation’s prerequisite was an age range between 19 to 25 y, no history of ocular disease, no use of 
medications or drugs that could in�uence the pupil response. Furthermore, we instructed the subjects to drink 
no ca�eine and alcohol 48 h before the experiment. �e study was approved by the ethics committee of the Tech-
nical University of Darmstadt (ID: EK 12/2019) and carried out in accordance with the ethical principles of the 
Declaration of  Helsinki25. All guidelines and regulations of the TU Darmstadt’s ethics committee were met. We 
have received a signed consent from all participants.

Figure 1.  Idealized representation of the pupillary light response caused by di�erent types of stimuli. (A) Phasic 
pupil response at one short light pulse. As the luminance intensity increases, the constriction velocity and the 
peak pupil constriction increases. At the same time, the latency of the pupil decreases with increasing luminance 
intensity. A�er peak constriction, the pupil undergoes re-adaptation. (B) During longer exposure times, the 
pupil adapts to the light stimulus itself, resulting in an increasing dilatation up to the equilibrium state. (C) �e 
latency time, constriction velocity and peak constriction depend on the used light wavelength. Short wavelength 
stimuli cause a lower latency and a greater pupil constriction. �e equilibrium time is reached faster with short 
wavelengths.
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Photometric setup conditions and experimental protocol. �e stimulus spectra were generated 
using an active temperature-controlled 15-channel LED  light25. Eleven LED channels were narrow-band light-
emitting diodes with the peak wavelengths 420 nm, 450 nm, 470 nm, 505 nm, 530 nm, 545 nm, 590 nm, 610 nm, 
630 nm, 660 nm, 720 nm and full widths at half maximum were 14 nm, 18 nm, 25 nm, 29 nm, 33 nm, 105 nm, 
78 nm, 17 nm, 16 nm, 17 nm, 29 nm. Four channels consisted of phosphor-converted white light-emitting diodes 
with correlated colour temperatures of 2700 K, 4000 K, 5000 K and 5500 K. �e LED-circuit boards were regu-
lated to a temperature of 30 ± 0.1 °C. Flicker e�ects were avoided by setting the PWM-frequency to 2 kHz. �e 
luminaire was placed on top of an observation chamber to mix the rays inside the experimental  box25. �rough a 
mirror inside the box, a homogeneous illuminated 700 × 700 mm rectangular surface was reached, correspond-
ing to a visual angle of 53.1°. �e gaze position was �xed to the middle of the adaptation surface through a 0.8° 
�xation target from �aler et al., consisting of a bull-eye combination with a cross-hair  structure61.

�e pupil measurements from the authors’ previous publication to obtain the training data were split into 
two  studies25. In the �rst study, chromatic LED spectra with the peak wavelengths 450 nm (99.73 SD ± 0.4 cd/
m2), 530 nm (100.12 SD ± 0.2 cd/m2), 610 nm (100.16 SD ± 0.2 cd/m2) and 660 nm (99.97 SD ± 0.2 cd/m2) were 
used. �e second study was conducted with polychromatic spectra along the Planckian locus with correlated 
colour temperatures of 10,138 SD ± 22 K (99.83 SD ± 0.2 cd/m2), 4983 SD ± 3 K (100.10 SD ± 0.4 cd/m2) and 
2007 SD ± 1 K (100.17 SD ± 0.3 cd/m2). For simplicity, we labelled these spectra as ∼ 10,000 K, ∼ 5000 K and 
∼ 2000 K. �e Polychromatic spectra were optimized using a heuristic multi-objective optimization method 
(genetic algorithm). On each experimental day, the spectra were measured twenty times using a calibrated Konica 
Minolta CS2000 spectroradiometer. �e spectra are reported in the Supplementary Table S2.

Within the experiment, the stimuli were presented in a fully randomized order, each with 300 s adaptation 
time. �e longer adaptation time was intended to capture the pupil light response up to its’ equilibrium state, 
ensuring that our model approach had training data for the complete pupil  adaptation8. Prior to each stimulus, 
a reference stimulus of 5500 K (199.45 SD ± 0.43 cd/m2) was switched on for 300 s to adapt the pupil back to 
a baseline. �e luminance increment between the anchor and stimulus spectrum was intended to provide a 
comfortable transition between the chromatic and phosphor-converted anchor  spectrum25. Preliminary studies 
showed that at steady luminance the transition between the anchor and 450 nm spectrum was uncomfortable for 
the subjects, leading to increased eye blink rates in phasic pupil  data25. For comparability, the anchor luminance 
was preserved in the second study with polychromatic spectra.

One test session took 40 min with the chromatic spectra and 30 min with the polychromatic stimuli. �e 
observers �xed the target inside the observation chamber during the whole time, to avoid pupil foreshortening 
 error62. An instructor checked the gaze position of the participants with real-time gaze tracking.

Pupil measurement and pre‑processing of the data. �e pupil diameter of the le� eye was recorded 
during the whole 300 s adaptation time with an extrinsic and intrinsic-calibrated stereo camera system at 120 
frames/s from Smart Eye Pro, consisting of two 659 × 494 pixels Basler acA640-120gm cameras and 8 mm lenses. 
Camera calibration was performed with a checkerboard, resulting in an average accuracy of 0.15 mm for edge 
detection. Prior to each experiment, gaze calibration was conducted with the participants. We removed the 
blink-artefacts from the pupil data with the blink detection algorithm from Smart eye pro. All pupil data which 
had an edge detection accuracy less than 97 percent were deleted from the dataset. Other non-physiological 
artefacts were cleaned by using a velocity �lter. �e pupil data were di�erentiated numerically and all strong 
outliers with a percentile threshold criterion of 99.993 and 0.007 percent were removed. We linearly interpolated 
all missing data. �e pupil data were smoothed using a Savitzky-Golay-Filter with a window size of 3000 data 
points. However, the �rst three seconds were excluded from the smoothing, to avoid arti�cially induced mini-
mization of phasic pupil diameter.

The concept of modelling the pupil light response. Our empirical modelling approach of the time- 
and wavelength-dependent pupil light response aims to reconstruct the pupil diameter using the respective pho-
tometric and colourimetric parameters from which it was triggered. �ere is a direct and indirect approach to 
this task. �e direct way would be to train a recurrent neural network with measured empirically collected pupil 
data dp,meas(t1, t2, . . . , tn) for t1, t2, . . . , tnǫR

C with C for each stimulus condition. When designing the neural 
network, the input parameters (features) would be a sequenced abstraction {xi}Ni=1

 xiǫR of the stimuli spectrum 
and the output dp,out(t1, t2, . . . , tn) would be the pupil diameter per time unit t  . �e number of input parameter 
N could be chosen freely, but its goal is to provide enough information, allowing the neural network to recon-
struct the pupil diameter dp,out(t) . For instance, it would be possible to use di�erent combinations of luminance, 
CIExy-2° chromaticity coordinates and receptor signals as input values {xi}Ni=1

 . �e combination of luminance 
and CIExy-2° chromaticity with coordinates ( N = 3) would have the advantage of considerably simplifying the 
use of the later model since the knowledge of a spectrum is not required to predict the pupil light response 
dp,out(t) . Usually, sequence-to-sequence recurrent neural network architectures are used for such tasks, but they 
require a substantial amount of data to achieve the desired accuracy. �e accuracy would be limited by the skew 
of the number of parameters ( N , n ) between input and output. At a resolution of one second with tǫ[0, 300] , 
the neural network output would correspond to 300 pupil diameter values, which needs to be determined from 
three photometric quantities (L, CIExy-2°) as input {xi}N=3

i=1
 . Even if the time resolution of the set is halved and 

the number input parameters N increased, a neural network would still have to determine 150 diameter values 
dp,out(t) values from six input values {xi}N=6

i=1
 (CIExy-2°, luminance, L-cone, M-cone, S-cone, melanopsin signal). 

�e reconstructed pupil data should not exceed a mean absolute error of ∼ 0.5 mm, since existing L- and M-cone 
models already predict the polychromatic spectra caused pupil diameter in such an error  range25. However, for 
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today’s pupil research applications, a model’s prediction error should not exceed ∼ 0.1 mm as cognitive and 
vision science focuses on smaller diameter  margins63.

For this reason, we chose an indirect procedure, aiming to reduce the number of output values n from the 
neural network. We developed a so-called base function F(y1, y2, . . . , yD) for y1, y2, . . . , yDǫR

C to model the 
measured pupil data dp,meas(t) by varying the model parameters {yi}Di=1

 . In this way, the temporal pupil response 
can be reconstructed by knowing the parameters yD . �e primary requirement for the base function is su�cient 
degrees of freedom D , allowing to reconstruct dp,out(t) = F(y1, y2, . . . , yD) from the empirical pupil data dp,meas(t) 
which is measured in di�erent light spectra conditions C . As measured sample set, we had {dp,meas(ti)}

t=300
i=1  

for dp,meas(ti)ǫR
S×C available. S denotes the number of subjects in each of the seven stimuli conditions C with 

the spectra types 420 nm, 530 nm, 610 nm, 660 nm, ∼ 2000 K, ∼ 5000 K and ∼ 10,000 K from the intra- and 
intersubject experiments. For modelling, the median of the subjects {d̃p,meas(ti)}

t=300
i=1  with d̃p,meas(ti)ǫR

C was 
used. �erefore, the number of subjects S or the performed repetitions in the pupil measurements had no direct 
e�ect when training the model. �e data sets {d̃p,meas(ti)}

t=300
i=1  were used to model each pupil response with the 

base the function F(y1, y2, . . . , yD) . As a result, by knowing the model parameters {yi}Di=1
 for a corresponding 

stimulus spectrum condition C , the temporal pupil diameter d̃p,out(t) can be reconstructed with the base function 
F(y1, y2, . . . , yD) . �e idea is that each temporal median pupil data set {d̃p,meas(ti)}

t=300
i=1  from the light conditions 

C receives its own model parameters {yi}Di=1
 with yiǫR

C.
With such an approach, it is no longer necessary to �nd a direct relationship between associated stimulus 

quantities {xi}Ni=1
 and pupil data per time unit d̃p,meas(t) . �e indirect approach predicts the model parameters 

{yi}
D
i=1

 from the respective stimulus quantities {xi}Ni=1
 using a neural network to insert them into the base func-

tion F(y1, y2, . . . , yD) . �us, the number of output parameters of the neural network is de�ned by the degrees of 
freedom D of the base function F . However, the degree of freedom D from the base function F must be su�cient 
enough to model the measured wave- and time-dependent pupil responses d̃p,meas(t) (Fig. 1A–C).

Wavelength‑dependent pupil adaptation in the collected train data. �e pupil’s wavelength-
dependent adaptation behaviour is essential for a time-dependent model and must be covered in the train data 
{d̃p,meas(ti)}

t=300
i=1  . �erefore, we analysed whether the wavelength-dependent temporal behaviour of the a�erent 

pupil path is catched in our data. Using the mean of the pupil diameter µ̄(t)450nm as a reference and subtracting 
it from the other mean values µ̄(t)530nm , µ̄(t)610nm , µ̄(t)660nm , the adaptation behaviour can be related to each 
other (Fig. 2A, B).

In the intersubject experiment, the comparison of the mean di�erences showed that the equilibrium state 
for the spectra 610 nm and 660 nm is reached at 90 s. It takes about 20 s for the 530 nm spectrum (Fig. 2A). 
�e intrasubject experiment showed a more characteristic spectral adaptation behaviour (Fig. 2B). At 610 and 
660 nm, the equilibrium status is reached at about 120 s and 530 nm a�er approximately 10 s. To assess the 
adaptation response from polychromatic spectra, we used the mean pupil diameter µ̄(t)10,000K as a reference. 
In the intersubject experiment at ∼ 2000 K, the adaptation process is completed a�er 30 s. In the trial with the 
individual subject, the steady state is reached a�er 60 s with the ∼ 2000 K stimulus. At ∼ 5000 K, there is no clear 
chromatic adaptation either in the individual or in the multiple subject examination because 5700 K was used 
as pre-stimulus. �us, the adaptation mechanism is covered in the data and can be considered in the proposed 
model.

�e consequence of the measured time- and wavelength-dependent pupil light response {dp,meas(ti)}
t=300
i=1  is 

that it needs to be categorized into a phasic and tonic section, each with the di�erent discussed characteristics. 
�ese sections were used to break down the base function F into two “child”-functions before fusing them with 
into a combined model dpM(t). �e phasic pupil light response represents the constriction of the pupil a�er a 
speci�c latency τ time from the starting point dp,meas(t1, �) to the peak pupil diameter dp,meas(tPeak , �) until the 
beginning of dilatation with t1 ≤ t ≤ td,start (Fig. 1C). In our data, this process takes place approximately in the 
�rst two seconds ( td,start ≈ 2s ). In the tonic section td,start ≤ t ≤ teq , the pupil adapts to the stimulus itself under 
a sustained light stimulus until a state of equilibrium teq is reached. �e velocity and gradient of adaptation up 
to the equilibrium state vary signi�cantly with the spectral distribution x(�) . �is tonic time teq is de�ned in our 
data with 300 s since we measured the pupil diameter in this time window.

Using the initial pupil diameter to reconstruct the temporal pupil light response. When 
predicting or reconstructing the pupil response in time, the initial pupil diameter dp,meas(t1, x(�)) is nec-
essary as a starting point. �e initial point should preferably be independent of the spectrum, meaning 
dp,meas(t1, x(�)) ≈ dp,meas(t1, L) to facilitate the prediction of the starting position. �is would allow the predic-
tion of this pupil diameter dp,meas(t1, L) with a classical L- and M-cone based pupil model. For this purpose, we 
statistically checked in our data whether the initial pupil diameter is signi�cantly a�ected by the spectrum x(�) 
(Fig. 2C, D). According to graphical inspection with a quantile–quantile-plot, normal distributed data can be 
assumed in both inter- and intrasubject experiments. �e Mauchly test revealed for the intersubject examination 
that the assumption of sphericity had been met p = 0.6 > .05 . �erefore, a correction of degree is not needed. 
According to repeated measure ANOVA, there is no signi�cant di�erence F(6, 66) = 0.85, p = 0.537 > .05 of 
the initial pupil diameter between the used spectra for the multiple subject trial (Fig. 2C). Within the data from 
the individual subject, the Mauchly test showed that the assumption of sphericity had been met p = 0.41 > .05 
(Fig. 2D). �e results from the repeated measure ANOVA showed that the initial pupil diameter is not a�ected 
by the type of the spectrum F(6, 66) = 6.23 · 10−2, p = 0.999 > .05 . Due to the latency of the pupil and the 
usage of a constant anchor spectrum, the initial pupil diameter always results from the pre-stimulus at 5700 K. 
�e randomized conduction of the experiments did not signi�cantly a�ect the initial pupil diameter and we can 
assume in the following dp,meas(t1, x(�)) ≈ dp,meas(t1, L) . A wavelength dependence of the initial pupil diameter 
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would have indicated that the anchor pre-stimulus was not presented long enough to adapt the pupil back to its 
baseline.

Developing the base functions to model the phasic and tonic pupil light response. �ere are 
di�erent time-variant function proposals for the phasic pupil light re�ex from the research areas of biomechan-
ics and control engineering. �e pupil response is assumed as a time-dependent control loop or mechanical 
feedback system. With such functions, the phasic pupil course can be reconstructed with corresponding char-
acteristics of the constriction velocity and constriction peak. Unlike the classical L- and M-cone based pupil 
models, the time-variant function proposals have not been developed with comprehensive empirical data. A 
valid prediction of the absolute pupil diameter as a function of any intensity magnitude or light spectrum x(�) is 
not possible without extensive modi�cation.

�e function proposals to describe the pupil light re�ex as a control system is a so-called black-box approach, 
which does not provide information about the internal mechanisms of the pupil  behaviour64. In 1957, Stark 
et al.65 described the pupil light re�ex as a servomechanical control system with a delayed linear di�erential 
equation of third order. Subsequent work has extended the control  loop66,67 by using other non-linear di�er-
ential equations, to create a generalized description of the phasic pupil  response68–72. Although the proposed 
control systems describe the behaviour of the phasic pupil light re�ex systematically, the transfer functions are 
not intended to convert them into a closed equation 73. In their present proposed form, the functions cannot be 
used to calculate the pupil diameter as a function of an intensity quantity or spectrum x(�) . Furthermore, they do 
not provide insight into the actual physiological processes of iris muscle activity caused by the parasympathetic 
and sympathetic nervous  system73.

Biomechanical approaches break down the pupil light re�ex dependencies into individual components, cre-
ating functions of the physiological subprocesses for an overall function. In the work of Longtin and  Milton74, 
it is discussed that a biomechanical pupil function should include the neuronal feedback control mechanism, 
spontaneous pupil changes from the autonomic nervous system and the regular oscillation of the  pupil75. Long-
tin and  Milton74 modelled the rate of action potentials in the receptors as a function of luminous �ux and then 
built an equation to describe the e�erent signal from the Edinger–Westphal nucleus to the pupil’s muscles. �e 
relationship between pupil muscle activity and the resulting pupil area is derived using the Hill function. A 
generalized retarded non-linear di�erential equation is proposed to describe the temporal pupil area as a func-
tion of luminous �ux. �e model parameters of the di�erential equation depend on muscle activity in the iris.

Figure 2.  Adaptation behaviour of the pupil in our training data (A) Averaged temporal adaptation 
behaviour of the pupil as a function of di�erent spectra from an intersubject experiment with polychromatic 
(n: 20, Age: 19–25, Mean age: 21.95 ± 1.73 y) and chromatic spectra (n: 20, Age: 19–25, Mean age: 22.2 ± 
1.77 y). Subtracting the average pupil diameter from the reference pupil diameter at 450 nm shows that the 
pupil diameter’s equilibrium state is reached at di�erent times. (B) Averaged temporal adaptation of the 
pupil light response from an intrasubject experiment (n: 1, repetitions: 12, Age: 33) with polychromatic and 
chromatic spectra. (C) �e initial pupil diameters t0 from the intersubject experiment are not signi�cantly 
a�ected by the type of the used spectrum F(6, 66) = 0.85, p = 0.537 > .05 . (D) �e measured pupil 
diameters t0 in the intrasubject experiment are not signi�cantly a�ected by the type of the spectrum 
F(6, 66) = 6.23 · 10−2, p = 0.999 > .05.
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Pamplona et al.55 took this approach and determined the missing constants with the available pupil data from 
Moon and  Spencer44. As a result, the function of Longtin and Milton was combined with the model of Moon and 
Spencer to predict the phasic pupil light re�ex as a function of luminance. �e resulting model did not consider 
the fact that Moon and Spencer measured the tonic pupil diameter. Furthermore, the integration of the adapta-
tion phase’s spectral dependence is insu�ciently possible due to the proposed function’s low degrees of freedom. 
�e consequence would be a derivation and adaptation of the entire equation for each stimulus condition C in 
the pupil data {d̃p,meas(ti)}

t=300
i=1 .

Usui and  Hirata64 have created a biomechanical pupil function based on iris muscle activity. �e constrictor 
and dilatation muscle are mechanically considered as elastic viscous elements. �e equation could be adapted 
to study data and represent the activity of the autonomic nervous system. However, with a total of 19 di�erential 
equations, the entire pupil equation is relatively  extensive73. Even when the equations are combined, the model 
still consists of three independent second order delayed di�erential equations 73. A simpli�ed time-variant pupil 
function was developed by Fan and  Yao73 with a single delayed di�erential equation of second degree (Eq. 1). 
For this purpose, the two iris muscles were modelled separately as viscoelastic materials. �e constriction and 
dilation path were considered separately with the time-dependent muscle forces ḟp(t) and fs(t).

Kc and Kd are the elasticity constants of the constriction and dilatation muscle in the iris. L0d and l0c de�ne 
the length of the iris muscles, D the viscosity constant and P0 the static iris force at resting. �e temporal pupil 
diameter dPhasic(t) is mainly determined by the time-dependent iris muscle force functions ḟp(t) and fs(t).

In Eqs. (2) and (3) fs0 , fp0 are the static iris muscle forces. τp and τs de�ne the latency until the respective 
muscle activity is triggered. �e parameters �tp and �ts represent the duration of the parasympathetic and sym-
pathetic modulation. We decided to use the function of Fan and  Yao73 to model the phasic pupillary re�ex since it 
combines enough degrees of freedom to �t {d̃p,meas(ti)}

t=300
i=1  in any condition of C by changing the model param-

eters Xp,Ph = [ḟp(t), f (t)s , P0, τp, τs ,�tp,�ts] . �e values Xk,Ph = [L0d , l0c ,Kd ,Kc ,D] are stimulus independent iris 
muscle parameters and needs to be calculated once. Coming back to the discussed concept of the neural network, 
the model parameters Xp,PhǫR

D1 are the �rst half of values that need to be predicted from the stimulus quantities 
{xi}

N
i=1

 . However, to solve the di�erential equation numerically, the initial pupil diameter r(0) = dp,meas(t1, L) 
must be known. In the previous section, we showed that dp,meas(t1, L) is statistically independent of the used 
spectrum x(�) and resulted from the anchor stimulus. �erefore, we used classical L- and M-cone-based pupil 
models to predict the starting point dp,meas(t1, L) . A recent work showed that these models could predict the 
static equilibrium pupil diameter for white light along the Planckian locus with acceptable prediction  errors25. 
We assume that no chromatic stimuli were used as reference light for adaptation, which would also be unusual. 
�e uni�ed model of Watson and  Yellot47 in Eqs. (4) and (5) was chosen to predict dp0(t1, L,α, e) = dp,meas(t1, L) , 
because this function was reported as most valuable compared to other L- and M-Cone  models25.

In the model by Watson and Yellot, the pupil diameter is determined with the parameters L as luminance, 
α as viewing angle in  deg2 of the stimulus area and y as the age of a subject. �e reference age y0 is a constant 
de�ned by 28.58 years. With such a starting point, the Fan and Yao function is able to �t the temporal phasic pupil 
diameter d̃p,meas(t) for t1 ≤ t ≤ td,start well for the di�erent stimulus conditions C but fails to describe the tonic 
pupil response at td,start < t ≤ teq . �e function oscillates for larger time periods, which is not able to describe 
the wavelength dependent tonic adaptation behaviour (Fig. 2A, B). �erefore, we take a separate function for 
the tonic pupil response.

We found that a ninth-degree polynomial (Eq. 6) showed appropriate conditions to be considered as a tonic 
function. It was able to represent any tonic pupil response for each condition C in an automated �tting algorithm. 
Especially the extreme case where the pupil diameter at short wavelengths is particularly early in equilibrium 
compared to long wavelengths was covered with this function.

In the following the model parameters a0, a1, . . . , a9 are de�ned as Xp,TonǫR
D2 . Two masking functions 

were used to combine the phasic and tonic model into the discussed base function F . �e masking function 
fMasc1(t, q, r) is multiplied with the phasic function dPhasic(t,Xk,Ph,Xp,Ph) and the second masking function 

(1)dPhasic
(

t, L0d , l0c ,Kc ,Kd ,D, ḟp, fs, P0
)

=
d2r

dt2
= −Kc(l0c − r)2+Kd(L0d − r)2−D

dr

dt
−ḟp(t)+fs(t)+P0

(2)ḟp(t) =

{

fp + fp0, τp ≤ t ≤ �tp
fp0, t < τp, t > τp + �tp

(3)fs(t) =

{

fs + fs0, τs ≤ t ≤ �ts
fs0, t < τs , t > τs + �ts

(4)dp0(t1, L,α, e) = r(0) = DSDW (L,α, e) +
(

y − y0
)

[0.02132 − 0.009562 · DSDW (L,α, e)]

(5)DSDW (L,α, e) = 7.75 − 5.75

(

(L · α · e/846)0.41

(L · α · e/846)0.41 + 2

)

(6)dTonic(t, a0, a1, . . . , a9) = a0 + a1t + a2t
2
+ · · · + a9t

9
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fMasc2(t, q, r) with dTonic(t,Xp,Ton) . By combining the two “child”-function, a superposition of both is obtained, 
which represent a combined light response function dpM(t, q, r,Xk,Ph,Xp,Ph,Xp,Ton) (Eq. 9).

�e parameters of the masking functions q and r determine the position and transition behaviour between 
the two functions dPhasic(t,Xk,Ph,Xp,Ph) and dTonic(t,Xp,Ton) . �ese parameters need to be determined only once 
and are independent of the pupil data. �e resulting base function dpM (Eq. 9) can �t the time-dependent pupil 
data {d̃p,meas(ti)}

t=300
i=1  for d̃p,meas(ti)ǫR

C from any experimental measurement condition C and reconstruct it 
with the respective stimulus-dependent model parameters Xp = [Xp,Ph,Xp,Ton] for XpǫR

CxD . �us, the temporal 
pupil light response can be replicated with time-independent model parameters {Xp,i}

D
i=1 in each stimulus condi-

tion C . �e other model parameters q, r and Xk,Ph can be considered as constants when the function is �tted to 
{d̃p,meas(ti)}

t=300
i=1  in the di�erent stimulus conditions C . �e combined model (Eq. 9) with the tonic (Eq. 6) and 

phasic (Eq. 1) function were implemented in MathWorks MATLAB, which is available as an open-source project.

Computing the model parameters of the phasic and tonic pupil functions. �e base function 
dpM(t, q, r,Xk,Ph,Xp) was used to �t the measured pupil response data {d̃p,meas(ti)}

t=300
i=1  in each stimulus condi-

tions C with the spectra 420 nm, 530 nm, 610 nm, 660 nm, ∼ 2000 K, ∼ 5000 K and ∼ 10,000 K. �is procedure 
was performed for both the inter- and intrasubject experiment. �e results for the intrasubject experiment are 
reported in the Supplementary Information. We varied the model parameters Xp and solved the di�erential 
equation numerically by using an ode45 solver, to �t the pupil data. �e stimulus independent parameters q, r 
and Xk,Ph were determined only once and kept constant for all light conditions to reduce the number of wave-
length-dependent parameters. As stated, we calculated the initial pupil diameter dp0(t1, L,α, e) with the Watson 
and Yellot model, using it as a solving condition for the numerical solution of the di�erential equation. Due to 
the delayed pupil light response, the anchor spectrum caused the initial pupil diameter. �erefore, the luminance 
of the anchor spectrum (199.45 cd/m2) was set into the Watson and Yellot model. As age parameter, we took the 
mean value of our sample from the polychromatic (n: 20, Age: 19–25, Mean age: 21.95 ± 1.73 y) and chromatic 
(n: 20, Age: 19–25, Mean age: 22.2 ± 1.77 y) experiment with 22.1 years, resulting in a predicted pupil diameter 
of 2.79 mm.

However, the measured average initial pupil diameter across all subjects and conditions was 2.38 mm in the 
dataset. �erefore, an o�set correction of 0.41 mm was performed for matching the prediction. �e prediction 
di�erence is partly due to the fact that our spectrum was generated with a multi-channel LED light whose spec-
trum di�ers from the thermal radiators used to develop the Watson and Yellot model. Such an approach was 
used in a recent publication to adapt classical L- and M-cone based models to pupil data caused by chromatic 
and polychromatic LED-spectra25. �e o�set corrected prediction of the Watson and Yellot model was used as 
r(0) in Eq. (1).

We programmed a graphical user interface in MathWorks MATLAB to �t the di�erential equation to the 
median of the measured pupil data {d̃p,meas(ti)}

t=300
i=1  . �e so�ware made it possible to change the model param-

eters Xp and visualize the solution of the di�erential equation dpM(t, q, r,Xk,Ph,Xp) (Supplementary Fig. S1) for 
each lighting condition. We have stored the measured pupil raw data with calculated model parameters (Table 1) 
for each condition in the available so�ware (see Supplementary Information). �e parameters of the masking 
functions q = 1.1359 and r = 0.3517 were determined manually with the programmed graphical user interface 
(Supplementary Fig. S1). During the adjustment, we ensured a smooth transition between the phasic and tonic 
functions in all lighting conditions.

As a result of this approach, 17 dependent and seven constant values represent the temporal pupil light 
response for each light condition. Using the base function dpM(t, q, r,Xk,Ph,Xp) , we have reduced the feature set 
from 300 pupil diameter values (1 s resolution) to 17 model parameters Xp . �us, by combining a neural network 
with the base function, the time and wavelength-dependent pupil diameter can be reconstructed by predicting 
Xp from the stimulus quantities {xi}Ni=1

.

Linking stimulus quantities with model parameters through a neural network. �e knowledge 
of model parameters Xp alone is not advantageous because the connection to the stimulus characteristics {xi}Ni=1

 
in each condition C is missing. �erefore, we used the calculated stimulus dependent parameters Xp of the base 
function to train a neural network with photometric, colourimetric or receptor signals as input parameters 
(Table 1). We aimed to establish a link between the model parameters Xp of the base function and stimulus 
quantities {xi}Ni=1

 . Ideally, this would ensure that a�er the input of stimulus values from a stimulus condition 
such as luminance and CIExy-2° chromaticity points, the respective model parameters Xp from Table 1 could be 
predicted through the neural network. �e reconstruction of the temporal pupil light re�ex dp,out(t1, t2, . . . , tn) 
would be possible by solving the base function dpM(t, q, r,Xk,Ph,Xp) with the predicted values Xp from the neural 
network. At �rst, we need to determine which combination stimulus features make sense as input parameters 
to the neural network. We trained three variants of feedforward neural networks, each with di�erent input 
combinations. From the measured stimulus spectra x(�) , we calculated the photometric, colorimetric and recep-
tor-based quantities and used the mean stimulus values (Table 2) for training. We used the input parameters 
luminance and the CIExy-2° chromaticity points for the neural network’s �rst variant {xv1,i}N=3

i=1  . Variant two 

(7)fMasc1(t, q, r) = 1 − (0.5 + 0.5 · tanh(t − q/r))

(8)fMasc2(t, q, r) = 0.5 + (0.5 · tanh(t − q/r))

(9)dpM(t, . . . ) = dPhasic
(

t,Xk,Ph,Xp,Ph

)

· fMasc1

(

t, q, r
)

+ dTonic
(

t,Xp,Ton

)

· fMasc2

(

t, q, r
)
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Table 1.  Modell parameters of the phasic and tonic pupil model for each lighting condition in the intersubject 
study. �e values were obtained using a custom programmed user interface in MathWorks MATLAB. �e 
phasic model represents the pupil light response up to two seconds. �e data of the remaining pupillary light 
response are mapped with the tonic model. �e median of the sample was used as the target. �e sample 
consisted of 20 subjects (Age: 19–25, Mean age: 21.95 ± 1.73 y) in the polychromatic investigation and 20 
subjects (Age: 19–25, Mean age: 22.2 ± 1.77 y) in the chromatic investigation. �e predicted pupil diameter 
from the o�set corrected Watson and Yellot model was used as r(0) to solve the di�erential equation. �e mean 
value of the two age groups with 22.1 y, the luminance of the anchor spectrum with 199.45 cd/m2 and the size of 
the adaptation surface with 53.1° were used as parameters in the Watson and Yellot model. An o�set of 0.41 mm 
was subtracted to adjust the model to our data.

Parameter 450 nm 530 nm 610 nm 660 nm 2000 K~ 5000 K~ 10 000 K~

Phasic model

3.3403 3.3403 3.3403 3.3403 3.3403 3.3403 3.3403

1.0710 1.0710 1.0710 1.0710 1.0710 1.0710 1.0710

1.0714 1.0714 1.0714 1.0714 1.0714 1.0714 1.0714

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.4855 3.4855 3.4855 3.4855 3.4855 3.4855 3.4855

19.2070 10.1836 13.5488 15.3903 9.6961 − 0.6492 0.9060

− 1.1900 − 0.5688 2.2250 6.1930 0.6127 0.6976 0.5659

0 − 0.8240 − 0.8800 − 0.8240 − 0.8240 − 0.8240 − 0.8800 − 0.8800

0.4878 0.2903 0.3933 0.4898 0.4778 0.1000 0.5197

1.1483 0.7335 1.9925 1.8500 1.3097 0.8967 1.0311

∆ 0.1342 0.0604 0.1342 0.1342 0.1342 0.0604 0.0604

∆ 0.5154 0.8696 0.0878 0.0000 0.0878 0.8696 0.8696

Tonic model

0 1.4156E−21 − 3.9611E−20 − 4.6147E−19 − 5.7966E−20 1.9755E−19 1.7347E−19 − 1.6638E−20

1 − 9.3398E−19 3.2991E−17 5.8085E−16 4.5015E−17 − 2.8148E−16 − 2.3485E−16 1.2313E−17

2 5.6068E−16 − 2.8431E−15 − 2.9701E−13 − 1.3678E−15 1.6996E−13 1.3235E−13 1.2675E−16

3 − 4.8556E−13 − 5.7826E−12 7.8724E−11 − 8.8758E−12 − 5.6626E−11 − 4.0219E−11 − 2.7868E−12

4 2.3860E−10 2.7085E−09 − 1.1364E−08 3.6912E−09 1.1357E−08 7.1407E−09 1.1499E−09

5 − 6.0047E−08 − 5.4321E−07 8.3751E−07 − 6.7883E−07 − 1.4032E−06 − 7.5079E−07 − 2.1832E−07

6 7.9738E−06 5.6061E−05 − 2.1543E−05 6.5070E−05 1.0495E−04 4.5280E−05 2.1931E−05

7 − 5.3820E−04 − 2.9133E−03 − 6.8455E−04 − 3.2814E−03 − 4.4745E−03 − 1.4382E−03 − 1.1314E−03

8 1.5242E−02 6.6138E−02 5.2281E−02 8.5889E−02 9.6883E−02 2.0114E−02 2.4765E−02

9 1.8929E+00 2.1785E+00 1.9523E+00 1.7498E+00 2.0172E+00 2.5301E+00 2.4575E+00

Table 2.  Metrics that were used as features for the neural network. �e features were calculated from the 
repeated measured spectra in the pupil  examinations25. �e values are given with standard deviation in 
the table, but for training the neural network, the mean values were used. On each study day, stimuli were 
measured twenty times with a Konica Minolta CS-2000 spectroradiometer. S-cone, M-cone, L-cone and ipRGC 
excitation were calculated with the 10-deg cone fundamentals and the melanopic action spectra reported in 
CIE S 026/E:2018. �e cone and ipRGCs excitation values are speci�ed as α-opic radiance in W/m2sr.

Stimulus label
Luminance
in cd/m2

CIEx
1931 2°

CIEy
1931 2° L-cone M-cone S-cone Melanopsin

CCT 
In Kelvin

�Peak 450 nm
99.73

± 0.4
0.1581
± 1.57 ·   10–5

0.02006
± 5.26 ·   10–5

0.29130
± 8.7 ·   10–4

0.48338
± 1.2 ·   10–3

3.24582
± 6.2 ·   10–3

1.81725
± 3.9 ·   10–3 –

�Peak 530 nm
100.12
± 0.2

0.18661
± 1.17 ·   10–4

0.73928
± 1.07 ·   10–4

0.14091
± 3.3 ·   10–4

0.16724
± 3.8 ·   10–4

0.00396
± 1.4 ·   10–5

0.10547
± 2.3 ·   10–4 –

�Peak 610 nm
100.16
± 0.2

0.67903
± 1.08 ·   10–4

0.32039
± 4.40 ·   10–5

0.19684
± 4.6 ·   10–4

0.04708
± 1.0 ·   10–4

0.00009
± 3.5 ·   10–5

0.00075
± 2.8 ·   10–5 –

�Peak 660 nm
99.97

± 0.2
0.71701
± 3.40 ·   10–4

0.27995
± 1.07 ·   10–4

0.20227
± 4.4 ·   10–4

0.02363
± 7.1 ·   10–5

0.00084
± 1.1 ·   10–4

0.00114
± 1.3 ·   10–4 –

Polychromatic ∼ 
2000 K

100.17
± 0.3

0.53305
± 4.90 ·   10–5

0.42288
± 3.82 ·   10–5

0.17090
± 4.1 ·   10–4

0.10258
± 2.6 ·   10–4

0.00637
± 2.1 ·   10–5

0.04561
± 1.2 ·   10–4

2007
± 1

Polychromatic ∼ 
5000 K

100.10
± 0.4

0.34538
± 1.02 ·   10–4

0.34976
± 1.05 ·   10–4

0.16452
± 3.5 ·   10–4

0.13957
± 2.8 ·   10–4

0.06364
± 1.2 ·   10–4

0.12247
± 2.4 ·   10–4

4983
± 3

Polychromatic ∼ 
10,000 K

99.83
± 0.2

0.28549
± 1.02 ·   10−4

0.27690
± 1.40 ·   10–4

0.16520
± 3.7 ·   10–4

0.15241
± 3.3 ·   10–4

0.11978
± 2.3 ·   10–4

0.16680
± 3.3 ·   10–4

10,138
± 22
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{xv2,i}
N=4
i=1  was trained with the L-, M-, S-cones and the melanopsin signals. �e luminance, CIExy-2° chromatic-

ity points and the melanopsin signal was used in the third variant {xv3,i}N=4
i=1  . �e train data sets were normalized 

with the unity-based normalization Xi = (X i − XMin)/(XMax − XMin) before the training was conducted.
�e neural networks were trained and implemented using PyTorch 1.5 with PyTorch  Lightning76 in Python 

3. We trained the model by minimizing the mean squared error MSE = 1/N
∑n

i=1
(yi − y0i)

2 between the output 
of the neural network yi and the target model parameters y0i (Table 1, Supplementary Table S1). �e weightings 
were optimized using a Adam  optimizer77, with a learning rate of 0.001 and a batch size of 7. We used three fully 
connected layers (40, 380, 80) with a recti�ed linear unit (ReLu) activation function. �e number of neurons of 
the input layer corresponded to the number of input parameters N (Variant 1: 3, Variant 2: 4, Variant 3: 4) and 
the number of neurons of the output layer was 17. �ree fully connected hidden layers were used with 40, 380 
and 80 neurons, respectively. �e neural networks were trained 4000 epochs (Supplementary Fig. S2) by using 
the calculated model parameters XpǫR

C with C as stimulus conditions. For each variant, two neural network 
versions were trained. One based on the intersubject parameters (Table 1) and the second with the intrasubject 
parameters (SupplementaryTable S1). �e training process over the epochs is reported in Supplementary Fig. S2.

Results
The deep learning‑driven pupil model approach. �e structure of the overall model proposal to 
reconstruct the time-dependent pupil response d̃p,out(t1, t2, . . . , tn) with a neural network as a data-driven com-
ponent is summarized in Fig. 3. A�er the neural networks have been trained (Variant 1 to 3) with the corre-
sponding data sets (Table 1, Supplementary S1, S2), they are able to output the model parameters of the tonic 
Xp,Ton and phasic Xp,Ph functions from photometric or receptor-based quantities xv1, xv2 and xv3 (Fig. 3: Step 1).

We achieved a robust neural network-driven prediction accuracy of the model parameters with the 
lighting metric features. Among the neural networks with the intersubject model parameters (Table 1), the 
�rst variant xv1 with CIExy-2° chromaticity points and luminance as input achieved the lowest loss a�er 
1139 epochs (MSE: 2.11 · 10

−15 , MAE: 3.19 · 10
−8

SD ± 3.31 · 10
−8 ). Variant two xv2 with the receptor and 

melanopsin signals as input achieved a mean squared error (MSE) of 1.07 · 10
−14 and mean absolute error 

(MAE) of 7.02 · 10
−8

SD ± 7.63 · 10
−8 a�er 3844 epochs. �e third variant xv3 with the luminance, CIExy-2° 

chromaticity points and melanopsin signal as input parameter reached an MSE of 2.63 · 10
−15 and MAE of 

3.56 · 10
−8

SD ± 3.69 · 10
−8 a�er 1056 epochs. In the neuronal networks that were trained with the intrasubject 

model parameters (Supplementary Table S1), variant 1 (MSE: 3.1 · 10
−15 , MAE: 3.99 · 10

−8
SD ± 3.84 · 10

−8 , 
epoch: 2207) and variant 3 (MSE: 2.28 · 10

−15 , MAE: 3.20 · 10
−8

SD ± 3.55 · 10
−8 , epoch: 3163) reached a higher 

accuracy compared to variant 2 (MSE: 2.87 · 10
−14 , MAE: 1.08 · 10

−7
SD ± 1.31 · 10

−7 , epoch: 2907). �us, we 
were able to use the neural networks’ predicted model parameters Xp in the base function (Eq. 9), calculated 
from photometric and colorimetric or receptor-based quantities (Fig. 3: Step 1).

�e next step in the model is to determine the initial pupil diameter dp0(t1, L,α, e) with the Watson and Yel-
lot model (Fig. 3: Step 2). It is inserted as an initial state dp(0) together with the predicted model parameters of 

Figure 3.  Structure of the proposed overall model for reconstructing the temporal pupil response based on 
neural networks. Step 1: �e derived stimulus characteristics are entered into the neuronal network and the 
model parameters of the phasic and tonic model are predicted. Step 2: �e initial pupil diameter is determined 
with the Watson and Yellot model from the luminance of the anchor spectrum. Step 3: �e initial pupil 
diameter and the predicted model parameters from the neural network are used to determine the numerical 
solution of the phasic model, which is based on the Fan and Yao di�erential equation. Step 4: �e second part 
of the predicted model parameters from the neural network is used for the tonic model. Step 5: �e results of 
the phasic and tonic model are combined with two masking functions to reconstruct the complete pupil light 
response caused by a respective photometric or receptor-based quantity.
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the neural network (Fig. 1: Step 1) into the second order di�erential equation dPhasic(t,Xk,Ph,Xp,Ph) and solved 
numerically to reconstruct the phasic pupil light response. �e second part of the predicted model parameters 
Xp,Ton from the neural network is applied to the tonic model dTonic(t,Xp,Ton) to reconstruct the pupil course 
from the peak pupil diameter to the equilibrium state (Fig. 3: Step 4). �is part is particularly important for 
mapping the wavelength- and time-dependent adaptation of the pupil control path (Fig. 1, 2). In the last step, the 
prediction from the phasic and tonic model is combined by the masking functions (Eqs. 7, 8) according to the 
combined model equation (Eq. 9), to obtain the total reconstructed pupil response up to 300 s. �us, the entire 
time course of the pupil light response can be determined by using photometric or receptor-based quantities. 
In this overall system, the neuronal networks represent the data-driven component. �e structure in Fig. 3 is 
embedded in an algorithm in MathWorks MATLAB and Python, allowing to return the complete temporal pupil 
response through the respective stimulus quantities.

Reconstructing the temporal pupil light response with the proposed model approach. We 
used the discussed structure of the proposed pupil model approach (Fig. 3) and the trained neural networks to 
perform a direct comparison between the measured pupil diameter from the intersubject experiments and the 
predicted reconstructed pupil response. Figure 4 (A–G) shows the measured median pupil diameter and the 
predicted pupil response (Variant 1) for each lighting condition. �e median pupil diameter is plotted with the 
respective percentile range of the raw data.

�e mean absolute error (MAE) between measured and predicted pupil diameter is between 0.015 mm and 
0.069 mm for chromatic and polychromatic stimuli. �e residuals analysis showed that for each variant of a neural 
network, the prediction error of the proposed concept is below ± 0.3 mm (Fig. 4H). At most times, the error 
is even less than ± 0.2 mm. Just with the stimulus of �Peak = 610 nm, an eruption of up to -0.3 mm prediction 

Figure 4.  Results of the trained combined model approach with the intersubject dataset. (A–G) �e measured 
median pupil diameter is plotted with the percentiles as a shaded area. �e predicted reconstructed pupil 
diameter of our proposed model concept is drawn as a blue line for comparison. �e neural network variant 
one, with the luminance and the CIExy-2° chromaticity coordinates, was used to predict the model parameters. 
(H) Calculated residuals from the measured median pupil diameter for each lighting condition. �e residuals 
were calculated by running the whole model with di�erent neural network variants to predict the model 
parameters for the phasic and tonic function. (I) Calculated residuals from the Watson and Yellot model for 
each light condition compared to the measured median pupil diameter.
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error is observed between 240 and 250 s, which is due to �uctuations of the median diameter (Fig. 4C). �e 
same analysis was performed for the trained combined model with the intrasubject data sets, showing that the 
error was even smaller than for the intersubject data, due to the lower �uctuation of the median diameter (Sup-
plementary Fig. S3).

As a comparison to our model concept, we calculated the residuals of the classical L- and M-cone based pupil 
model by Watson and Yellot in relation to the measured median diameter (Fig. 4I). �e prediction of the Watson 
and Yellot model had an absolute prediction error of greater than 0.6 mm for the phasic pupil diameter. For the 
tonic pupil diameter, the error increases to 1.14 mm due to the time- and wavelength-dependent dependent 
receptor weighting of the pupil path (Fig. 4I), showing that the inaccuracy of the L- and M-cone based pupil 
model is not only caused by the lack of melanopsin weighting.

Discussion
�e key idea of this work is to model the temporal pupil light response for di�erent stimuli through a time-variant 
biomechanical di�erential equation and predict its model parameters using a deep learning approach. We showed 
that the concept works well for both chromatic and polychromatic spectra with a mean absolute error of less 
than 0.1 mm across the 300 s of the pupil’s time course. �e trained neural networks were able to �nd a pattern 
between the light parameter features and the model parameter successfully. All input parameter combination xv1 , 
xv2 , and xv2 achieved a loss that would allow the usage in the proposed combined model. Furthermore, the fusion 
of the combined model with neural networks revealed that with all three light-metric feature combinations, the 
residuals were in a range of ± 0.2 mm. Similar results were obtained with the intrasubject dataset, indicating the 
validity of the proposed pupil modelling concept. Speci�cally, the �rst input variant xv1 could make a simpli�ed 
application  possible78 since only the CIExy-2° chromaticity points and the luminance of a stimulus is necessary 
for determining the base function’s model parameters and reconstructing the temporal pupil light response.

Compared to the recently published models by  Holladay42 and  Crawford43, Moon and  Spencer44, De Groot 
and  Gebhard45, Stanley and  Davies46, Watson and  Yellot47 and Rao et al.48, we took additionally into account 
the temporal, spectral receptor weighting of the a�erent pupil control path. We can predict the pupil’s spectral 
dependent phasic and tonic time course up to 300 s adaptation time which outperforms previous approaches. 
Additionally, the combined model is non-parametric, meaning a continuous extension of the prediction space 
through data basis upgrades is possible without changing the basic structure. Analysation of the residuals from 
the Watson and Yellot function (Fig. 4I), showed that in pupil modelling the spectral dependence need to be 
considered together with the time behaviour. �e adaptive weighting of the ipRGCs leads to di�erent tonic pupil 
response patterns depending on the stimulus spectra. �erefore, previous approaches are currently reaching their 
limits and cannot be extended to solve the issue of pupil modelling.

Note that the neural networks’ input values are used to support the pattern recognition between the input 
features and predicted model parameters of the basis function. At the moment, our input parameters are used 
for classifying the respective stimulus spectrum without considering external study dependent parameters such 
as the adaptation �eld size α . For instance, we used the CIExy-2° coordinates although the adaptation �eld 
size in our setup corresponded to a visual angle of 53.1°. Suppose the neural network should also manage the 
pupil’s relationship between di�erent adaptation �eld sizes. In that case, it makes more sense of using a separate 
parameter α as input to the model in the future. A simultaneous change of the CIExy observer is not needed, 
because the chromaticity point features are only intended for specifying the stimulus itself without considering 
the adaptation �eld size. �us, each input feature should have its identi�cation task of a stimulus or experimental 
condition modality. However, it will be interesting to what extent the currently used input parameters behave 
when using pupil data caused from metamer stimuli, i.e. di�erent spectra with the same chromaticity points. We 
assume that in such a case, additionally to luminance and CIExy-2° coordinates, the melanopsin signal needs to 
be integrated as an input (input variant xv3 ) for characterizing the stimulus.

Our proposed combined model is currently based on the temporal pupil light of seven di�erent spectra a 
constant luminance, which is insu�cient for a �nalized pupil light response model. When focusing on the future 
perspective of our approach, it is necessary to train the neural networks with an additional amount of temporal 
pupil data, ensuring continuous development of the stimulus modalities’ prediction space. With su�cient training 
data, it should be possible of reconstructing the temporal pupil light response even for stimulus metrics that are 
explicitly not present in the training data. However, taking into account the amount of the pupil’s control path 
in�uencing parameters, the data collection must be prioritized. In our view, the next step is to collect data on 
the pupil light response to fully model the behaviour with varying luminance and spectral power distributions 
by using the silent substitution  technique79. For this purpose, the parameters of the anchor’s luminance, anchor’s 
spectrum and exposure time of the main stimulus should not be varied as this leads to additional in�uencing 
parameters, impairing the training result of the neuronal network. As the next important step, we consider the 
modelling of the exposure time, which would require a similar experimental protocol but with di�erent adap-
tation times of the main stimulus. Due to the non-parametric model approach, the adaptation time could be 
mapped to the neuronal network as an additional input parameter, if su�cient training data is available. In the 
same way, other in�uencing parameters such as the adaptation �eld size α or cognitive e�ects could be increas-
ingly incorporated into the combined model to approach a comprehensive pupil behaviour description with 
new data dependency layers.

A weakness of the proposed model is the integrated polynomial equation for describing the tonic pupil behav-
iour. �e tonic function alone requires ten input parameters, which need to be predicted by the neural network. 
In principle, this has not led to any disadvantage in reconstructing the temporal pupil light response. However, 
this approach is not elegant, making an alternate function with a smaller number of parameters preferable. �is 
is an open issue which we need to address in an upcoming work. Furthermore, we currently assume a static 
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reference spectrum (anchor) as an adaptation in our proposed model. If one wants to model the temporal pupil 
light re�ex relating to di�erent anchor spectra, it is not su�cient to change the starting point dp(0) of the pupil 
course with the Watson and Yellot component (Fig. 3: Step 2). Although the Watson and Yellot model determines 
the starting point dp(0) of the pupil’s course, a change in the reference spectrum or luminance also means that 
the entire pupil light response could be di�erent, a�ecting the tonic Xp,Ton and phasic Xp,Ph model parameters. 
In fact, for modelling the relationship between di�erent adaptation spectra and the pupil light response from a 
main stimulus, the combined model needs an adaptation input in the neural network additionally. In general, 
one must consider that a higher number of input parameters in the neural network leads to a more robust pre-
diction for additional dependencies, but simultaneously to a more complex application of the model, because 
more parameters have to be entered. In future, only the neural network’s input count need to be changed if more 
dependencies should be modelled since the base function has a su�cient degree of freedom for describing any 
temporal pupil response.

�e research applications in the �eld of pupillometry are highly  interdisciplinary80–88 across  species89, covering 
the topic of clinical  diagnostics41, 90–95, cognitive  science96–103,  neuroscience104, vision  science105,106, autonomous 
nervous  system107–109 and quanti�cation of the circadian  photoentrainment39,110–113. A reliable data-driven pupil 
model that integrates the �ndings of past years could also be an essential step forward for these research areas. 
However, individual research groups will not be able to model the pupil behaviour’s cognitive and light-induced 
dependencies alone, so the focus should be in our view on a non-parametric data-driven  approach114. �erefore, 
in future works, we will connect the current combined model with a publicly accessible pupil database, achiev-
ing an automated self-maintenance of the neural networks as the database grows. �e entire code and neural 
networks are provided with this manuscript so that this concept could become a door-opener to an overall model 
of the light- and cognitive induced pupil dependencies.

Data availability
�e training data, graphical toolbox and the implemented pupil model with respective neural networks is avail-
able at the main authors’ GitHub page: https ://githu b.com/BZand i/DL-Pupil Model .
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