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ABSTRACT Mobile crowd computing (MCC) that utilizes public-owned (crowd's) smart mobile devices 
(SMDs) collectively can give adequate computing power without any additional financial and ecological cost. 
However, the major challenge is to cope with the mobility (or availability) issue of SMDs. User's unpredicted 
mobility makes the SMDs really unstable resources. Selecting such erratic resources for job schedule would 
result in frequent job offloading and, in the worst case, job loss, which would affect the overall performance 
and the quality of service of MCC. In a Local MCC, generally, a set of users are available for a certain period 
regularly. Based on this information, the chances of a user being available for a certain duration from a given 
point of time can be predicted. In this paper, we provide an effective model to predict the availability of the 
users (i.e., their SMDs) in such an MCC environment. We argue that before submitting a job to an SMD, the 
stability of it is to be assessed for the duration of execution of the job to be assigned. If the predicted 
availability time is greater than the job size, then only the job should be assigned to the SMD. An accurate 
prediction will minimize the unnecessary job offloading or job loss due to the early departure of the 
designated SMD. We propose an advanced convolutional feature extraction mechanism that is applied to 
LSTM and GRU-based time-series prediction models for predicting SMD availability. To collect user 
mobility data, we considered a research lab scenario, where real mobility traces were recorded with respect 
to a Wi-Fi access point. We compared the prediction performances of convolutional LSTM and GRU with 
the basic LSTM and GRU and ARIMA in terms of MAE, RMSE, R2, accuracy, and perplexity. In all the 
measurements, the proposed convolutional LSTM exhibits considerably better prediction performance. 

INDEX TERMS Mobile grid, Mobile computing, Resource selection, Availability prediction, Deep learning, 
Convolutional feature extraction, CNN, RNN, LSTM, GRU, ARIMA 

I. INTRODUCTION 

A. MOBILE CROWD COMPUTING 

Modern computationally powerful smart mobile devices 
(SMDs) are being considered equivalent to desktops and 
laptops [1]. This prospect has been alleviated not only due to 
significant improvement in SMD hardware but also the 
advancement of battery and quick charging technologies for 
SMDs, along with sophisticated energy management 
techniques that have emancipated the users from distressing 
about hasty energy hemorrhage off their SMDs [2]. 
Therefore, like desktop grid computing, a collection of 
SMDs can provide a satisfactory high-performance 
computing (HPC) facility comparable to the traditional HPC 

systems like supercomputers, grid computing, and cloud 
computing [3]. Instead of investing in their own 
infrastructure, organizations can utilize the SMDs available 
at their premises, which not only be economical but also 
environment-friendly [4] [5]. Since, in this computing 
paradigm, public's (or crowd's) devices are utilized, which 
can be deemed as a crowd of SMDs (crowdworkers), the 
system is called mobile crowd computing (MCC) [6]. MCC 
can be utilized not only to cater to the regular computing 
needs but also as an edge computing infrastructure for 
processing and analyzing the organizational IoT data in real-
time. This would save the time and cost involved in cloud 
computing. 

B. RESOURCE SELECTION IN MCC 
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As the SMDs are heterogeneous in terms of their resources 
and their owner's behavior and usage patterns, all of them bid 
varied computing capability and for different time periods 
and durations. Therefore, to make MCC successful and 
effective, it is crucial to select the most appropriate SMD for 
a computing job. While choosing an SMD as a crowdworker, 
three main criteria are considered: 

• Hardware-wise, overall computing capability of the 
SMD: Whether the SMD has enough hardware 
specification to carry out the task. 

• Usability of the computing resource of an SMD: 
Even if the SMD has sufficient resources to carry 
out the task, most of the time, it may be engaged in 
executing the owner's applications. Therefore, the 
crowd task would not get enough chances to get 
executed in a work-stealing fashion. 

• Availability of the SMD: On satisfying the above 
two conditions, a task may be assigned to the 
SMDs. But most of them go off the network before 
completion of the job. 

In this paper, we addressed the third criterion. Though the 
first two are the most important objectives, they are out of 
the scope of this paper. We assume that these two criteria are 
already met. 

C. THE RESOURCE AVAILABILITY PROBLEM 

In other HPC systems, the resources are more or less fixed. 
But since MCC is a dynamic environment, the resources 
cannot be considered dedicated and accessible anytime and 
anywhere. Due to the user's mobility, the resources 
(crowdworkers) in a particular network may not be available 
continuously over time. However, they might be available 
for several discrete periods. Due to this instability, there is 
always a high probability that a crowdworker leaves the 
network without finishing the assigned job. There are two 
possible solutions when a crowdworker departs before 
completing the assigned task: 

a. The job is restarted from the beginning by another 
crowdworker. This delays the task execution as the 
whole process is to be started again, including 
resource (crowdworker) selection and job 
assignment. 

b. Savepoints are maintained periodically. When a 
crowdworker departs, the task is rollbacked to the 
last savepoint and resumed from there by another 
crowdworker. This approach might be better than 
starting the job from the beginning, but keeping 
savepoints is overhead, and also determining the 
period length after which the savepoints are noted 
is a decision challenge. 

In both cases, the quality of service of MCC is compromised, 
which ultimately affects the successful realization of MCC. 
That is why assessing the availability of the assignee 
crowdworker before assigning a task to it is so crucial in 
MCC. 

D. SOLUTION APPROACHES AND THE PROPOSED 

SOLUTION 

Before submitting a task to a crowdworker, it is to be assured 
that it would not leave until the job is finished. But, for 
mobile devices, guaranteeing availability is not 
straightforward. One approach, as assumed in [7], is that 
every crowdworker should announce their departure time 
immediately after entering the MCC network. Based on the 
declared departure time, suitable jobs would be assigned so 
that they could be finished timely. But it has two issues i) not 
very practical and ii) there is no guarantee that the 
crowdworker will keep its word that it would not leave 
before the declared time. Due to several reasons, a 
crowdworker may leave the network unscheduled even if it 
is priorly agreed to be there for a specified period.  

Another possible option, as suggested in [8], is that if a 
crowdworker wants to leave the network, it will notify the 
coordinator. This would solve the first issue discussed in 
Section 1.3, but not the second completely. The overhead of 
job handover remains. Also, some dishonest devices may not 
follow the rule and leave abruptly without notifying. 

Owing to these drawbacks, we propose an availability-aware 
smartphone selection scheme for a local MCC. We predict 
the availability of an SMD for a minimum duration of the 
task length (execution period), based on which the resource 
selection decision can be made. For this, we tracked the in-
time and out-time of the SMDs on the previous occasions 
when they were connected to the considered Wi-Fi access 
point. Based on this historical mobility/availability 
information, the probable availability till a particular 
duration of an SMD at any given point of time is assessed. 
This problem can be represented as time-series analysis.  

Time-series analysis is exercised on the set of observations 
where each record is observed at a specific time. Analysis of 
these types of data is not like other statistical modeling and 
inference due to its apparent correlation in adjoining records 
introduced by the sampling time. These features limit the 
applicability of many statistical models that assume the 
observations are independent and identically distributed. The 
Autoregressive Integrated Moving Average (ARMIA) model 
has been a widely used linear model for forecasting time-
series data, and it has been a standard for a long time. 
ARIMA considers lag value determined by the correlation 
among the continuous values, the dependency between an 
observation and the residual, and seasonality (if it exists) for 
building the model and result in close prediction of the future 
[9]. ARIMA models have the advantages of being more 
flexible compared to other statistical models and have a 
better performance for a longer sequence of data with a 
stable correlation between past observations. But ARIMA 
model can only capture the linear pattern of the data, but not 
the hidden patterns that are stochastic and non-linear in 
nature [10] [11]. Furthermore, an ARIMA model assumes a 
constant standard deviation in errors, which may not be true 
in practice. Like most of the real data, the dataset considered 
in this work is also non-linear in nature. 
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Another statistical model, the Markov chain process, has 
been popularly used for time-series prediction, especially 
where clarifying the interrelationships of the model is 
important [12] [13]. Though they provide significant 
accuracy for short-term prediction, they have a probability of 
presenting miss prediction for long-term sequences, which is 
necessary for crowdworker selection. For instance, it may 
happen that a particular user was not available for certain 
days in the previous months. Due to the lack of memory in 
the Markov model, it will not be able to hold the long-term 
historical information; hence it cannot incorporate such 
irregularities in the model. This leads to inaccurate 
predictions. 

In summary, the classical time-series analysis models suffer 
from the following limitations: 

• They are sensitive towards missing values. 
• They require special transformations to convert the 

data into a linear form. 
• Most of them support only univariate data; they do 

not support multiple independent variables to be 
taken as inputs. 

Furthermore, the traditional prediction models work better 
when the data follow a statistical distribution. In our 
problem, we wanted to capture the real and consistent 
behavior of the user, which required considering a long-term 
data relationship. In the user mobility data, there is very little 
chance of finding a perfect fit of a distribution, which is a 
basic requirement for the traditional prediction tools. To 
tackle this, a time-series analysis model is needed that can 
make a prediction on the dataset without fitting a known 
distribution. 

Considering the above-mentioned issues, machine learning 
techniques are intensely studied for use in time-series 
forecasting. Machine learning models are good to exercise 
the non-linear pattern. K-nearest neighbor, decision tree, 
support vector machine, etc., can be used to model time-
series data when the observation consists of a non-linear 
pattern.  

Capturing the data context changes in time-series data is an 
important criterion for a prediction model. However, 
traditional machine learning based prediction models cannot 
capture these changes appropriately. Hence, they are unable 
to provide satisfactory prediction accuracy in cases where 
the contexts of the considered data change frequently. In the 
user mobility data considered in this work, we are required 
to identify the users' behavior for a longer period. To provide 
expected prediction results, the prediction models need to 
capture these changes appropriately.  

Deep learning based model like RNNs (recurrent neural 
networks) are capable of retaining long-term contextual 
information due to the presence of a specialized memory and 
use looping constraint that helps to capture the sequential 
information in the data. Deep learning models also have the 

inherent capability of searching relations in the dataset 
without prior knowledge of any distribution. 

Generally, RNNs are used for time-series data prediction. 
But traditional RNNs suffer from vanishing gradient 
problems when the input length is too high [14]. So, to 
overcome the issue of the vanishing gradient problem, 
upgradations of RNNs like LSTM [15] [16] and GRU [17] 
[18] were developed. Both methods have been popularly 
used for sequence modeling and time-series predictions [19]. 
However, there are some issues with GRUs compared to 
LSTM, such as the GRUs cannot regulate the amount of 
memory content that is to be forwarded to the next unit, as 
they do not store cell state. Whereas LSTMs are capable of 
regulating the amount of information that is to be forwarded 
to the next unit. We tested our model with both LSTM and 
GRU to compare the effectiveness of these methods for this 
particular problem. 

However, a prediction model is not sufficient to attain a 
handsome or the expected prediction accuracy since these 
models work on the available input features without any 
feature extraction. For that, it is required to apply a proper 
feature extraction mechanism to the dataset. The feature 
extraction is a crucial aspect of designing a prediction model 
because it captures the most relevant features from the data, 
which generally improves the model performance.  

The existing and known feature extraction methods, in most 
cases, can extract the exact features required for a particular 
prediction problem. But they may be incompetent when we 
do not have a clear idea of the most dominant features. 
Therefore, we needed to frame a feature extraction 
methodology that dynamically extracts features for solving 
the proposed resource availability prediction problem.  

Recently, CNNs (convolutional neural networks), the idea of 
which was first presented by Fukushima in 1980 [20] and 
later improved by LeCun et al. [21] [22], have become 
popular for extracting dynamic features for prediction-based 
models. A CNN is a special kind of neural network for 
processing 2-D image data [23] [24] [25]. CNNs are very 
effective in extracting and learning features not only from 
one-dimensional sequential data, such as univariate time-
series data, but also from multivariate time-series data [26] 
[27].  

Owing to their distinct architecture, the LSTM layers in the 
LSTM models can capture the sequence pattern information 
quite efficiently. As the LSTM networks are designed to deal 
with temporal correlations, they utilize only the features 
provided with the training set [28]. The convolutional layers 
of CNNs can extract more valuable features by filtering out 
the noise prevailing in the raw input data [29]. They are also 
capable of scooping the hidden features that otherwise could 
not be pulled out by using LSTM. This is the core motivation 
to exercise a convolutional feature extraction layer in 
addition to the basic LSTM for our presented availability 
prediction problem, so that we could exploit the benefits of 
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both techniques to achieve a better prediction performance. 
The combination of CNN and LSTM is useful for learning 
features of not only short-term time variation but also long-
term dependency periodicity [30]. 
  
Considering this, we proposed a specialized convolutional 
feature extraction method to enhance the performance of the 
LSTM and GRU models. 

E. CONTRIBUTION OF THIS PAPER 

To achieve our goal, we go along the following tasks: 

a. We designed a logging model for recording the in-
time and out-time of SMDs in consideration with 
respect to a Wi-Fi access point. 

b. We proposed a novel dynamic feature extraction 
process suitable for the datasets where the features 
are unknown.  

c. We designed a novel method for representing time-
series data into a vector to perform the 
convolutional feature extraction.  

d. The proposed convolutional feature extraction is 
combined with both LSTM and GRU for 
prediction.  

e. The prediction performances are compared with 
each other as well as with the basic LSTM and 
GRU, and also with ARIMA.  

F. IMPLICATION OF THIS WORK 

The presented approach is most useful for a local MCC 
environment where the SMD owners visit and join the MCC 
network on a regular basis. In such a scenario, the main 
objective of this paper is to improve the QoS and reliability 
of the MCC by minimizing the handoff or job offloading and 
reassignment. The success of this approach will depend on 
the accuracy of the availability prediction of the considered 
SMDs.  

G. ORGANIZATION OF THE PAPER 

The rest of the paper is organized as follows. Section 2 
discusses the related research works. The MCC system 
model and the hypotheses considered for this work are 
presented in Section 3. A crowdworker selection method 
based on availability is also presented in this section. Section 
4 covers the data collection, simulation, and result analysis 
for the availability prediction experiment. The paper is 
concluded in Section 5. 

II. RELATED WORK 

In this section, we report the closely related work to that of 
presented in this paper. The papers are grouped into similar 
problems and similar solution methods. 

A. RESOURCE AVAILABILITY PREDICTION IN MOBILE 

GRID/CLOUD COMPUTING 

Considering the hardware improvements of modern mobile 
devices, many have suggested utilizing their computing 
capabilities in different forms [31] [32] [33]. Lately, 
computation on mobile devices has attracted researchers' 
attention, especially to form mobile ad hoc cloud computing 
[34] [35] [36] [37]. But despite increasing research interest 
on mobile cloud computing, we could not find much work 
on predicting the stability of mobile devices in this particular 
scenario. Following are some initiatives that closely or 
remotely match that of our proposed work. 

Brevik et al. [38] aimed at enabling the grid job scheduler to 
make on-the-fly decisions by providing live availability 
predictions. To predict the availability duration of a resource, 
they used the Weibull method (parametric model fitting 
technique) along with Resample and Binomial methods 
(non-parametric techniques). The authors attempted to 
estimate a specific quantile for the availability distribution 
and the confidence for each estimation. Andrzejak et al. [39] 
attempted to predict the availability of the grid resources 
within a time interval [T, T+p], where p is the prediction 
interval length with values [1,2]. For this, they used the 
Naive Bayes and Decision trees based predictive models. 
They also aimed to identify the resource predictability 
indicators and the factors that incite prediction error. But 
these works do not cover the availability prediction of mobile 
devices in a non-dedicated mobile grid environment. 

Vaithiya and Bhanu [40] proposed a task scheduling 
algorithm for the mobile grid, predicting the dynamic 
availability of mobile resources. Selvi et al. [41] dealt with 
the issue of node mobility in an ad-hoc mobile grid by 
profiling the regular movements of a user over time. But 
none of these considers the historical characteristics of the 
devices, which may hinder in achieving the optimal effects 
in SMD selection. 

In FemtoClouds, a mobile device cloud control system, 
presented by Habak et al. [8], the presence time prediction 
of mobile devices is incorporated. In this work, it is assumed 
that the controller has knowledge of the exact departure time 
of each device for each session. But, in practice, some 
dishonest users may depart before the declared departure 
time, while some may be forced to cut off from the network 
due to some genuine reasons such as battery used up. To 
counter this problem, Zhou et al. [7] suggested considering 
the historical characteristics of the devices to evaluate the 
record of honoring their departure promise. They proposed a 
mobile device selection method, considering the status and 
stability of the devices. However, both of these works 
assume that the SMDs declare the departure time voluntarily, 
which may not be practical. 

Sipos and Ekler [42] estimated the availability of mobile 
devices in a P2P storage system. They predicted the actual 
availability based on the nodes' self-declared availability or 
unavailability for the subsequent considered time period. 
Different classifiers were used to check the accuracy of the 
prediction model in the simulated mobility scenario. 
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Pramanik et al. [43], based on the device mobility patterns in 
a P2P mobile cloud, estimated the relative stability of a group 
of SMD users over a period with respect to each other.  

Haryanti and Sari [44] predicted the mobility of a group of 
resource-providing nodes with respect to a resource-seeking 
node. The purpose was very much similar to ours (presented 
in this paper) that the task from the requesting node should 
be given only to those resource-providing nodes which are 
supposed to be in contact with the requesting node until the 
task is completed. Farooq and Khalil [45] also proposed a 
method to predict a time duration for which a resource 
requesting node would remain within reach of the resource 
requesting node in a mobile grid. Based on the predicted 
time, the task assignment decision is taken. The prediction is 
based on the previous record of the time duration of their 
contact, whereas the contact is calculated by the distance 
between them based on their locations, assessed by their GPS 
coordinates. 

Nevertheless, in spite best of our effort, we could not find 
any significant work that endeavors to predict the periodical 
availability of the public-owned SMDs in a non-dedicated 
and dynamic MCC environment. 

B. DEEP LEARNING FOR RESOURCE MANAGEMENT 

AND PREDICTION 

Considering the potential, deep learning has been applied in 
various domains and applications for different purposes [46] 
[47] [48] [49] [50] [51] [52] [53] [54] [55] [56]. Specifically, 
in time-series forecasting, LSTM [57] [58] [59] and GRU 
[60] [61] [62] are widely used.  

Many researchers exploited the convolutional aspect of CNN 
in combination with LSTM to improve the performance of 
time-series prediction/forecasting in various applications, 
such as for inventory prediction [30], stock price prediction 
[63] [64] [65] [66], gold price forecasting [28], Bitcoin price 
forecasting [67], tourist flow forecasting [68], sentiment 
prediction of social media users [69], household power 
consumption prediction [70] [27], photovoltaic power 
prediction [71], wind power forecasting [72], PM2.5 

prediction [73] [74], predicting NOx emission in processing 
of heavy oil [75], forecasting natural gas price and movement 
[29], urban expansion prediction [76], predicting waterworks 
operations at a water purification plant [77], predicting sea 
surface temperature [78], typhoon formation forecasting 
[79], crop yield prediction [80], COVID-19 detection and 
predictions [81] [82] [83], human age estimation [84], and so 
on. 

Deep learning based techniques are being used for efficient 
resource management and prediction in cloud [85] [86] [87] 
[88] [89] [90], edge computing [91] [92] [93] and other 
wireless distributed systems [94] [95] [96] [97] [98].  

The inherent capability of capturing short-term as well as 
long-term instances has led LSTM [99] [100] [101], CNN 
[102], and convolutional LSTM [103] [104] to be popularly 
used in mobility predictions. In his master's thesis [105], 
Pamuluri compared different deep learning methods, 
including LSTM, CNN-LSTM, GRU, to predict users' 
mobility with respect to a mobile base station. Cui et al. 
[106] used LSTM to predict the availability of mobile edge 
computing-enabled base stations depending on the vehicle's 
mobility for offloading the computation jobs from the 
vehicle to the base station. Li et al. [107] used LSTM to track 
user mobility for efficient dynamic resource allocation 
across different network slices in a 5G network. 

In our recent work [108], addressing the same problem as in 
this paper, we applied ConvLSTM on the user mobility 
dataset. The ConvLSTM module is a predefined 
implementation provided by Keras Python API [109]. The 
model exhibited an average accuracy of 78.43%. Further, a 
sampling phase was introduced to eliminate the overfitting 
and underfitting problems. However, here, we just used the 
readily available ConvLSTM model that is specially meant 
for 2D spatial data and requires advanced transformations to 
work with time-series data. The limitation of the model is 
that it does not have the required flexibility. The only 
available tuning option for the model was the selection of the 
hyper-parameters and the transformation technique. This 
opens up the scope for exploring other options which are 
more generalized and flexible, which would lead to better 
model performance. 

III. SYSTEM MODEL AND HYPOTHESIS 

A typical MCC system comprises three major entities a) 
coordinator, b) computing resources (crowdworkers), and c) 
the communication media between the two. The coordinator 
is responsible for managing the complete system by 
performing task farming, execution time estimation, 
crowdworker discovery, assessing crowdworker's resource 
usefulness, availability prediction, resource reallocation, 
result collection, etc. The crowdworkers execute the 
assigned tasks and return the results to the coordinator. 
SMDs and the coordinator communicate with each other via 
a Wi-Fi access point. A typical MCC setup is shown in Fig. 
1. 

An SMD user needs to install the MCC client application on 
his SMD if he is willing to share his device's resources, i.e., 
agrees to be a crowdworker in an MCC setup. The MCC 
coordinator would automatically be informed whenever a 
crowdworker enters its network (the access point to which 
the coordinator is connected). In some cases, certain SMDs 
may join MCC several times a day. The coordinator keeps 
the record of each SMDs that joins the MCC. 
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Crowdworkers

Other SMDs (but not crowdworkers) 
connected to the same access point

Wi-Fi access point

MCC coordinator

 

Fig. 1. A typical MCC setup

In this paper, we have considered an indoor environment 
(campus) where most users (with their SMDs) are often 
available for a certain duration. For example, in a classroom 
and a workplace, the students and the workers are regularly 
available for a specific duration in regular intervals. If they 
take public transport for commuting to reach their institute 
and workplaces, in most probability, they would be available 
for the duration from boarding point to the destination. 
Similarly, some people spend a certain amount of time in the 
library regularly while some go to the same coffee shop or 
canteen regularly. In all these cases, the availability of the 

users can be predicted by analyzing their presence history.  

The accuracy of the availability prediction depends on the 
campus type. For example, in a classroom or a typical office, 
the availability is somewhat predetermined. Whereas the 
predictability in a coffee shop (where customers come 
regularly) varies as per its location and the services it offers. 
Likewise, in public transport (regularly used by a group of 
commuters), the availability is very much fixed (usually one 
drops at his stop regularly). The crowdworker predictability 
gradient based on the availability is shown in Fig. 2. 

Public transport (for 
regular passengers)

Library (for regular 
readers)

ClassroomCoffee shop (for 
regular customers)

Office

Increasing possible availability of a set of SMDs for a known and predictable duration

 

Fig. 2. Predictability gradient of crowdworker's availability in a local MCC

To model the working of a local MCC, we have assumed the 
following: 

• We consider a general task execution model where 
the SMDs receive some compute-intensive tasks 
either individually or in batches.  

• Each task has its own computation requirements, 
input and output data size, and finite execution time. 
We assume that these parameters are known. 

• Each crowdworker avails a fixed and equal 
bandwidth. 

• Each crowdworker completes the assigned subtask 
within a finite time and sends back the results 
before leaving the MCC network.  

• A crowdworker would share its resources until it is 
present in the network. 

• All SMDs, which have the MCC client installed, are 
considered as crowdworker and willing to share 
their resources, either on a profit or non-profit basis.  

• The SMDs in MCC are uniquely identified by the 
UIDs. 

To model our proposed availability prediction, we further 
assume the followings: 

• In need of job submission, the coordinator looks for 
the most appropriate crowdworker(s).  

• The MCC coordinator already has a list of suitable 
crowdworkers (based on the criteria mentioned in 
Section I.B).  

• The coordinator decides to pick the top-ranked 
crowdworker(s) from the list.  

• Just before submitting the job to the selected 
crowdworker, the coordinator wants to be sure of 
the probability of the crowdworker being available 
until the job is finished. 

This paper addresses the last point, i.e., before the job is 
actually be submitted, the stability of the selected 
crowdworker is to be assessed for the duration of execution 
of the assigned job. If the crowdworker's presence time is 
greater than the task size (estimated execution time), then 
only it is finally considered for the job assignment. The 
workflow diagram of the whole process is depicted in Fig. 3.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

 

VOLUME XX, 2017 7 

Start

Get the list of 
eligible 

crowdworkers

Predicted availability 
duration   job size 

Select the next 
crowdworker 
from the list

Submit the job

Yes

No

Prepare to 
submit a job

Pick the most 
suitable 

crowdworker

Afore

End
Execute the job and 
return the result to 

the coordinator

Later

 

Fig. 3. Workflow diagram of crowdworker selection based on availability 

IV. CROWDWORKER AVAILABILITY PREDICTION 

A. PROBLEM DEFINITION 

Let Ti be the job size (execution time) of a job Ji and Mi be 
the preferred crowdworker for Ji. At the time of job 
submission (ti), we need to know how long Mi might be 
available after ti; let this be Ma. Ji should be submitted to Mi 

if and only if Eq. 1 is satisfied. 𝑀𝑎 ≥ 𝑇𝑖 + 𝑘        (1) 

Where, k is some constant.  

The details of the 𝑀𝑎 calculation and crowdworker selection 
criteria are discussed in the next subsection. 

B. AVAILABILITY PREDICTION OF AN SMD 

The major components/modules of the crowdworker 
selection procedure are as follows: 

Calculate completion time: The job completion time is an 
approximate higher bound value of the time required for the 
particular job to complete. This function needs two 
parameters, namely, job size (Ti) and time of job submission 
(ti). The completion time (𝑇𝑖𝑐) of the job Ji is defined by Eq. 
2. In this paper, we assume that for each Ji, Ti is the same for 
all crowdworkers.  𝑇𝑖𝑐 = 𝑇𝑖 + 𝑡𝑖      (2) 

Get selected device: As depicted in Fig. 3, the top-ranked 
SMD in the crowdworker's list for the reckoned job would 
be considered. 

Get session history: According to the UID from the 'get 
selected device' module, the history of the SMD is extracted 
from the log. The details of data collection are discussed in 
Section I.A. 

Predict out-time: This module takes the session history of 
the device's previous session durations to predict the 
expected session duration in the current time using CLSTM 
(convolutional LSTM). The current session in-time (𝑆𝑖) is 
added with the forecasted duration (𝑃𝑖) to get the predicted 
out-time (𝑆𝑜) of the device in the current session, as shown 
in Eq. 3. The predicted availability duration (𝑀𝑎) is 
calculated by Eq. 4. 𝑆𝑜 = 𝑆𝑖 + 𝑃𝑖       (3) 𝑀𝑎 = 𝑡𝑖 + 𝑆𝑜       (4) 

So, Eq. 1 can be rewritten as Eq. 5, where 𝑘1is the runtime 
of the prediction algorithm and 𝑘2 is the padding time 
between decision making and job dispatching. 𝑀𝑎 ≥ 𝑇𝑖𝑐 + 𝑘1 + 𝑘2       (5) 

Crowdworker selection: This function checks for the 
availability of the SMD for the specified duration and returns 
a Boolean for selection. The SMD will be selected if Eq. 5 is 
satisfied. 

Fig. 4 depicts the combined workflow of the above-
mentioned modules, whereas Fig. 5 shows the important 
steps followed towards SMD selection. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

 

VOLUME XX, 2017 8 

Start

Predict out-
time

Calculate 
completion 

time

End
Make selection 

decision

Select the  
most suitable 
crowdworker

Get session 
history

Estimate Job 
dispatch time

Calculate 
execution 
duration

Get job 
details

Assess 
resource 

requirement

Search for 
suitable 

crowdworker

 

Fig. 4. Availability prediction process of an SMD in MCC 
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Fig. 5. Important steps for SMD selection 

C. DATA COLLECTION 

For the experimental purpose, we considered a computer 
laboratory scenario in an educational institute. To generate 
the experimental data (i.e., SMD's presence time and 
duration), the digital simulation could have been opted, but 
it might not have the uncertainties that are associated with 
the user presence pattern. Without the uncertainties, the 
simulation may not behave like the real case scenario. 
Introducing uncertainties artificially in the simulation may 
not be feasible as it might break the co-similarities among 
the data points.  

Therefore, we counted on user data traces from a real 
network with respect to a particular Wi-Fi access point 
covering a mid-size hall. We collected user data from the Wi-
Fi access point deployed at the Data Engineering Lab of the 
Department of Computer Science & Engineering at National 
Institute of Technology, Durgapur. The lab is generally 
accessed by the institute's research scholars, the project 
students, faculty members, and the technical staff.  

For every entry, the duration for the SMD that remains in that 
particular Wi-Fi network was logged. This has enabled us to 
collect more data efficiently as well as validating the 
prediction algorithm using real availability data. The overall 

view of the network and programs for data collection is 
shown in Fig. 6. The database schema is shown in Fig. 7. 

Coordinator 
database

Logger

Wi-Fi 
access point

SMD 1 SMD 2 SMD 3 SMD n

. . .

PC 1

LP 2

PC 3 PC 2

LP 1

Only SMDs 
are logged

 

Fig. 6. Data collection and log maintenance of SMDs 

For gathering the data, a logger program was developed 
using Python 3.6 environment. The program script was 
developed as a service, which constantly looked in the 
WLAN for the devices connected to the Wi-Fi access point. 
The complete procedure is as follows: 

1. The Wi-Fi access point at Data Engineering Lab 
was selected.  
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2. The Python script constantly monitored the wireless 
network interfaces. All the devices connected to the 
access point were identified (UID) using their MAC 
addresses. 

3. Logging was skipped for other connected devices 
than SMDs (such as PCs and laptops) by filtering 
the MAC addresses. 

4. The SMDs were logged by the program, identified 
by their MAC address and the session in-time and 
out-time. These three parameters were logged and 
stored in a local MySQL database for further 
analysis.  

Fig. 7. The database schema for SMD availability logging 

D. DATA SELECTION 

We collected user data for about eight months. From the 
complete dataset, we selected data of 150 days, considering 
the data quality after applying the normal distribution over 
the dataset. Out of total days, the maximum concentration of 
the connected devices was on these 150 days (Td). However, 
we also wanted to check the performance of the prediction 
model when the collected data are less. For this, we had a 
dataset of 120 days which is a subset of the 150 days data. 
The model was applied on both these datasets. Opting for 
two datasets with a difference of a month of data would allow 
us to evaluate the applicability of the model in different 
crowdsourcing applications. Further, out of all recorded 
users, we considered 50 users for whom there was high 
presence frequency and less sparsity. 

E. DATA PREPARATION 

Since we used the time-series data as the raw data, they need 
to be converted into a suitable form so that the convolutional 
filters could be applied to extract the features. The steps that 
we performed before sending the data to the LSTM model 
are elaborated in the following subsections. 

1. DATA FRAME CREATION 

To represent the users' mobility, we followed the following 
steps for creating the required data frames, as shown in Fig. 
8. 

• The data frames, each representing one week's data 
of users' mobility, were created. Each frame has two 
channels - channel 1 and channel 2, representing the 
in- and out-time records of the users, respectively.  

• The data frames have UxD dimensions, where U 
(number of users) = 50 and D (number of days) = 7. 

• The total number of frames for in-time and out-time 
is calculated by 2*Td/D. 

• Each cell in channel 1 contains the in-time of the 
user on a particular day. Similarly, the out-time is 
recorded in channel 2. 

• A user might have multiple entries on a single day. 
In that case, we normalized the entries by keeping 
only the entry for the longest duration (for example, 
if U1 entered four times on D1 and the durations are 
of 4, 23, 37, and 57 minutes, only the entry for 57 
minutes is considered). We adopted this approach 
to implement a fair share policy so that one SMD 
would be given a job in only one session. 
Furthermore, a deep learning model works better 
with data that is consistent and has less deviation. 
In the case of MCC, the data may contain session 
information for multiple short and inconsistent 
sessions. To avoid fitting inconsistent data, we 
selected the longest continuous session duration to 
be the final session if the gap between the sessions 
is smaller than a particular threshold time value. 
Algorithm 1 presents the procedure of calculating 
the longest continuous session duration. Here, Sn 

denotes the nth session, IN and OUT represent the 
in- and out-time for the respective session, and λ is 
the threshold criteria for merging two sessions. In 
our experiment, we considered λ = 0.05, i.e., 5% of 
the entire duration. 
 

Algorithm 1: Selecting longest continuous session duration 
Input: Raw session data 
Output: Updated session data 

while (𝑆𝑛+1) 
    if  
       (𝑆𝑛+1𝐼𝑁 − 𝑆𝑛𝑂𝑈𝑇) < {(𝑆𝑛+1𝑂𝑈𝑇 − 𝑆𝑛+1𝐼𝑁 ) + (𝑆𝑛𝑂𝑈𝑇 − 𝑆𝑛𝐼𝑁)} ×  λ 
    then 
        concatenate (𝑆𝑛+1, 𝑆𝑛) 
end while 

 

 

UID

Number

In-time

Date & Time

Out-time

Date & Time
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Fig. 8. A sample frame for in- and out-time 

2. DATA NORMALIZATION 

Each of the cells in the channels contains time values that are 
not appropriate for direct input to the prediction model. For 
this reason, we represented the collected user mobility data 
(time-series data) as image data. Since CNN works on image 
data that have the channel intensity values ranging between 
0-255, we normalized the time values for both the channels 
between 0 and 255. The pixel-wise normalization of the 
time-series data (x) into image intensity (y) is achieved by 
applying a linear equation, as shown in Eq. 6.  

𝑦 = 10.625𝑥      (6) 

A sample of data normalization based on input data is shown 
in Fig. 9. The darker to lighter shade indicates the increasing 
hour of a day, and the black color indicates the unavailability 
of the particular user on that particular day. For example, the 
black color denotes that U1 is absent on Saturday and 
Sunday.

 
Fig. 9. A sample of data normalization based on input data 

F. FEATURE OPTIMIZATION 

To increase the model accuracy and training and inference 
speed, we needed to optimize the feature sets. Feature 
optimization includes extracting new features from the input 
data and removing the unwanted features. Feature 
optimization improves the model's performance and makes 
it more interpretable. The followed steps for feature 
optimization are discussed in this section.  

1. FEATURE EXTRACTION 

Typically, in the time-series datasets, the features (e.g., 
length of time-series, period, mean value, standard deviation 
value, etc.) are not sufficient for prediction modeling and 
cannot be used straightforwardly. The format of the existing 
data features may not be suitable for direct analysis and 
comparison.  

The new features are generated by reformatting, combining, 
and transforming the original features. This makes the data 

suitable for modeling and increases the model's training and 
prediction accuracy. 

a) Issues with Popular Feature Extraction Methods 

There are various methods for feature extraction, which are 
used depending on the type of the data and problem. PCA 
(principal component analysis), GLCM (grey level 
cooccurrence matrix), etc., are the popular feature 
optimization methods for dimension reduction in image data. 
These methods have been proven to work well in time-series 
predictions and image classifications. However, these 
methods are not suitable for the problem addressed in this 
paper because the resource availability prediction in MCC is 
a generalized time-series prediction problem without any 
prior knowledge of the important features.  

Further, PCA requires some hyperparameter tuning to 
generate quality features, which is not trivial. GLCM can 
extract only certain known features and is highly dependent 
on the characteristics of the data. However, our problem 
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demands a dynamic and generalized feature extraction 
methodology that is not affected by the data size and quality.  

b) Need for Convolutional Feature Extraction 

In our dataset, except the in-time and out-time of the users, 
no other information is available. This means there are not 
sufficient features to model the user availability pattern. To 
elaborate further, let us consider the in-time and out-time of 
three randomly chosen users over a period of 30 days, as 
shown in Fig. 10. It can be observed that there is a high 
variance in the in- and out-time patterns for all users. It also 
varies day-wise for each individual user. It implies that even 
if a user's availability seems to follow a pattern, it might not 
hold true throughout the considered period. This 
inconsistency could be either intentional or driven by several 
factors that are not apparently visible from the raw dataset.  

However, these nonobvious features might provide some 
valuable information. But it is impossible to unearth these 
features manually. For this, we need some automated and 
dynamic feature extraction mechanism, which would extract 
the useful features from the dataset. 

We found the convolutional feature extraction method as a 
suitable option for our problem. In many of the dynamic 
feature extraction problems, CNN has popularly been used. 
CNN is a supervised classification model comprised of two 
major segments: a) a convolutional feature extractor and b) 
a SoftMax classifier. In a traditional CNN, feature 
optimization (extraction and selection) is automatic. But 
when using only the convolutional feature extractor, we need 
a separate feature selection model. A convolutional feature 
extractor is known for its capability to generate dynamic and 
new features. Therefore, we transformed our time-series data 
so that convolutional feature extraction can be applied. 

c) The Convolutional Feature Extraction Process 

In this section, we present the details of the convolutional 
feature extraction method designed specifically for the 
problem presented in this paper. The input to the considered 
convolutional feature extraction model is shown in Fig. 11. 
We considered the stride or the window size as 1, i.e., the 
data frame window slides for each day, as shown in Fig. 12. 

A frame represents the number of values considered in a 
single instance of the model. The architecture for 
convolutional feature extraction is shown in Fig. 13. 

To train the model, we needed to feed the data into it. We did 
not have a much larger dataset, which was generated by 
acquiring mobility data for only a few months. Hence, we 
fed the training data into the model serially, adding one day 
at the end of the window and removing one day from the 
front in each iteration.  

The distribution of the frames to train the feature extractor 
model is shown in Fig. 12. In the figure, 𝑥𝑖𝑚 represents the 
input frame for a particular user m, while i is the set of days 
available as prediction input. Here, we considered the value 
of i as 50 (however, the value of i would vary according to 
the total number of available samples). Since we considered 
the mobility data of 50 users, the maximum value of m in this 
problem would be 50, and m would iterate for all the users, 
i.e., 50 times. Here 𝑑𝑛represents the data instance for a 
particular day n. Since we considered two datasets consisting 
of user mobility data for 120 and 150 days, the maximum 
value of n would be either 120 or 150. 

After creating the input frames, we proceeded to the feature 
extraction phase. A novel feature extraction model is 
developed specifically for this work, as presented in Fig. 14. 
This CNN model contains the following five segments: 

• Weekly mobility data: Each week of mobility data 
for all the users in the considered duration is 
represented by one data frame. These frames are the 
input to the feature extraction model. 

• Channels for in-time and out-time: Each frame is 
split into two channels; one for in-time and the other 
for out-time for all the users. The subsequent 
functions were repeated for each channel 
separately. 

• Frame-by-frame training: For training the 
convolutional feature extractor, the frames in a 
group of 50 were arranged in a single block. In the 
next timestep, a single stride of each frame was 
made for further predictions till all the frames were 
considered, as shown in Fig. 12. 

• Model: This is the CNN model for convolutional 
feature extractor without the classifier, as shown in 
Fig. 11. The model is architected using three blocks 
of varied convolutional and max-pooling layers, as 
shown in Fig. 13. We considered a filter of 
dimension 3x3. Block 1 comprises a single 
convolutional layer with a dimension of 50x50 and 
16 filters and a max-pooling layer of dimension 
25x25. Block 2 comprises two convolutional layers 
with a dimension of 23x23 and 21x21, along with 
32 and 64 filters, respectively. It also has a max-
pooling layer of dimension 10x10. In block 3, there 
are two convolutional layers, 8x8 and 6x6, along 
with 32 and 16 filters, respectively. 

• Feature extraction: The extracted features from 
each input data frame were stored in a vector form, 
which was fed into the LSTM prediction model. 
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Fig. 10. The in- and out-times of three sample users over a period of 30 days 
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Fig. 11. Input parameters for the considered CNN model 

 
Fig. 12. Distribution of the frames for training the feature extractor model 

09:36:00

12:00:00

14:24:00

16:48:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
-t

im
e

14:24:00

16:48:00

19:12:00

21:36:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

O
ut

-t
im

e

Days U1 U2 U3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

 

VOLUME XX, 2017 13 

50x50x16

25x25x16

23x23x32

21x21x64

10x10x64

8x8x32

6x6x16
3x3x16

Conv 1 Max-pool 1 Conv 1 Conv 2 Conv 2Max-pool 1 Max-pool 1Conv 1

Block 1 Block 2 Block 3  

Fig. 13. Convolutional feature extraction architecture 
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Fig. 14. Feature extraction for in- and out-time using CNN 

2. FEATURE SELECTION 

Not all the features in the dataset are really useful. Irrelevant 
and redundant features increase the training time, decrease 
the accuracy, and make it complex to interpret. That is why, 
for model construction, it is important to select only those 
features that are essential and can represent all the features. 
Feature selection is used for selecting relevant features from 

the dataset by eliminating the redundant or irrelevant 
features or the features that are strongly correlated in the data 
without losing much information. The primary reasons for 
using feature selection and the popular regression methods 
are mentioned in Fig. 15. The features that contribute most 
to the desired prediction or output are generally retained. 
Even after convolutional feature extraction, the model may 
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contain some features that may cause performance 
degradation due to multi-collinearity. Feature selection not 
only removes multi-collinearity and improves the prediction 

accuracy but also reduces training time, simplifies the model 
for better interpretation, and improves the chances of 
generalization, thus, avoiding overfitting.  

Feature 

selection

What?Methods Purpose

Making the model easier to interpret

Reducing the problem size for efficient 
working with high-dimensional data

Reducing the model training time 
significantly

Increasing the accuracy and 
robustness of the model 

Reducing overfitting

A process that chooses a reduced 
number of explanatory variable to 

describe a response variable.

OLS  
regression

Stepwise model 
selection

Ridge

PLS   
regression

LASSO
 

Fig. 15. Purpose of feature selection and the popular regression methods 

Though there are a few regression methods for feature 
selection, as shown in Fig. 15, we avoided the traditional 
methods such as Ordinary Least Squares (OLS) regression, 
stepwise model selection, and partial least squares (PLS) 
regression, etc., due to their sensitiveness to random errors. 
In the case of multi-collinearity in the input values, Ridge 
and LASSO methods perform effectively. However, we 
preferred LASSO (least absolute shrinkage and selection 
operator) because the major problem with Ridge is that 
though it shrinks the coefficients nearly to zero but not 
exactly to zero. Hence the ridge regression fails to provide 
an unambiguous and easily interpretable sparse model, 
especially when the number of predictors is large [110]. On 
the other hand, LASSO offers a better prediction accuracy 
and model interpretability by eliminating the irrelevant 
variables/coefficients that are not associated with the 
response variable. If there is a high correlation in a set of 
predictors, LASSO picks only one among them while 
shrinking the others exactly to zero. The leftover non-zero 
values are selected to be used as features in the model. This 
method leads to a reduction in variance without increasing 
the bias much. This is especially beneficial when the dataset 
consists of a small number of observations and a large 
number of features. The cost function of LASSO is defined 
by Eq. 7. 𝐽(𝑤) = 12𝑚 ∑ (𝑦𝑖 − (𝑤0 + ∑ 𝑥𝑖𝑗𝑤𝑗𝑋𝑗=1 ))2 + 𝜆 ∑ |𝑤𝑗𝑋𝑗=1𝑚𝑖=1 |   
(7) 

where, m is the total number of training samples or instances 
in the dataset, X is the total number of features, 𝑦𝑖 represents 
the value of target variable for ith training example, 𝑥𝑖𝑗is the 
ith observation for jth feature, 𝑤0 is the intercept term, 𝑤𝑗  
represents the weight of the jth feature, and λ is the tuning 
parameter that controls the feature reduction. The larger λ 
becomes, the more feature coefficients shrink to zero. Also, 
as λ increases, bias increases, and variance decreases. Here, 
the goal is to minimize the error function ∑ (𝑦𝑖 − (𝑤0 +𝑛𝑖=1∑ 𝑥𝑖𝑗𝑤𝑗𝑚𝑗=1 ))2, subject to the regularization term 𝜆 ∑ |𝑤𝑗𝑚𝑗=1 |. 

After applying the convolutional feature extraction, we had 
a total of 46,384 features in our considered user mobility 
dataset. After using LASSO on this feature set, the total 
number of features was reduced to 4,976. 

G. PREDICTION METHOD 

1. BASIC LSTM ARCHITECTURE 

An LSTM cell is a special variant of an RNN cell that can 
handle information of a more extended sequence of 
information, which can help make the prediction more 
accurate for longer sequences. Each cell is capable of barring 
information from flowing through or allowing it to flow 
through without any change. Allowing the information 
without change enables LSTM to remember the information 
from the previous timesteps. Through the LSTM cell 
sequence chain, there are several inputs and outputs which 
allow adding or removing information to the cell 
state. Adding or eliminating information to a cell is done 
through gates. The gates are the neural networks used to 
regulate the information flow through the sequence chain of 
LSTM cells. These gates or the sigmoid layers turn all output 
values in a value between 0 and 1, where 0 indicates nothing 
of the component should pass through, and 1 is for the 
opposite, i.e., everything would be through. The three gates 
that control the cell states of an LSTM are briefed below, and 
a typical LSTM block is shown in Fig. 16. 

Forget gate: This gate gets rid of the information we want 
to remove from the cell state. The forget gate (𝑓𝑡) is defined 
by Eq. 8. 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)     (8) 

where, 𝜎 is the sigmoid gate activation function, 𝑊𝑓 and 𝑈𝑓 
are the weight matrices for mapping the current input layer 
and previous output layer into the forget gate, ℎ𝑡−1 is the 
output from the previous cell, 𝑥𝑡 is the input layer, and 𝑏𝑓 is 
the bias vector for the forget gate calculation. 

Input gate: The input gate (𝑖𝑡) controls how much 
information from the current input layer (𝑥𝑡) pass to the 
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current input cell state (č𝑡). This gate, defined by Eq. 9, gives 
the outputs between 0 and 1 and decides which values to 
update. The candidate values which are to be used to update 
the cell state are calculated by a tanh layer, as shown in Eq. 
10. The input gate combined with the current cell state 
updates the current output cell state (𝑐𝑡), as defined by Eq. 
11. 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)     (9) č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)     (10) 𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × č𝑡      (11) 

where, 𝑊𝑖 and 𝑈𝑖 are the weight matrices for mapping the 
current input layer and previous output layer into the input 
gate, 𝑊𝑐 and 𝑈𝑐 are the weight matrices for mapping the 
current input layer and previous output layer into the current 
input cell state, 𝑏𝑖 and 𝑏𝑐 are the bias vectors for the input 
gate and input cell state calculation, and tanh, a hyperbolic 

tangent function, is the activation function for current input 
cell state. 

Output gate: The output gate (𝑜𝑡) controls the amount of 
information passed from the current cell state to the current 
output cell state. To get the filtered output, the current cell 
state is passed through a sigmoid layer, as shown in Eq. 12, 
which decides what parts of the cell state would be considered 
as output. The final output (ht) is derived, as shown in Eq. 13, 
by multiplying the output of the sigmoid gate, with the output 
cell state that is passed through a tanh layer (for squeezing the 
values between -1 and 1).  𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)     (12) ℎ𝑡 = 𝑜𝑡 × tanh (𝑐𝑡)      (13) 

where, 𝑊𝑜 is the weight matrix for mapping the current input 
layer into the output gate, 𝑏𝑜 is the bias vector for the output 
gate calculation, and 𝑐𝑡−1 is the previous output cell state. 
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Fig. 16. A typical LSTM block 

2. BASIC GRU ARCHITECTURE 

Unlike LSTM, a GRU unit does not have any output gate; 
rather, it has only two gates – a) update gate and b) reset gate. 
The input and forget gates of LSTM are combined into an 
update gate in GRU. A GRU model uses the update gate to 
determine how much of the information from the previous 
blocks are to be forwarded to the next block. The update gate 
(zt) at timestep t is defined by Eq. 14. Here, xt is the input at 
timestep t, and ht-1 is the hidden state that holds the 
information of the previous t-1 units. Wz and Uz are the 
respective weights of xt and ht-1. s is the activation function 
that keeps the value of zt between 0 and 1. The reset gate (rt), 
defined by Eq. 15, decides the amount of past information to 

forget. The current memory content (h't) uses the reset gate 
to keep the relevant information from the past. The current 
block's information is held by the final memory (ht), which 
is thereafter passed to the next block. h't and ht are estimated 
using Eq. 16 and 17, respectively, where ʘ denotes the 
elementwise product. How much information to be retained 
from the current (h't) and previous (ht-1) memory contents is 
determined by the update gate. A typical GRU architecture 
is shown in Fig. 17. 
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𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)     (14) 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)     (15) ℎ𝑡′ = tanh (𝑊𝑥𝑡 + 𝑟𝑡ʘ𝑈ℎ𝑡−1)    (16) ℎ𝑡 = 𝑧𝑡ʘℎ𝑡−1 + (1 − 𝑧𝑡)ʘℎ𝑡′     (17) 
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Fig. 17. A typical GRU block 

3. CONVOLUTIONAL LSTM AND GRU MODELLING 

To model the CLSTM and CGRU (convolutional GRU), we 
used two layers of the LSTM and GRU networks, 
respectively, with an input of frame groups with 50 samples, 
as shown in Fig. 12. 

The layered representation of the CLSTM/CGRU prediction 
model is shown in Fig. 18. The objective of both models is 
to maximize the conditional probability of the convolutional 
features at the current timestep (C) over the input (N), for 
which the prediction is to be made, at the next timestep, as 
given in Eq. 18. This implies that the model optimizes the 
current prediction based on N. The timestep and the input 
frames can be modified during the training phase to check 
for improvements. In our experiment, the number of input 
vectors is quite low; therefore, we proceeded with a single 
stride over the input vectors for each timestep. 𝑝(𝐶|𝑁) =  ∏ 𝑝(x(i+j)j , 𝑁)𝑚𝑗=1      (18) 

where, m is the total number of days, xijis the input frame for 

user j, and i = 50. 

The input to the initial LSTM/GRU cell is the convolutional 
feature vector of the input data at timestep t, while the current 
LSTM/GRU cell output at timestep t is qt, and the hidden 
states are ht. The input to the next LSTM/GRU cell is the 
output of the previous LSTM/GRU cell, which then passes 
into a SoftMax layer for classification, as shown in Eq. 19. 𝑝(𝑥𝑡|(𝑥𝑡+1)) =  𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑊𝑓ℎ𝑡)     (19) 

where, Wf is a learnable parameter, and xt and xt+1 are two 
adjacent input vectors to the model. 

The output hidden states at the current timestep for CLSTM 
and CGRU are generated using Eq. 20 and Eq. 21, 
respectively. ℎ𝑡 =  𝐿𝑆𝑇𝑀 (𝑥𝑡 , 𝑐𝑡−1, ℎ𝑡−1)     (20) ℎ𝑡 =  𝐺𝑅𝑈 (𝑥𝑡 , ℎ𝑡−1)      (21) 
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Fig. 18. Layered representation of the CLSTM prediction model 

4. TRAINING  

Training a model is used for making the model learn the 
trainable parameters and tuning the hyperparameters. The 
objective of the training phase is to decrease the error in the 
training dataset d of size m. The training objective function 
Tt is defined by Eq. 22. 𝑇𝑡 = ∑ − log 𝑝 (𝑝𝑖|𝑎𝑖)𝑚𝑖=1       (22) 

where, pi is predicted output and ai is the actual output. 

H. EXPERIMENT, RESULTS, AND ANALYSIS 

1. EXPERIMENTAL SETUP 

The hardware specifications of the system used in training 
and testing the prediction model is as follows:  

• Operating system: Windows 10 Professional   

• CPU: AMD® Ryzen™ 7-3700X Processor   

• RAM: 32GB DDR4 

• GPU: NVIDIA GeForce® GTX 1080 Ti  

The Windows version of the Python (64-bit) with IPython 
notebook [111] was used to build the models. Several 
important APIs including TensorFlow [112], NumPy 
packages [113], SciPy [114], scikit-learn [115] and 
Matplotlib [116] were used in the experiment. NVIDIA 
CUDA Version 9.1 [117] for Windows environment was 
used to avail GPU (graphics processing unit) computing. 

2. PERFORMANCE MEASUREMENT METRICS 

We assessed the performance of the proposed prediction 
model by calculating the followings metrics:  

• Accuracy: It is the measurement of a prediction 
model's performance based on the total number of 
correct predictions made. Higher accuracy indicates 
better efficacy of the prediction model.  

• Perplexity: It measures how well a probability 
model predicts an output and is often used for 
comparing probabilistic prediction models [118]. 
Although perplexity is popularly used in NLP 
(natural language processing) [119], here, we used 
it to represent the prediction loss for an input 
sample in the current timestep. A lower perplexity 
signifies a better prediction.  

• Mean Absolute Error (MAE): An error, in this 
problem, is defined as the difference between the 
actual out-time and the predicted out-time of each 
SMD. MAE is calculated as the average of the 
prediction errors where all the error values are 
forced to be positive, as given in Eq. 𝑀𝐴𝐸=1𝑚 ∑ |(𝑝𝑖 − 𝑎𝑖𝑚𝑖=1 )|   (23.  𝑀𝐴𝐸 = 1𝑚 ∑ |(𝑝𝑖 − 𝑎𝑖𝑚𝑖=1 )|   (23) 

where, 
Since 

• Root Mean Squared Error (RMSE): It measures the 
root of the average of the errors' squares, as shown 
i
n
 
 
R
E
F
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important error measure for a model's performance 
if the main purpose of the model is prediction. Since 
RMSE tends to exaggerate large errors, it might be 
insightful when comparing different prediction 
methods. Also, it is easier to interpret because the 
RMSE values are in the same units as the samples. 
A lower RMSE value suggests a better prediction, 
while a zero value means no error in prediction. 𝑅𝑀𝑆𝐸 = √ 1𝑚 ∑ (𝑝𝑖 − 𝑎𝑖)2𝑚𝑖=1     (24) 

• R-squared (R2): In comparison to RMSE, which is 
an absolute measure of correct prediction, R-
squared is a relative measure of it. The value of R2 

ranges between 0 to 1, while a higher R2 generally 
suggests a better prediction performance. 𝑅2 = 1 − ∑ (𝑎𝑖−𝑝𝑖)2𝑚𝑖=1∑ (𝑎𝑖− 1𝑚 ∑ 𝑎𝑗)𝑚𝑗=1 2𝑚𝑖=1    (25) 

where, m is the number of samples, pi is predicted 
out-time, and ai is the actual out-time. 

3. TRAINING AND TESTING SPLIT 

To conduct a prediction experiment and evaluate the model 
performance, the complete dataset is generally split into two 
parts as training and testing sets. This ensures that the model 
trains on the known data and is able to perform predictions 
properly for unknown data, which is validated using the test 
set. Though in this problem, the dataset is too small (150 data 
instances for each user) to split into two sub-datasets, we had 
to do it because no other data was available for validating the 
accuracy of the model in case of unfamiliar data. Hence, the 
existing data was split into training and testing sets in the 

ratio of 7:3, as it is found that 70% as the training set can 
sufficiently represent the data patterns. This splitting ratio is 
used throughout the experiment. Further, the sequence of the 
entire data is maintained properly after splitting. 

4. ERROR ESTIMATION OF CLSTM 

In this section, we estimate the prediction error of CLSTM 
while comparing the same with other prediction methods: 
ARIMA, LSTM, GRU, and CGRU. In Section I.D, we 
categorically stated that the traditional statistical prediction 
methods would not work well for this problem. However, to 
prove our claim, in this comparison, we included ARIMA, 
the most popularly time-series prediction method, along with 
other deep learning based prediction methods.  

Fig. 19 shows the error estimation results in terms of MAE, 
RMSE, and R2. The MAE and RMSE errors are calculated 
in minutes, while R2 is presented in percentage. It can be 
observed that for each error estimation, CLSTM produces 
least errors than other methods. It was also observed that not 
only the CLSTM but other models also performed better if 
the size of the training dataset increased. 

It can be further discerned that ARIMA exhibits the worst 
error estimations. This can be due to the fact that ARIMA 
cannot handle datasets with missing values. In this, the 
missing values should be handled by some fillers. 
Furthermore, ARIMA is suitable for short-time prediction 
because due to the absence of memory, the prediction 
window is very limited. That is why it fails in long-term 
prediction.  

Since ARIMA generates a very high degree of prediction 
error which is unacceptable for our problem, we did not 
consider it for further comparative analysis.  

   
(a) (b) (c) 

Fig. 19. Error comparison of CLSTM with ARIMA, GRU, LSTM, and CGRU based predictions: (a) MAE (b) RMSE, and 
(c) R2

5. PREDICTION RESULTS USING CONVENTIONAL 
LSTM 

The training and testing statistics of the LSTM prediction 
model are shown in Fig. 20. The training and testing 
accuracy for 150 days are 45.6 and 44.35, respectively, and 
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for 120 days, 41.9 and 32.89. The accuracy improvements of 
CLSTM over LSTM are 104.9% and 90.03% for 120 and 150 
days, respectively. 

  
(a) (b) 

Fig. 20. Statistics of LSTM for two datasets of (a) Training and (b) Testing 

6. PREDICTION RESULTS USING CONVOLUTIONAL 
LSTM 

To evaluate the proposed CLSTM model's performance, we 
considered evaluating these metrics over 22 epochs because 
the training model's perplexity and accuracy did not improve 
after 22 epochs. The perplexity vs. accuracy graph for 
training and testing is shown in Fig. 21. It is observed that 

for 150 days of data, the achieved training accuracy of the 
model over 22 epochs is 89.97%, and the testing accuracy is 
84.28%, while for 120 days, it is 80.44% and 67.39%, 
respectively. A difference of 5.69% and 13.05% are seen 
between the training and testing models in the two cases, 
which signifies that the model is not overfitting.  

  
(a) (b) 

Fig. 21. Statistics of CLSTM for two datasets of (a) Training and (b) Testing 

7. PREDICTION RESULTS USING CONVENTIONAL GRU 

The training and testing statistics of the GRU prediction 
model are shown in Fig. 22. The training and testing 

accuracy for 150 days are 39.9 and 38.1, respectively, and 
for 120 days, 33.4 and 28.9. The accuracy improvements of 
CLSTM over GRU are 133.18% and 121.2% for 120 and 150 
days, respectively. 
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(a) (b) 

Fig. 22. Statistics of GRU for two datasets of (a) Training and (b) Testing 

8. PREDICTION RESULTS USING CONVOLUTIONAL 
GRU 

The training and testing statistics of the CGRU prediction 
model are shown in Fig. 23. The training and testing 

accuracy for 150 days are 79.7 and 76.8, respectively, and 
for 120 days, 69.8 and 66. The accuracy improvements of 
CLSTM over GRU are 2.11% and 7.48% for 120 and 150 
days, respectively. 

  
(a) (b) 

Fig. 23. Statistics of CGRU for two datasets of (a) Training and (b) Testing 

9. COMPARING CLSTM WITH OTHER METHODS 

The performance of the proposed CLSTM was compared 
with the other three prediction models. Fig. 24 shows the 
accuracy comparison between the proposed CLSTM model 
and the other compared models. It is observed that CLSTM 

has significantly higher accuracy over GRU and LSTM. 
However, there is not much difference between CLSTM and 
CGRU in terms of accuracy. This suggests that when the 
traditional LSTM and GRU are combined with our proposed 
convolutional feature extractor, they perform considerably 
better. This proves the efficacy of the proposed model. 
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(a) (b) (c) 

Fig. 24. Accuracy comparison between (a) GRU and CLSTM (b) LSTM and CLSTM and (c) CGRU and CLSTM 

To compare the model's sensitiveness towards the input data 
size, we checked the model's accuracy by varying set sizes. 
It is observed from Fig. 25 that all the models perform better 
with the larger data size. However, for the traditional LSTM 
and GRU models, the accuracy improvement with larger data 
set is comparatively greater than CLSTM and CGRU. It is 
always desirable to have a higher improvement percentage, 
but the final attained accuracy value also needs to be 

considered. This implies that even if the traditional models 
have the highest improvement percentage, their final attained 
accuracies are too low compared to the convolutional 
models. Furthermore, the accuracy improvement of CLSTM 
is much higher than CGRU, from which we can expect to 
have further higher accuracy for CLSTM with a larger data 
set.  

 

Fig. 25. Improvement percentage of testing accuracy of each model with respect to the number of days of data used 

I. SMD SELECTION  

After the initial ranking, the top-ranked (as per other criteria) 
SMD is forwarded to the prediction model along with its in-
time and the job duration. The minimum required out-time is 
calculated by adding current time and job duration. The 
CLSTM model predicts the out-time against the in-time of 
the SMD and forwards it to the selection module. Now, if the 
predicted out-time is more than the minimum required out-
time, then the selection module selects the SMD. 

J. DISCUSSION 

In this section, we present a brief discussion on two crucial 
aspects of the proposed solution method. 

1. CONCERN OVER SPACE AND TIME COST OF LSTM 

LSTM models provide satisfactory accuracy in predicting or 
forecasting. However, there is a general concern over LSTM 
models is that they usually involve high processing and 
memory costs because of linear layers present in each cell.  

However, nowadays, the space requirement issue is not a big 
deal considering the availability of cheap and compact 
memory. Similarly, the processing requirement can be 
minimized by exploiting the parallel execution capability of 
the modern many-core GPUs, which are powerful enough to 
carry out computing-intensive jobs quickly. 

Furthermore, the complexity of the machine learning model 
mainly contributed to its training process. During the testing, 
when the model is already built, the runtime is minimal. 
Hence, the time requirement of implementing the LSTM-
based availability prediction process would be negligible, 
and the proposed system can be deployed for real-time 
purposes. 
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In our proposed MCC system, the prediction model runs on 
a dedicated MCC coordinator. Moreover, as we considered a 
local MCC environment, the number of SMDs or users is 
limited. Also, the time span of data gathering is not much 
wide. Therefore, the data volume is not exceptionally huge. 
As a result, the hardware requirement would not be too 
extensive. In our experiment, we leveraged the parallel 
processing capability of NVIDIA GPU using CUDA API, 
and it was found quite acceptable. 

However, if the MCC is implemented in an environment 
where such a powerful system is not present, or if the data 
size is hugely voluminous such as in a smart city scenario, 
the cloud services can always be availed. Today's 
commercial cloud services such as AWS, Google, etc., not 
only offer on-demand highly scalable GPU and TPU (tensor 
processing unit) stacks but they are also proffered with viable 
and affordable prices. Therefore, the LSTM model can be 
trained on the cloud, leveraging the powerful heterogeneous 
hardware environments to achieve significant speedups. 

2. CNN FOR TEMPORAL DATA 

It is observed that LSTM performs quite satisfactorily with 
higher accuracy in many forecasting applications while 
combined with CNN. In our experiment also, we observed 
significant performance improvement by using CLSTM 
compared to only LSTM. It is known that LSTM works well 
on temporal data, whereas CNN is designed to exploit the 
spatial correlation in the data and works well on the data 
having spatial features; they are not generally capable in 
efficient handling of complex and long temporal 
dependencies [120]. While in our SMD availability problem, 
the dataset is only temporal in nature. Even then, the CLSTM 
provides much better performance than LSTM. In our 
dataset, there is some inherent inconsistency that cannot be 
reflected using traditional LSTM. So, to avail the advantages 
of CNN, the sequential data is needed to be mapped 
somehow into a spatio-temporal pattern.  

To the best of our knowledge, besides extracting the new 
features using CNN, the technicality behind mapping 
temporal or sequential data to spatio-temporal data for 
prediction performance improvement is still not quite 
obvious. However, from Fig. 10, it is intuitive that 
identifying the shape of the users' in- and out-time patterns 
may significantly improve the performance of the predictive 
model. The obvious reason behind this assumption is that the 
mobility pattern shape can capture the hidden features 
associated with the dataset. If we treat the users' in- and out-
time patterns as an object, then acquiring the object's shape 
would allow us to extract the unknown features, as in the case 
of image analysis.  

V. CONCLUSIONS AND FUTURE SCOPE 

Due to unpredicted user mobility, the uncertainty of the 
availability of the SMDs (smart mobile devices), considered 
as computing resources, is a great challenge in maintaining 
QoS in mobile crowd computing (MCC). There is always a 

high probability that a task is assigned to a crowdworker, but 
it leaves the network without finishing it. In this paper, we 
proposed an SMD availability prediction method and an 
availability-aware crowdworker selection scheme for a local 
MCC where people join the MCC regularly and stay 
connected for varying periods. Before submitting the job to 
a crowdworker, the probability of the considered 
crowdworker being available until the job execution is 
finished is evaluated. If the job execution time is greater than 
the predicted availability duration, an alternative 
crowdworker is considered. This will improve the QoS of 
MCC by minimizing the job reassignment. Utilizing the real 
user mobility traces for a Wi-Fi access point deployed in a 
research lab, a convolutional LSTM based prediction method 
was applied to predict the out-time of the user for each in-
time. The prediction model was implemented on two datasets 
of different volumes. It was able to forecast the availability 
better with an accuracy of 84.28% for the larger dataset, 
which suggests that with an increase in dataset size, the 
performance of the model improves significantly. Also, with 
the increase in the dataset, the error estimation of the model 
gets better. This justifies the correctness of the proposed 
model. The proposed model competes favorably against 
other compared models, viz. ARIMA, LSTM, GRU, and 
convolutional GRU for both datasets. 

However, there is a scope for improvement of this work. 
Since the job completion time of different devices will be 
different, the variance of the completion time over various 
devices could be measured separately to make the model 
more accurate and justified.  

Further, we considered only the longest duration of a user's 
presence time in the network for each day. This somehow 
curbs the effectiveness of the crowdworker selection. It may 
happen that a session duration of a crowdworker is 
sufficiently larger than a job to be assigned, but since this 
session is not this crowdworker's longest session on that day, 
it would not be listed as the probable candidate crowdworker, 
even it fulfills all other criteria adequately. Increasing the 
depth and, hence, dimension of the data frame may allow the 
model to consider all the sessions. 

The prediction may further be enriched by considering the 
difference in the predicted out-time and the job duration to 
get a confidence value that may be used to rank the SMDs 
based on availability in the absence of any prior ranking 
scheme, where the minimum confidence threshold for 
selection criterion will depend on the particular application, 
job execution time, etc. 
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