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Deep-learning-based quality filtering of mechanically

exfoliated 2D crystals
Yu Saito 1,9,10*, Kento Shin2,10, Kei Terayama 1,3, Shaan Desai1, Masaru Onga4, Yuji Nakagawa4, Yuki M. Itahashi4, Yoshihiro Iwasa4,5,

Makoto Yamada1,6,7 and Koji Tsuda1,2,8*

Two-dimensional (2D) crystals are attracting growing interest in various research fields such as engineering, physics, chemistry,

pharmacy, and biology owing to their low dimensionality and dramatic change of properties compared to the bulk counter parts.

Among the various techniques used to manufacture 2D crystals, mechanical exfoliation has been essential to practical applications

and fundamental research. However, mechanically exfoliated crystals on substrates contain relatively thick flakes that must be

found and removed manually, limiting high-throughput manufacturing of atomic 2D crystals and van der Waals heterostructures.

Here, we present a deep-learning-based method to segment and identify the thickness of atomic layer flakes from optical

microscopy images. Through carefully designing a neural network based on U-Net, we found that our neural network based on U-

net trained only with the data based on realistically small number of images successfully distinguish monolayer and bilayer MoS2
and graphene with a success rate of 70–80%, which is a practical value in the first screening process for choosing monolayer and

bilayer flakes of all flakes on substrates without human eye. The remarkable results highlight the possibility that a large fraction of

manual laboratory work can be replaced by AI-based systems, boosting productivity.

npj Computational Materials           (2019) 5:124 ; https://doi.org/10.1038/s41524-019-0262-4

INTRODUCTION

Two-dimensional (2D) crystals,1 such as graphene, transition metal
dichalcogenides, and van der Waals heterostructures2 have been
intensively studied in a wide range of research fields since they
show significant properties that has not been observed in their
bulk counter parts. Examples include materials engineering, such
as electronics and optoelectronics devices,3–7 solid state physics
including superconductors8 and magnets,9,10 chemistry,11,12 and
biomedical applications.13 To manufacture such 2D crystals with
atomic layer thickness, especially monolayer or a few-layers
samples, mechanical exfoliation, chemical exfoliation, chemical
vapor deposition and molecular beam epitaxy have been
introduced.11 Among them, mechanical exfoliation has been
instrumental to 2D materials research because it enables us to
obtain highly crystalline and atomically-thin 2D layers as is
exemplified by ultraclean and high-mobility devices based on
exfoliated 2D materials combined with the encapsulation by h-BN.
Recently, high-throughput identification of various unexplored 2D
materials via machine learning and the development of a machine
for mechanically exfoliated 2D atomic crystals to autonomously
build van der Waals superlattices14 have been reported. These
advancements are suggestive of a new research direction for 2D
materials that is aimed to explore efficiently enormous materials’
properties in large scale using robotics and machine learning. In
such a situation, a rapid and versatile method for layer number
identification of mechanically exfoliated atomic-layer crystals on
substrates is highly desirable in their fundamental research and
practical applications.

However, the bottleneck of using mechanical exfoliation is that,
through the process, not only do we produce desirable atomic
layers (mostly monolayer or bilayer) but also many impractical
thicker flakes making it tough to quickly separate the useful layers
from the unwanted. To identify the thickness of 2D crystals,
several methods such as atomic force microscopy (AFM),15 Raman
spectroscopy,16,17 and optical microscopy (OM)18,19 are used. AFM
is one of the most versatile methods to measure the thickness of
various 2D materials, but it takes a relatively long time to measure
one region. In addition, the measured value strongly depends on
the offset conditions15 due to, for example, bubbles beneath the
sample. OM is nowadays a widely utilized technique to measure
the thickness of 2D crystals based on the optical contrast between
atomic layers and the substrate.20 In fact, we can determine the
thickness of 2D atomic layers using the contrast difference
between the flakes and substrate obtained from the brightness
profile of color or grayscale images.18 The methods explained
above, however, need manual work and take a relatively long time
to identify atomic-layer thickness, and are therefore inappropriate
for studying various kinds of materials.
Recently emerged deep learning, a machine-learning technique

via deep-neural networks, has shown immense potential for
regression and classification tasks in a variety of research
fields.20–25 In particular, deep-neural networks have been very
successful in image recognition tasks such as distinguishing
images of cats and dogs with high accuracy, and also several
physical problems in theoretical physics, for example, detection
of phase transitions26,27 and searching for exotic particles in
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high-energy physics.28 Given this, deep-neural networks provide an
alternative pathway to quickly identifying layer thicknesses of 2D
crystals from OM images.

RESULTS

Here, we introduce a versatile technique to autonomously
segment and identify the thickness of 2D crystals via a deep-
neural network. Using a deep-neural network architecture, we
reproduced the images of 2D crystals from the augmented data
based on 24 and 30 OM images of MoS2 and graphene,
respectively, used as training data and found that both the
cross-validation score and accuracy rate for the test images
through deep-neural networks is surprisingly around 70–80%,
which means that our model can distinguish monolayer and
bilayer with a practical success rate for initial screening process.
The present results suggest the deep-neural network can become
another promising way to quickly identify the thickness of various
2D crystals in an autonomous way, suggesting a large fraction of
manual laboratory work can be dramatic decreased by replacing
AI-based systems.
Figure 1 shows an overview of data collection using the OM and

the training architecture of the deep-neural network. First, we
prepared the OM images of thin flakes. Bulk single crystals of MoS2
crystals and graphite were employed for the preparation of
mechanically exfoliated 2D atomic layers, which were then
transferred onto the 300-nm-thick SiO2/Si substrates in the air.
The bright-field OM (BX 51, Olympus) was used to locate and take
pictures (optical microscope images) of the thin flakes on the Si/
SiO2 substrate with one-hundred magnification. Each OM image
includes different number of flakes with various thicknesses under
the different light intensity conditions, we then confirmed the
thickness and layer number of each samples using AFM and
contrast based on OM images, which were randomly divided into
the training data set (24 images for MoS2 and 30 images for
graphite) and test images (11 images for MoS2 and 14 images for
graphene), the latter of which were prepared to compare
prediction with a non-expert human as discussed below, by
dividing into three regions of monolayer (blue), bilayer (green),
and others (black). It is noted that as we mention below, we used
960 images which are augmented from 24 images as a training
data set of MoS2, for example.
In the present study, we used the augmented data based on

24 original OM images and corresponding segmentation maps
to train the network and use 11 images to evaluate the
performance for MoS2 classification (See Supplementary Infor-
mation Section III for details of results of graphene/graphite) via
the deep-neural network architectures, U-Net, which is based on
the fully convolutional encoder–decoder network29 (see Meth-
ods for the construction). Here, we particularly choose the
classification of MoS2 and graphene monolayer and bilayer

because the number of training data set is limited to expand the
classifications to thicker multilayer. We employed the data
argumentation technique, which is one of learning techniques
widely used for deep-neural networks to improve learning
accuracy and prevent overfitting.20,30–33 By augmentation with
randomly cropping, flipping, rotating and changing the color of
the original images,34 we increased the training data up to 960
data points. The rotation range was a value in degree (−90 to
90). We randomly shifted a value of Hue (within ±10) on the
converted image in the HSV (Hue, Saturation, Value) color mode,
and randomly normalized contrast by a factor of 0.7 to 1.3.
Indeed, this kind of random manipulation and augmentation of
the original data is useful for averaging the difference of
contrast and number of flakes in each original image. For the
color changing augmentation, we converted images to grays-
cale or adjusted the contrast of the image. With this augmenta-
tion, we increased the data to 960 points. Finally, we normalized
all pixels between 0 and 1 as preprocessing before training. We
then used cross entropy as a loss function of the multi-class
classification and also used a weighted cross entropy in order to
balance the frequency of each class. The normal cross entropy E
is computed as

E ¼
XN

i¼0

XK

k¼0

yik log xið Þ:

Here, xi is the output of the softmax activation of the U-Net at
pixel i, yi, and yik are the one hot vector of the label at pixel i and k-
th element (scalar quantity) of yi, respectively, such that only the
element at the position of the true label is 1 and the others are 0, K
is the number of labels, and N is the number of pixels in the
image. Similarly, weighted cross entropy Ew is computed as

Ew ¼
XN

i¼0

XK

k¼0

wkyik log xið Þ;

where wk is the weight of the class k. To compute the weight wk,
we use median frequency balancing,35 where the weight assigned
to a class is the ratio of the median of class frequencies computed
on the entire training set divided by the class frequency. This
implies that smaller classes in the training data get heavier
weights. In the training, we employed mini-batch Adam,36 a
variant of mini-batch SGD37,38 solver. We performed hyperpara-
meter selection based on threefold cross-validation within the
following ranges: learning rate of Adam in 10−5, 10−4, and 10−3,
batch size in 1, 5, 10, 50, and 100, and epoch number in 10, 30, 50,
100, and 500, respectively.
Figure 2 shows four examples of the original OM images, the

segmented images and generated images using U-Net with
weighted loss. The blue, green, and black regimes show
monolayer, bilayer, and other parts, including thicker flakes

Fig. 1 Process of quality filtering of 2D crystals via deep-neural network. First, we mechanically exfoliate MoS2 crystals on a SiO2/Si
substrate and take images using optical microscope. After recording data, we train deep-neural networks to generate images from optical
microscope images using segmented images. Here, our targets are monolayer and bilayer crystals. For training, we prepared segmented data,
which is divided into monolayer (blue), bilayer (green) and other parts (black).
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and substrate, respectively. It seems that the training neural
network can pick up the information of color contrast (against
background color of substrate), as well as the edge thickness/
sharpness, which is indeed useful information for the real-
screening process. We calculated receiver operating character-
istic (ROC) and precision-recall (precision-true-positive rate)
curves of two-class classifications for the monolayer/others
(blue) and bilayer/others (red) identification and confirmed the
learning performance in Fig. 3a, b. The ROC curve shows sharply
below the false-positive rate of 0.1 and then saturates to 1.0 and
precision-recall curve show the high-precision value (>90%)
below recalls of 0.76 and 0.94 for monolayer and bilayer,
respectively, both of which show the high performance of the U-
Net with weighted loss.
To perform further evaluations, we investigated and compared

the difference of the cross-validation score and accuracy rate for

the test images by changing the learning process using the
grayscale images and/or contrast adjusted images. To evaluate the
performance of the trained U-Net, we used both cross-validation
score and an accuracy score on the test images. In the cross-

validation, we performed threefold cross-validation, in which a
mean of the pixel-wise accuracy in each class was used as an
evaluation metric. We also calculated mean of pixel-wise precision

in each class (macro-average precision) as an evaluation metric in
the cross-validation. On the other hand, in the test images, we
prepared the test images, each of which has problem region to be
answered. To check whether the U-Net can predict the test image

correctly or not, we predict the class of each pixel of the image by
using U-Net and define the class whose pixel is most in the
problem region as the predicted class of that region, then
compare it with the true class.

Fig. 2 Original/segmented images and generated images via the neural networks. Examples of original optical microscope images (a–d),
segmented images (e–h), generated images based on U-Net with weighted loss (i, j), and generated images based on pixel-wise CNN (m–p). In
the segmented and generated images, blue and green region show monolayer and bilayer region, respectively.
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DISCUSSION

We summarize the cross-validation scores for each learning process
in Table 1. The U-Net with weighted loss using contrast adjusted
augmentation shows the highest score of all, 0.789, which is much
higher than that of a normal U-Net without any options. The value of
0.789 is surprisingly high, considering that while a deep-neural
network needs thousand or even more training points, our case used
the data based on 24 training data points for MoS2. We also listed the
macro-average precisions by the U-Net approaches in Supplemen-
tary Table S2. This remarkable result allows us to generate a practical
number of training sets, which can initially be prepared by lab works
using OM. This result also suggests that once we prepare training
data sets and perform leaning for a 2D material, we can obtain a tool
that can quickly identify atomic-layer thickness, monolayer/bilayer/
other thicker parts, with an accuracy rate of almost 80%, which is
practically value that can be helpful for the initial screening process.
We also performed the classification of monolayer/bilayer/other
thicker parts of graphene/graphite (See Supplementary Information
Section III) and got similar accuracy rate, which suggests the present
network is highly transferable. It is noted that the U-net have a
tendency that it can mistakenly recognize the background (wafer) as
a monolayer flake. This might be because the number of the training
data is limited and the network learn all the features in the entire
images. The problem above might be negligible if the number of
training data increases and thus the network can distinguish the
background color and monolayer/bilayer flakes.
More importantly, in practice, it is not necessary to check and

distinguish of all monolayer or bilayer candidates on the substrate,
but just needed to pick up some amount of monolayer or bilayer
with a high accuracy. According to the precision-recall curve in Fig.
2d, at miss rates of 24% and 6.0% (1-true-positive rate), which means

that the U-net miss the flakes with a target layer number (monolayer
or bilayer), it can distinguish monolayer and bilayer with an accuracy
of 90%. This value is practically high for the real experiments. These
high success rates of the identifications mean that the present
technique based on the U-net potentially can apply other 2D
materials on various wafers because it is very rigid against external
conditions (e.g., the number of flakes surrounding the target flakes
and the light intensity of optical microscope.), and can detect
sensitively the color contrast of the surface against background color
and edge thickness from the optical microscope images.
We compared the identification performance of the U-net with

traditional CV approaches based on a bag-of-visual-words
(BoVW)39 technique using a hand-crafted image descriptor and
based on convolutional neural networks (CNNs)21 named as pixel-
wise CNN (see Supplementary Information Section V for details).
We show prediction examples by pixel-wise CNN in Fig. 2m–p.
From Fig. 2, pixel-wise CNN failed to predict layers as a whole
compared to U-net based predictions (i–l). The contours of flakes
in (a–d) and ones of the predicted layers in (m–p) did not match
precisely, because pixel-wise CNN predicted the layer indepen-
dently for each pixel. On the other hand, U-net achieved highly
accurate prediction reflecting flake shapes due to its network
architecture using skip connections and upsamplings. We also
summarize the cross-validation scores for these traditional
approaches in Supplementary Table 3. From these results in
Supplementary Table 3 and Fig. 2, it was confirmed that the U-net
base approach achieves higher accuracy compared to the
traditional CV approaches. Finally, to compare the accuracy rate
between U-Net and non-expert humans, we calculated the
accuracy rate using 11 randomly selected test images of MoS2
flakes (see Supplementary Information Section I). We found that
the accuracy score of U-Net with weighted loss model is 0.733 in
all cases, which is higher than the that of a normal U-Net model.
Such a tendency is observed in cross-validation score, which
indicates that the U-Net with weighted loss is better than the
normal U-Net for both segmentation and layer number identifica-
tion tasks. We then compared the accuracy score with that of
twelve researchers who were not familiar with 2D materials (non-
expert human). The researchers were given three minutes to learn
the training data set (see Supplementary Information Section I for
details) and were then asked to respond with the layer numbers
(mono- and bilayer) for each segment of new images, which were
the same as the test images used in determining the accuracy
score for the deep-neural network. The accuracy score for humans
was 0.67 ± 0.11, which was comparable value to that of a U-Net
with weighted loss. The present results suggest that the

Fig. 3 Receiver operating characteristic (ROC) curves and precision-recall curves for the monolayer and bilayer identification. a ROC
curve for the monolayer and bilayer identification. Blue and red curve show the ROC for two-class classifications of monolayer/others and
bilayer/others, respectively. This ROC curve shows the high performance of the U-Net with weighted loss because the ROC curve rises sharply
below the false-positive rate of 0.1 and then saturates to 1.0. b Precision-recall (true-positive rate) curves for the monolayer and bilayer
identification.

Table 1. Cross-validation scores for U-Net and U-Net with

weighted loss.

U-Net U-Net with
weighted loss

w/o grayscale and w/o contrast
adjusted images

0.584 0.643

w/grayscale 0.46 0.56

w/contrast adjusted images 0.678 0.789

w/grayscale and contrast
adjusted images

0.633 0.723
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deep-neural network based on U-Net with weighted loss is a new
tool to rapidly and autonomously segment and identify number of
layers of 2D crystals with an accuracy rate comparable to non-
expert humans, indicating it can be an essential tool to significantly
decrease manual work in the laboratory by boosting the first
screening process, which has been usually done by human eyes.
In conclusion, we introduce a versatile technique to autono-

mously segment and identify the thickness of 2D crystals via a
deep-neural network. Constructing an architecture consisting of
convolutions, U-Net, we reproduced the images of 2D crystals
from the less than 24 and 30 OM images of MoS2 and graphene,
respectively, and found that both the cross-validation score and
the accuracy rate of generated data through U-Net is around
70–80 percent, which is comparable with non-expert human level.
This means that our neural network can distinguish monolayer,
bilayer and other thicker flakes of MoS2 and graphene on Si/SiO2

substrates with the practical accuracy in the first screening process
for searching desirable before further transport/optical experi-
ments. The present study highlights that deep-neural networks
have great potential to become a new tool for quickly and
autonomously segmenting and identifying atomic-layer thickness
of various 2D crystals and opening a new way for AI-based quick
exploration for manufacturing 2D materials and van der Waals
heterostructures in large scale.

METHODS

Construction of the convolutional encoder–decoder network

The encoder that we used for the fully convolutional encoder–decoder
network extracts the small feature map from the input image by
convolution and pooling layers, and decoder expands it to the original
image size by convolution and upsampling layers. Figure 4 shows an
overview of our network. The encoder and decoder are composed of 14
and 18 layers, respectively. The encoder consists of four repeated layers set
which consist of 3 × 3 convolutions, each followed by a rectified linear unit
(ReLU) activation and 2 × 2 max pooling with stride 2 for downsampling. At
each downsampling step, the number of the feature map is doubled. The
decoder consists of four repeated layers set which consist of 2 × 2
upsampling convolution and 3 × 3 convolution followed by ReLU. We
added 50% dropout layers after each of the first three upsampling
convolution layers. At the final layer of the decoder, a 1 × 1 convolution
converts the feature map to the desired number of classes and softmax
activation is then applied. To transmit high-resolution information in the
input images, the network has skip connections between each convolu-
tional layer of the encoder and the corresponding upsampling layer of the
decoder. Each skip connection simply concatenates all channels at the
layer of the encoder with one of the decoders. The dimension, width ×
height × channels, of the input image is 512 × 512 × 3 and it changes to
256 × 256 × 64, 128 × 128 × 128, 64 × 64 × 256, 32 × 32 × 512, and 16 ×
16 × 1024 at each downsampling step in the encoder, respectively, and
changes in reverse order through the upsampling steps in the decoder.

DATA AVAILABILITY

The data used to train and test the models is available along with the source code at

https://github.com/xinkent/mos2_segmentation

CODE AVAILABILITY

Our code is available at https://github.com/xinkent/mos2_segmentation

Received: 14 May 2019; Accepted: 22 November 2019;

REFERENCES

1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. U. S. A.

102, 10451–10453 (2005).

2. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials

and van der Waals heterostructures. Science 353, aac9439 (2016).

3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics

and optoelectronics of two-dimensional transition metal dichalcogenides. Nat.

Nanotechnol. 7, 699–712 (2012).

4. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional

material nanophotonics. Nat. Photonics 8, 899–907 (2014).

5. Jariwala, D., Sangwan, V. & Lauhon, L. Emerging device applications for semi-

conducting two-dimensional transition metal dichalcogenides. ACS Nano 8,

1102–1120 (2014).

6. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol.

9, 768–779 (2014).

7. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transi-

tion metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

8. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev.

Mater. 2, 16094 (2016).

9. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down

to the monolayer limit. Nature 546, 270–273 (2017).

10. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der

Waals crystals. Nature 546, 265–269 (2017).

11. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal

dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

12. Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and chemical tuning of

two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44,

2664–2680 (2015).

13. Chimene, D., Alge, D. L. & Gaharwar, A. K. Two-dimensional nanomaterials for

biomedical applications: emerging trends and future prospects. Adv. Mater. 27,

7261–7284 (2015).

14. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-

dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413

(2018).

15. Ni, Z. H. et al. Graphene thickness determination using reflection and contrast

spectroscopy. Nano Lett. 7, 2758–2763 (2007).

16. Lee, C. et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano

4, 2695–2700 (2010).

17. Li, H. et al. Optical identification of single- and few-layer MoS2 sheets. Small 8,

682–686 (2012).

Fig. 4 Network architectures based on U-Net. The encoder of U-Net extracts the small feature map from the input image by convolution and
pooling layers, and decoder expands it to the original image size by convolution and upsampling layers. Skip connections are added between
each layer of the encoder and the corresponding layer of the decoder in order to transmit a high-resolution information to the decoder. In the
architecture, the encoder and decoder are composed of 14 and 18 layers, respectively. The dimension, width × height × channels, of the input
image is 512 × 512 × 3 and it changes to 256 × 256 × 64, 128 × 128 × 128, 64 × 64 × 256, 32 × 32 × 512, and 16 × 16 × 1024 at each
downsampling step in the encoder, respectively, and changes in reverse order through the upsampling steps in the decoder.

Y. Saito et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2019)   124 

https://github.com/xinkent/mos2_segmentation
https://github.com/xinkent/mos2_segmentation


18. Li, H. et al. Rapid and reliable thickness identifi cation of two-dimensional

nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).

19. Li, Y. et al. Optical identification of layered MoS2via the characteristic matrix

method. Nanoscale 8, 1210–1215 (2016).

20. Krizhevsky, A. & Hinton, G. E. Imagenet classification with deep convolutional

neural networks. Proc. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

21. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

22. Silver, D. et al. Mastering the game of Go with deep neural networks and tree

search. Nature 529, 484–489 (2016).

23. Fauw, J. De et al. Clinically applicable deep learning for diagnosis and referral in

retinal disease. Nat. Med. 24, 1342–1350 (2018).

24. Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus

photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018).

25. Ryan, K., Lengyel, J. & Shatruk, M. Crystal structure prediction via deep learning. J.

Am. Chem. Soc. 140, 10158–10168 (2018).

26. Van Nieuwenburg, E. P. L., Liu, Y. H. & Huber, S. D. Learning phase transitions by

confusion. Nat. Phys. 13, 435–439 (2017).

27. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13,

431–434 (2017).

28. Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-energy

physics with deep learning. Nat. Commun. 5, 4308 (2014).

29. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for bio-

medical image segmentation. Springer International Publishing, In Proc. Inter-

national Conference on Medical Image Computing and Computer Assisted

Intervention. 234–241 (2015).

30. Szegedy, C. et al. Going deeper with convolutions. IEEE Computer Society, In Proc.

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1–9

(2015).

31. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition.

IEEE Computer Society, In Proc. IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 770–778 (2016).

32. Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic materials

synthesis parameters with deep learning. NPJ Comput. Mater. 3, 53 (2017).

33. Perol, T., Gharbi, M. & Denolle, M. Convolutional neural network for earthquake

detection and location. Sci. Adv. 4, e1700578 (2018).

34. Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M. & Brox, T. Dis-

criminative unsupervised feature learning with exemplar convolutional neural

networks. IEEE Trans. Pattern. Anal. Mach. Intell. 1734–1747 (2016).

35. Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with

a common multi-scale convolutional architecture. In Proc. IEEE International

Conference on Computer Vision. 2650–2658 (2015).

36. Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimization. In Proc.

International Conference on Learning Representations. arXiv preprint

arXiv:1412.6980 (2015).

37. Dekel, O. & Xiao, L. Optimal distributed online prediction using mini-batches. J.

Mach. Learn. Res. 13, 165–202 (2012).

38. Li, M., Zhang, T., Chen, Y. & Smola, A. J. Efficient mini-batch training for stochastic

optimization. ACM, In Proc. 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 661–670 (2014).

39. Csurka, G. et al. Visual categorization with bags of keypoints. ACM, In Proc.

Workshop on Statistical Learning in Computer Vision, European Conference on

Computer Vision. 1–22 (2004).

ACKNOWLEDGEMENTS

This work was supported by the “Materials research by Information Integration”

Initiative (MI2I) project and Core Research for Evolutional Science and Technology

(CREST) (JSPS KAKENHI Grant Numbers JPMJCR1502 and JPMJCR17J2) from Japan

Science and Technology Agency (JST). It was also supported by Grant-in-Aid for

Scientific Research on Innovative Areas “Nano Informatics” (JSPS KAKENHI Grant

Number JP25106005) and Grant-in-Aid for Specially Promoted Research (JSPS

KAKENHI Grant Number JP25000003) from JSPS. M.O. and Y.M.I. were supported by

Advanced Leading Graduate Course for Photon Science (ALPS). Y.S. was supported by

Elings Prize Fellowship. Y.N. was supported by Materials Education program for the

future leaders in Research, Industry, and Technology (MERIT). M.O. and Y.N. were

supported by the Japan Society for the Promotion of Science (JSPS) through a

research fellowship for young scientists (Grant-in-Aid for JSPS Research Fellow, JSPS

KAKENHI Grant Numbers JP17J09152 and JP17J08941, respectively). M.Y. was

supported by JST PRESTO (Precursory Research for Embryonic Science and

Technology) program JPMJPR165A.

AUTHOR CONTRIBUTIONS

Y.S., K. Terayama, M.Y., and K. Tsuda conceived the idea, designed, and supervised the

experiment. Y.S., K.S., K. Terayama implemented the proposed method and analyzed

the experimental results. Y.S. collected images of atomic layers with the help of M.O.,

Y.N., and Y.M.I. All authors discussed the results. Y.S., K.S., K. Terayama, and K. Tsuda

wrote the manuscript with contributions from all other co-authors.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41524-019-0262-4.

Correspondence and requests for materials should be addressed to Y.S. or K.T.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2019

Y. Saito et al.

6

npj Computational Materials (2019)   124 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-019-0262-4
https://doi.org/10.1038/s41524-019-0262-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep-learning-based quality filtering of mechanically exfoliated 2D crystals
	Introduction
	Results
	Discussion
	Methods
	Construction of the convolutional encoder&#x02013;nobreakdecoder network

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


