
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Deep Learning Based Resource Availability
Prediction for Local Mobile Crowd Computing

Pijush Kanti Dutta Pramanik1, Nilanjan Sinhababu2, Kyung-Sup Kwak3, Member, IEEE,
Prasenjit Choudhury1

1Dept. of Computer Science & Engineering, National Institute of Technology, Durgapur, India
2Reliability Engineering Centre, Indian Institute of Technology Kharagpur, India
3Dept. of Information and Communication Engineering, Inha University, South Korea

Corresponding author: Pijush Kanti Dutta Pramanik (pijushjld@yahoo.co.in) and Kyung-Sup Kwak (e-mail: kskwak@inha.ac.kr)

This work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)
under grant NRF-2020R1A2B5B02002478.

ABSTRACT Mobile crowd computing (MCC) that utilizes public-owned (crowd's) smart mobile devices
(SMDs) collectively can give adequate computing power without any additional financial and ecological cost.
However, the major challenge is to cope with the mobility (or availability) issue of SMDs. User's unpredicted
mobility makes the SMDs really unstable resources. Selecting such erratic resources for job schedule would
result in frequent job offloading and, in the worst case, job loss, which would affect the overall performance
and the quality of service of MCC. In a Local MCC, generally, a set of users are available for a certain period
regularly. Based on this information, the chances of a user being available for a certain duration from a given
point of time can be predicted. In this paper, we provide an effective model to predict the availability of the
users (i.e., their SMDs) in such an MCC environment. We argue that before submitting a job to an SMD, the
stability of it is to be assessed for the duration of execution of the job to be assigned. If the predicted
availability time is greater than the job size, then only the job should be assigned to the SMD. An accurate
prediction will minimize the unnecessary job offloading or job loss due to the early departure of the
designated SMD. We propose an advanced convolutional feature extraction mechanism that is applied to
LSTM and GRU-based time-series prediction models for predicting SMD availability. To collect user
mobility data, we considered a research lab scenario, where real mobility traces were recorded with respect
to a Wi-Fi access point. We compared the prediction performances of convolutional LSTM and GRU with
the basic LSTM and GRU and ARIMA in terms of MAE, RMSE, R2, accuracy, and perplexity. In all the
measurements, the proposed convolutional LSTM exhibits considerably better prediction performance.

INDEX TERMS Mobile grid, Mobile computing, Resource selection, Availability prediction, Deep learning,
Convolutional feature extraction, CNN, RNN, LSTM, GRU, ARIMA

I. INTRODUCTION

A. MOBILE CROWD COMPUTING

Modern computationally powerful smart mobile devices
(SMDs) are being considered equivalent to desktops and
laptops [1]. This prospect has been alleviated not only due to
significant improvement in SMD hardware but also the
advancement of battery and quick charging technologies for
SMDs, along with sophisticated energy management
techniques that have emancipated the users from distressing
about hasty energy hemorrhage off their SMDs [2].
Therefore, like desktop grid computing, a collection of
SMDs can provide a satisfactory high-performance
computing (HPC) facility comparable to the traditional HPC

systems like supercomputers, grid computing, and cloud
computing [3]. Instead of investing in their own
infrastructure, organizations can utilize the SMDs available
at their premises, which not only be economical but also
environment-friendly [4] [5]. Since, in this computing
paradigm, public's (or crowd's) devices are utilized, which
can be deemed as a crowd of SMDs (crowdworkers), the
system is called mobile crowd computing (MCC) [6]. MCC
can be utilized not only to cater to the regular computing
needs but also as an edge computing infrastructure for
processing and analyzing the organizational IoT data in real-
time. This would save the time and cost involved in cloud
computing.

B. RESOURCE SELECTION IN MCC

mailto:pijushjld@yahoo.co.in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 2

As the SMDs are heterogeneous in terms of their resources
and their owner's behavior and usage patterns, all of them bid
varied computing capability and for different time periods
and durations. Therefore, to make MCC successful and
effective, it is crucial to select the most appropriate SMD for
a computing job. While choosing an SMD as a crowdworker,
three main criteria are considered:

• Hardware-wise, overall computing capability of the
SMD: Whether the SMD has enough hardware
specification to carry out the task.

• Usability of the computing resource of an SMD:
Even if the SMD has sufficient resources to carry
out the task, most of the time, it may be engaged in
executing the owner's applications. Therefore, the
crowd task would not get enough chances to get
executed in a work-stealing fashion.

• Availability of the SMD: On satisfying the above
two conditions, a task may be assigned to the
SMDs. But most of them go off the network before
completion of the job.

In this paper, we addressed the third criterion. Though the
first two are the most important objectives, they are out of
the scope of this paper. We assume that these two criteria are
already met.

C. THE RESOURCE AVAILABILITY PROBLEM

In other HPC systems, the resources are more or less fixed.
But since MCC is a dynamic environment, the resources
cannot be considered dedicated and accessible anytime and
anywhere. Due to the user's mobility, the resources
(crowdworkers) in a particular network may not be available
continuously over time. However, they might be available
for several discrete periods. Due to this instability, there is
always a high probability that a crowdworker leaves the
network without finishing the assigned job. There are two
possible solutions when a crowdworker departs before
completing the assigned task:

a. The job is restarted from the beginning by another
crowdworker. This delays the task execution as the
whole process is to be started again, including
resource (crowdworker) selection and job
assignment.

b. Savepoints are maintained periodically. When a
crowdworker departs, the task is rollbacked to the
last savepoint and resumed from there by another
crowdworker. This approach might be better than
starting the job from the beginning, but keeping
savepoints is overhead, and also determining the
period length after which the savepoints are noted
is a decision challenge.

In both cases, the quality of service of MCC is compromised,
which ultimately affects the successful realization of MCC.
That is why assessing the availability of the assignee
crowdworker before assigning a task to it is so crucial in
MCC.

D. SOLUTION APPROACHES AND THE PROPOSED

SOLUTION

Before submitting a task to a crowdworker, it is to be assured
that it would not leave until the job is finished. But, for
mobile devices, guaranteeing availability is not
straightforward. One approach, as assumed in [7], is that
every crowdworker should announce their departure time
immediately after entering the MCC network. Based on the
declared departure time, suitable jobs would be assigned so
that they could be finished timely. But it has two issues i) not
very practical and ii) there is no guarantee that the
crowdworker will keep its word that it would not leave
before the declared time. Due to several reasons, a
crowdworker may leave the network unscheduled even if it
is priorly agreed to be there for a specified period.

Another possible option, as suggested in [8], is that if a
crowdworker wants to leave the network, it will notify the
coordinator. This would solve the first issue discussed in
Section 1.3, but not the second completely. The overhead of
job handover remains. Also, some dishonest devices may not
follow the rule and leave abruptly without notifying.

Owing to these drawbacks, we propose an availability-aware
smartphone selection scheme for a local MCC. We predict
the availability of an SMD for a minimum duration of the
task length (execution period), based on which the resource
selection decision can be made. For this, we tracked the in-
time and out-time of the SMDs on the previous occasions
when they were connected to the considered Wi-Fi access
point. Based on this historical mobility/availability
information, the probable availability till a particular
duration of an SMD at any given point of time is assessed.
This problem can be represented as time-series analysis.

Time-series analysis is exercised on the set of observations
where each record is observed at a specific time. Analysis of
these types of data is not like other statistical modeling and
inference due to its apparent correlation in adjoining records
introduced by the sampling time. These features limit the
applicability of many statistical models that assume the
observations are independent and identically distributed. The
Autoregressive Integrated Moving Average (ARMIA) model
has been a widely used linear model for forecasting time-
series data, and it has been a standard for a long time.
ARIMA considers lag value determined by the correlation
among the continuous values, the dependency between an
observation and the residual, and seasonality (if it exists) for
building the model and result in close prediction of the future
[9]. ARIMA models have the advantages of being more
flexible compared to other statistical models and have a
better performance for a longer sequence of data with a
stable correlation between past observations. But ARIMA
model can only capture the linear pattern of the data, but not
the hidden patterns that are stochastic and non-linear in
nature [10] [11]. Furthermore, an ARIMA model assumes a
constant standard deviation in errors, which may not be true
in practice. Like most of the real data, the dataset considered
in this work is also non-linear in nature.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 3

Another statistical model, the Markov chain process, has
been popularly used for time-series prediction, especially
where clarifying the interrelationships of the model is
important [12] [13]. Though they provide significant
accuracy for short-term prediction, they have a probability of
presenting miss prediction for long-term sequences, which is
necessary for crowdworker selection. For instance, it may
happen that a particular user was not available for certain
days in the previous months. Due to the lack of memory in
the Markov model, it will not be able to hold the long-term
historical information; hence it cannot incorporate such
irregularities in the model. This leads to inaccurate
predictions.

In summary, the classical time-series analysis models suffer
from the following limitations:

• They are sensitive towards missing values.
• They require special transformations to convert the

data into a linear form.
• Most of them support only univariate data; they do

not support multiple independent variables to be
taken as inputs.

Furthermore, the traditional prediction models work better
when the data follow a statistical distribution. In our
problem, we wanted to capture the real and consistent
behavior of the user, which required considering a long-term
data relationship. In the user mobility data, there is very little
chance of finding a perfect fit of a distribution, which is a
basic requirement for the traditional prediction tools. To
tackle this, a time-series analysis model is needed that can
make a prediction on the dataset without fitting a known
distribution.

Considering the above-mentioned issues, machine learning
techniques are intensely studied for use in time-series
forecasting. Machine learning models are good to exercise
the non-linear pattern. K-nearest neighbor, decision tree,
support vector machine, etc., can be used to model time-
series data when the observation consists of a non-linear
pattern.

Capturing the data context changes in time-series data is an
important criterion for a prediction model. However,
traditional machine learning based prediction models cannot
capture these changes appropriately. Hence, they are unable
to provide satisfactory prediction accuracy in cases where
the contexts of the considered data change frequently. In the
user mobility data considered in this work, we are required
to identify the users' behavior for a longer period. To provide
expected prediction results, the prediction models need to
capture these changes appropriately.

Deep learning based model like RNNs (recurrent neural
networks) are capable of retaining long-term contextual
information due to the presence of a specialized memory and
use looping constraint that helps to capture the sequential
information in the data. Deep learning models also have the

inherent capability of searching relations in the dataset
without prior knowledge of any distribution.

Generally, RNNs are used for time-series data prediction.
But traditional RNNs suffer from vanishing gradient
problems when the input length is too high [14]. So, to
overcome the issue of the vanishing gradient problem,
upgradations of RNNs like LSTM [15] [16] and GRU [17]
[18] were developed. Both methods have been popularly
used for sequence modeling and time-series predictions [19].
However, there are some issues with GRUs compared to
LSTM, such as the GRUs cannot regulate the amount of
memory content that is to be forwarded to the next unit, as
they do not store cell state. Whereas LSTMs are capable of
regulating the amount of information that is to be forwarded
to the next unit. We tested our model with both LSTM and
GRU to compare the effectiveness of these methods for this
particular problem.

However, a prediction model is not sufficient to attain a
handsome or the expected prediction accuracy since these
models work on the available input features without any
feature extraction. For that, it is required to apply a proper
feature extraction mechanism to the dataset. The feature
extraction is a crucial aspect of designing a prediction model
because it captures the most relevant features from the data,
which generally improves the model performance.

The existing and known feature extraction methods, in most
cases, can extract the exact features required for a particular
prediction problem. But they may be incompetent when we
do not have a clear idea of the most dominant features.
Therefore, we needed to frame a feature extraction
methodology that dynamically extracts features for solving
the proposed resource availability prediction problem.

Recently, CNNs (convolutional neural networks), the idea of
which was first presented by Fukushima in 1980 [20] and
later improved by LeCun et al. [21] [22], have become
popular for extracting dynamic features for prediction-based
models. A CNN is a special kind of neural network for
processing 2-D image data [23] [24] [25]. CNNs are very
effective in extracting and learning features not only from
one-dimensional sequential data, such as univariate time-
series data, but also from multivariate time-series data [26]
[27].

Owing to their distinct architecture, the LSTM layers in the
LSTM models can capture the sequence pattern information
quite efficiently. As the LSTM networks are designed to deal
with temporal correlations, they utilize only the features
provided with the training set [28]. The convolutional layers
of CNNs can extract more valuable features by filtering out
the noise prevailing in the raw input data [29]. They are also
capable of scooping the hidden features that otherwise could
not be pulled out by using LSTM. This is the core motivation
to exercise a convolutional feature extraction layer in
addition to the basic LSTM for our presented availability
prediction problem, so that we could exploit the benefits of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 4

both techniques to achieve a better prediction performance.
The combination of CNN and LSTM is useful for learning
features of not only short-term time variation but also long-
term dependency periodicity [30].

Considering this, we proposed a specialized convolutional
feature extraction method to enhance the performance of the
LSTM and GRU models.

E. CONTRIBUTION OF THIS PAPER

To achieve our goal, we go along the following tasks:

a. We designed a logging model for recording the in-
time and out-time of SMDs in consideration with
respect to a Wi-Fi access point.

b. We proposed a novel dynamic feature extraction
process suitable for the datasets where the features
are unknown.

c. We designed a novel method for representing time-
series data into a vector to perform the
convolutional feature extraction.

d. The proposed convolutional feature extraction is
combined with both LSTM and GRU for
prediction.

e. The prediction performances are compared with
each other as well as with the basic LSTM and
GRU, and also with ARIMA.

F. IMPLICATION OF THIS WORK

The presented approach is most useful for a local MCC
environment where the SMD owners visit and join the MCC
network on a regular basis. In such a scenario, the main
objective of this paper is to improve the QoS and reliability
of the MCC by minimizing the handoff or job offloading and
reassignment. The success of this approach will depend on
the accuracy of the availability prediction of the considered
SMDs.

G. ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section 2
discusses the related research works. The MCC system
model and the hypotheses considered for this work are
presented in Section 3. A crowdworker selection method
based on availability is also presented in this section. Section
4 covers the data collection, simulation, and result analysis
for the availability prediction experiment. The paper is
concluded in Section 5.

II. RELATED WORK

In this section, we report the closely related work to that of
presented in this paper. The papers are grouped into similar
problems and similar solution methods.

A. RESOURCE AVAILABILITY PREDICTION IN MOBILE

GRID/CLOUD COMPUTING

Considering the hardware improvements of modern mobile
devices, many have suggested utilizing their computing
capabilities in different forms [31] [32] [33]. Lately,
computation on mobile devices has attracted researchers'
attention, especially to form mobile ad hoc cloud computing
[34] [35] [36] [37]. But despite increasing research interest
on mobile cloud computing, we could not find much work
on predicting the stability of mobile devices in this particular
scenario. Following are some initiatives that closely or
remotely match that of our proposed work.

Brevik et al. [38] aimed at enabling the grid job scheduler to
make on-the-fly decisions by providing live availability
predictions. To predict the availability duration of a resource,
they used the Weibull method (parametric model fitting
technique) along with Resample and Binomial methods
(non-parametric techniques). The authors attempted to
estimate a specific quantile for the availability distribution
and the confidence for each estimation. Andrzejak et al. [39]
attempted to predict the availability of the grid resources
within a time interval [T, T+p], where p is the prediction
interval length with values [1,2]. For this, they used the
Naive Bayes and Decision trees based predictive models.
They also aimed to identify the resource predictability
indicators and the factors that incite prediction error. But
these works do not cover the availability prediction of mobile
devices in a non-dedicated mobile grid environment.

Vaithiya and Bhanu [40] proposed a task scheduling
algorithm for the mobile grid, predicting the dynamic
availability of mobile resources. Selvi et al. [41] dealt with
the issue of node mobility in an ad-hoc mobile grid by
profiling the regular movements of a user over time. But
none of these considers the historical characteristics of the
devices, which may hinder in achieving the optimal effects
in SMD selection.

In FemtoClouds, a mobile device cloud control system,
presented by Habak et al. [8], the presence time prediction
of mobile devices is incorporated. In this work, it is assumed
that the controller has knowledge of the exact departure time
of each device for each session. But, in practice, some
dishonest users may depart before the declared departure
time, while some may be forced to cut off from the network
due to some genuine reasons such as battery used up. To
counter this problem, Zhou et al. [7] suggested considering
the historical characteristics of the devices to evaluate the
record of honoring their departure promise. They proposed a
mobile device selection method, considering the status and
stability of the devices. However, both of these works
assume that the SMDs declare the departure time voluntarily,
which may not be practical.

Sipos and Ekler [42] estimated the availability of mobile
devices in a P2P storage system. They predicted the actual
availability based on the nodes' self-declared availability or
unavailability for the subsequent considered time period.
Different classifiers were used to check the accuracy of the
prediction model in the simulated mobility scenario.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 5

Pramanik et al. [43], based on the device mobility patterns in
a P2P mobile cloud, estimated the relative stability of a group
of SMD users over a period with respect to each other.

Haryanti and Sari [44] predicted the mobility of a group of
resource-providing nodes with respect to a resource-seeking
node. The purpose was very much similar to ours (presented
in this paper) that the task from the requesting node should
be given only to those resource-providing nodes which are
supposed to be in contact with the requesting node until the
task is completed. Farooq and Khalil [45] also proposed a
method to predict a time duration for which a resource
requesting node would remain within reach of the resource
requesting node in a mobile grid. Based on the predicted
time, the task assignment decision is taken. The prediction is
based on the previous record of the time duration of their
contact, whereas the contact is calculated by the distance
between them based on their locations, assessed by their GPS
coordinates.

Nevertheless, in spite best of our effort, we could not find
any significant work that endeavors to predict the periodical
availability of the public-owned SMDs in a non-dedicated
and dynamic MCC environment.

B. DEEP LEARNING FOR RESOURCE MANAGEMENT

AND PREDICTION

Considering the potential, deep learning has been applied in
various domains and applications for different purposes [46]
[47] [48] [49] [50] [51] [52] [53] [54] [55] [56]. Specifically,
in time-series forecasting, LSTM [57] [58] [59] and GRU
[60] [61] [62] are widely used.

Many researchers exploited the convolutional aspect of CNN
in combination with LSTM to improve the performance of
time-series prediction/forecasting in various applications,
such as for inventory prediction [30], stock price prediction
[63] [64] [65] [66], gold price forecasting [28], Bitcoin price
forecasting [67], tourist flow forecasting [68], sentiment
prediction of social media users [69], household power
consumption prediction [70] [27], photovoltaic power
prediction [71], wind power forecasting [72], PM2.5

prediction [73] [74], predicting NOx emission in processing
of heavy oil [75], forecasting natural gas price and movement
[29], urban expansion prediction [76], predicting waterworks
operations at a water purification plant [77], predicting sea
surface temperature [78], typhoon formation forecasting
[79], crop yield prediction [80], COVID-19 detection and
predictions [81] [82] [83], human age estimation [84], and so
on.

Deep learning based techniques are being used for efficient
resource management and prediction in cloud [85] [86] [87]
[88] [89] [90], edge computing [91] [92] [93] and other
wireless distributed systems [94] [95] [96] [97] [98].

The inherent capability of capturing short-term as well as
long-term instances has led LSTM [99] [100] [101], CNN
[102], and convolutional LSTM [103] [104] to be popularly
used in mobility predictions. In his master's thesis [105],
Pamuluri compared different deep learning methods,
including LSTM, CNN-LSTM, GRU, to predict users'
mobility with respect to a mobile base station. Cui et al.
[106] used LSTM to predict the availability of mobile edge
computing-enabled base stations depending on the vehicle's
mobility for offloading the computation jobs from the
vehicle to the base station. Li et al. [107] used LSTM to track
user mobility for efficient dynamic resource allocation
across different network slices in a 5G network.

In our recent work [108], addressing the same problem as in
this paper, we applied ConvLSTM on the user mobility
dataset. The ConvLSTM module is a predefined
implementation provided by Keras Python API [109]. The
model exhibited an average accuracy of 78.43%. Further, a
sampling phase was introduced to eliminate the overfitting
and underfitting problems. However, here, we just used the
readily available ConvLSTM model that is specially meant
for 2D spatial data and requires advanced transformations to
work with time-series data. The limitation of the model is
that it does not have the required flexibility. The only
available tuning option for the model was the selection of the
hyper-parameters and the transformation technique. This
opens up the scope for exploring other options which are
more generalized and flexible, which would lead to better
model performance.

III. SYSTEM MODEL AND HYPOTHESIS

A typical MCC system comprises three major entities a)
coordinator, b) computing resources (crowdworkers), and c)
the communication media between the two. The coordinator
is responsible for managing the complete system by
performing task farming, execution time estimation,
crowdworker discovery, assessing crowdworker's resource
usefulness, availability prediction, resource reallocation,
result collection, etc. The crowdworkers execute the
assigned tasks and return the results to the coordinator.
SMDs and the coordinator communicate with each other via
a Wi-Fi access point. A typical MCC setup is shown in Fig.
1.

An SMD user needs to install the MCC client application on
his SMD if he is willing to share his device's resources, i.e.,
agrees to be a crowdworker in an MCC setup. The MCC
coordinator would automatically be informed whenever a
crowdworker enters its network (the access point to which
the coordinator is connected). In some cases, certain SMDs
may join MCC several times a day. The coordinator keeps
the record of each SMDs that joins the MCC.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 6

Crowdworkers

Other SMDs (but not crowdworkers)
connected to the same access point

Wi-Fi access point

MCC coordinator

Fig. 1. A typical MCC setup

In this paper, we have considered an indoor environment
(campus) where most users (with their SMDs) are often
available for a certain duration. For example, in a classroom
and a workplace, the students and the workers are regularly
available for a specific duration in regular intervals. If they
take public transport for commuting to reach their institute
and workplaces, in most probability, they would be available
for the duration from boarding point to the destination.
Similarly, some people spend a certain amount of time in the
library regularly while some go to the same coffee shop or
canteen regularly. In all these cases, the availability of the

users can be predicted by analyzing their presence history.

The accuracy of the availability prediction depends on the
campus type. For example, in a classroom or a typical office,
the availability is somewhat predetermined. Whereas the
predictability in a coffee shop (where customers come
regularly) varies as per its location and the services it offers.
Likewise, in public transport (regularly used by a group of
commuters), the availability is very much fixed (usually one
drops at his stop regularly). The crowdworker predictability
gradient based on the availability is shown in Fig. 2.

Public transport (for
regular passengers)

Library (for regular
readers)

ClassroomCoffee shop (for
regular customers)

Office

Increasing possible availability of a set of SMDs for a known and predictable duration

Fig. 2. Predictability gradient of crowdworker's availability in a local MCC

To model the working of a local MCC, we have assumed the
following:

• We consider a general task execution model where
the SMDs receive some compute-intensive tasks
either individually or in batches.

• Each task has its own computation requirements,
input and output data size, and finite execution time.
We assume that these parameters are known.

• Each crowdworker avails a fixed and equal
bandwidth.

• Each crowdworker completes the assigned subtask
within a finite time and sends back the results
before leaving the MCC network.

• A crowdworker would share its resources until it is
present in the network.

• All SMDs, which have the MCC client installed, are
considered as crowdworker and willing to share
their resources, either on a profit or non-profit basis.

• The SMDs in MCC are uniquely identified by the
UIDs.

To model our proposed availability prediction, we further
assume the followings:

• In need of job submission, the coordinator looks for
the most appropriate crowdworker(s).

• The MCC coordinator already has a list of suitable
crowdworkers (based on the criteria mentioned in
Section I.B).

• The coordinator decides to pick the top-ranked
crowdworker(s) from the list.

• Just before submitting the job to the selected
crowdworker, the coordinator wants to be sure of
the probability of the crowdworker being available
until the job is finished.

This paper addresses the last point, i.e., before the job is
actually be submitted, the stability of the selected
crowdworker is to be assessed for the duration of execution
of the assigned job. If the crowdworker's presence time is
greater than the task size (estimated execution time), then
only it is finally considered for the job assignment. The
workflow diagram of the whole process is depicted in Fig. 3.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 7

Start

Get the list of
eligible

crowdworkers

Predicted availability
duration job size

Select the next
crowdworker
from the list

Submit the job

Yes

No

Prepare to
submit a job

Pick the most
suitable

crowdworker

Afore

End
Execute the job and
return the result to

the coordinator

Later

Fig. 3. Workflow diagram of crowdworker selection based on availability

IV. CROWDWORKER AVAILABILITY PREDICTION

A. PROBLEM DEFINITION

Let Ti be the job size (execution time) of a job Ji and Mi be
the preferred crowdworker for Ji. At the time of job
submission (ti), we need to know how long Mi might be
available after ti; let this be Ma. Ji should be submitted to Mi

if and only if Eq. 1 is satisfied. 𝑀𝑎 ≥ 𝑇𝑖 + 𝑘 (1)

Where, k is some constant.

The details of the 𝑀𝑎 calculation and crowdworker selection
criteria are discussed in the next subsection.

B. AVAILABILITY PREDICTION OF AN SMD

The major components/modules of the crowdworker
selection procedure are as follows:

Calculate completion time: The job completion time is an
approximate higher bound value of the time required for the
particular job to complete. This function needs two
parameters, namely, job size (Ti) and time of job submission
(ti). The completion time (𝑇𝑖𝑐) of the job Ji is defined by Eq.
2. In this paper, we assume that for each Ji, Ti is the same for
all crowdworkers. 𝑇𝑖𝑐 = 𝑇𝑖 + 𝑡𝑖 (2)

Get selected device: As depicted in Fig. 3, the top-ranked
SMD in the crowdworker's list for the reckoned job would
be considered.

Get session history: According to the UID from the 'get
selected device' module, the history of the SMD is extracted
from the log. The details of data collection are discussed in
Section I.A.

Predict out-time: This module takes the session history of
the device's previous session durations to predict the
expected session duration in the current time using CLSTM
(convolutional LSTM). The current session in-time (𝑆𝑖) is
added with the forecasted duration (𝑃𝑖) to get the predicted
out-time (𝑆𝑜) of the device in the current session, as shown
in Eq. 3. The predicted availability duration (𝑀𝑎) is
calculated by Eq. 4. 𝑆𝑜 = 𝑆𝑖 + 𝑃𝑖 (3) 𝑀𝑎 = 𝑡𝑖 + 𝑆𝑜 (4)

So, Eq. 1 can be rewritten as Eq. 5, where 𝑘1is the runtime
of the prediction algorithm and 𝑘2 is the padding time
between decision making and job dispatching. 𝑀𝑎 ≥ 𝑇𝑖𝑐 + 𝑘1 + 𝑘2 (5)

Crowdworker selection: This function checks for the
availability of the SMD for the specified duration and returns
a Boolean for selection. The SMD will be selected if Eq. 5 is
satisfied.

Fig. 4 depicts the combined workflow of the above-
mentioned modules, whereas Fig. 5 shows the important
steps followed towards SMD selection.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 8

Start

Predict out-
time

Calculate
completion

time

End
Make selection

decision

Select the
most suitable
crowdworker

Get session
history

Estimate Job
dispatch time

Calculate
execution
duration

Get job
details

Assess
resource

requirement

Search for
suitable

crowdworker

Fig. 4. Availability prediction process of an SMD in MCC

Start

Prediction

Feature
optimisation

Data
normalisation

End

User mobility
(time-series)

data

Create
dataframe

SMD selection
Apply LSTM

Apply LASSO
feature selection

Convolutional
feature extraction

Fig. 5. Important steps for SMD selection

C. DATA COLLECTION

For the experimental purpose, we considered a computer
laboratory scenario in an educational institute. To generate
the experimental data (i.e., SMD's presence time and
duration), the digital simulation could have been opted, but
it might not have the uncertainties that are associated with
the user presence pattern. Without the uncertainties, the
simulation may not behave like the real case scenario.
Introducing uncertainties artificially in the simulation may
not be feasible as it might break the co-similarities among
the data points.

Therefore, we counted on user data traces from a real
network with respect to a particular Wi-Fi access point
covering a mid-size hall. We collected user data from the Wi-
Fi access point deployed at the Data Engineering Lab of the
Department of Computer Science & Engineering at National
Institute of Technology, Durgapur. The lab is generally
accessed by the institute's research scholars, the project
students, faculty members, and the technical staff.

For every entry, the duration for the SMD that remains in that
particular Wi-Fi network was logged. This has enabled us to
collect more data efficiently as well as validating the
prediction algorithm using real availability data. The overall

view of the network and programs for data collection is
shown in Fig. 6. The database schema is shown in Fig. 7.

Coordinator
database

Logger

Wi-Fi
access point

SMD 1 SMD 2 SMD 3 SMD n

. . .

PC 1

LP 2

PC 3 PC 2

LP 1

Only SMDs
are logged

Fig. 6. Data collection and log maintenance of SMDs

For gathering the data, a logger program was developed
using Python 3.6 environment. The program script was
developed as a service, which constantly looked in the
WLAN for the devices connected to the Wi-Fi access point.
The complete procedure is as follows:

1. The Wi-Fi access point at Data Engineering Lab
was selected.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 9

2. The Python script constantly monitored the wireless
network interfaces. All the devices connected to the
access point were identified (UID) using their MAC
addresses.

3. Logging was skipped for other connected devices
than SMDs (such as PCs and laptops) by filtering
the MAC addresses.

4. The SMDs were logged by the program, identified
by their MAC address and the session in-time and
out-time. These three parameters were logged and
stored in a local MySQL database for further
analysis.

Fig. 7. The database schema for SMD availability logging

D. DATA SELECTION

We collected user data for about eight months. From the
complete dataset, we selected data of 150 days, considering
the data quality after applying the normal distribution over
the dataset. Out of total days, the maximum concentration of
the connected devices was on these 150 days (Td). However,
we also wanted to check the performance of the prediction
model when the collected data are less. For this, we had a
dataset of 120 days which is a subset of the 150 days data.
The model was applied on both these datasets. Opting for
two datasets with a difference of a month of data would allow
us to evaluate the applicability of the model in different
crowdsourcing applications. Further, out of all recorded
users, we considered 50 users for whom there was high
presence frequency and less sparsity.

E. DATA PREPARATION

Since we used the time-series data as the raw data, they need
to be converted into a suitable form so that the convolutional
filters could be applied to extract the features. The steps that
we performed before sending the data to the LSTM model
are elaborated in the following subsections.

1. DATA FRAME CREATION

To represent the users' mobility, we followed the following
steps for creating the required data frames, as shown in Fig.
8.

• The data frames, each representing one week's data
of users' mobility, were created. Each frame has two
channels - channel 1 and channel 2, representing the
in- and out-time records of the users, respectively.

• The data frames have UxD dimensions, where U
(number of users) = 50 and D (number of days) = 7.

• The total number of frames for in-time and out-time
is calculated by 2*Td/D.

• Each cell in channel 1 contains the in-time of the
user on a particular day. Similarly, the out-time is
recorded in channel 2.

• A user might have multiple entries on a single day.
In that case, we normalized the entries by keeping
only the entry for the longest duration (for example,
if U1 entered four times on D1 and the durations are
of 4, 23, 37, and 57 minutes, only the entry for 57
minutes is considered). We adopted this approach
to implement a fair share policy so that one SMD
would be given a job in only one session.
Furthermore, a deep learning model works better
with data that is consistent and has less deviation.
In the case of MCC, the data may contain session
information for multiple short and inconsistent
sessions. To avoid fitting inconsistent data, we
selected the longest continuous session duration to
be the final session if the gap between the sessions
is smaller than a particular threshold time value.
Algorithm 1 presents the procedure of calculating
the longest continuous session duration. Here, Sn

denotes the nth session, IN and OUT represent the
in- and out-time for the respective session, and λ is
the threshold criteria for merging two sessions. In
our experiment, we considered λ = 0.05, i.e., 5% of
the entire duration.

Algorithm 1: Selecting longest continuous session duration
Input: Raw session data
Output: Updated session data

while (𝑆𝑛+1)
 if
 (𝑆𝑛+1𝐼𝑁 − 𝑆𝑛𝑂𝑈𝑇) < {(𝑆𝑛+1𝑂𝑈𝑇 − 𝑆𝑛+1𝐼𝑁) + (𝑆𝑛𝑂𝑈𝑇 − 𝑆𝑛𝐼𝑁)} × λ
 then
 concatenate (𝑆𝑛+1, 𝑆𝑛)
end while

UID

Number

In-time

Date & Time

Out-time

Date & Time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 10

Fig. 8. A sample frame for in- and out-time

2. DATA NORMALIZATION

Each of the cells in the channels contains time values that are
not appropriate for direct input to the prediction model. For
this reason, we represented the collected user mobility data
(time-series data) as image data. Since CNN works on image
data that have the channel intensity values ranging between
0-255, we normalized the time values for both the channels
between 0 and 255. The pixel-wise normalization of the
time-series data (x) into image intensity (y) is achieved by
applying a linear equation, as shown in Eq. 6.

𝑦 = 10.625𝑥 (6)

A sample of data normalization based on input data is shown
in Fig. 9. The darker to lighter shade indicates the increasing
hour of a day, and the black color indicates the unavailability
of the particular user on that particular day. For example, the
black color denotes that U1 is absent on Saturday and
Sunday.

Fig. 9. A sample of data normalization based on input data

F. FEATURE OPTIMIZATION

To increase the model accuracy and training and inference
speed, we needed to optimize the feature sets. Feature
optimization includes extracting new features from the input
data and removing the unwanted features. Feature
optimization improves the model's performance and makes
it more interpretable. The followed steps for feature
optimization are discussed in this section.

1. FEATURE EXTRACTION

Typically, in the time-series datasets, the features (e.g.,
length of time-series, period, mean value, standard deviation
value, etc.) are not sufficient for prediction modeling and
cannot be used straightforwardly. The format of the existing
data features may not be suitable for direct analysis and
comparison.

The new features are generated by reformatting, combining,
and transforming the original features. This makes the data

suitable for modeling and increases the model's training and
prediction accuracy.

a) Issues with Popular Feature Extraction Methods

There are various methods for feature extraction, which are
used depending on the type of the data and problem. PCA
(principal component analysis), GLCM (grey level
cooccurrence matrix), etc., are the popular feature
optimization methods for dimension reduction in image data.
These methods have been proven to work well in time-series
predictions and image classifications. However, these
methods are not suitable for the problem addressed in this
paper because the resource availability prediction in MCC is
a generalized time-series prediction problem without any
prior knowledge of the important features.

Further, PCA requires some hyperparameter tuning to
generate quality features, which is not trivial. GLCM can
extract only certain known features and is highly dependent
on the characteristics of the data. However, our problem

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 11

demands a dynamic and generalized feature extraction
methodology that is not affected by the data size and quality.

b) Need for Convolutional Feature Extraction

In our dataset, except the in-time and out-time of the users,
no other information is available. This means there are not
sufficient features to model the user availability pattern. To
elaborate further, let us consider the in-time and out-time of
three randomly chosen users over a period of 30 days, as
shown in Fig. 10. It can be observed that there is a high
variance in the in- and out-time patterns for all users. It also
varies day-wise for each individual user. It implies that even
if a user's availability seems to follow a pattern, it might not
hold true throughout the considered period. This
inconsistency could be either intentional or driven by several
factors that are not apparently visible from the raw dataset.

However, these nonobvious features might provide some
valuable information. But it is impossible to unearth these
features manually. For this, we need some automated and
dynamic feature extraction mechanism, which would extract
the useful features from the dataset.

We found the convolutional feature extraction method as a
suitable option for our problem. In many of the dynamic
feature extraction problems, CNN has popularly been used.
CNN is a supervised classification model comprised of two
major segments: a) a convolutional feature extractor and b)
a SoftMax classifier. In a traditional CNN, feature
optimization (extraction and selection) is automatic. But
when using only the convolutional feature extractor, we need
a separate feature selection model. A convolutional feature
extractor is known for its capability to generate dynamic and
new features. Therefore, we transformed our time-series data
so that convolutional feature extraction can be applied.

c) The Convolutional Feature Extraction Process

In this section, we present the details of the convolutional
feature extraction method designed specifically for the
problem presented in this paper. The input to the considered
convolutional feature extraction model is shown in Fig. 11.
We considered the stride or the window size as 1, i.e., the
data frame window slides for each day, as shown in Fig. 12.

A frame represents the number of values considered in a
single instance of the model. The architecture for
convolutional feature extraction is shown in Fig. 13.

To train the model, we needed to feed the data into it. We did
not have a much larger dataset, which was generated by
acquiring mobility data for only a few months. Hence, we
fed the training data into the model serially, adding one day
at the end of the window and removing one day from the
front in each iteration.

The distribution of the frames to train the feature extractor
model is shown in Fig. 12. In the figure, 𝑥𝑖𝑚 represents the
input frame for a particular user m, while i is the set of days
available as prediction input. Here, we considered the value
of i as 50 (however, the value of i would vary according to
the total number of available samples). Since we considered
the mobility data of 50 users, the maximum value of m in this
problem would be 50, and m would iterate for all the users,
i.e., 50 times. Here 𝑑𝑛represents the data instance for a
particular day n. Since we considered two datasets consisting
of user mobility data for 120 and 150 days, the maximum
value of n would be either 120 or 150.

After creating the input frames, we proceeded to the feature
extraction phase. A novel feature extraction model is
developed specifically for this work, as presented in Fig. 14.
This CNN model contains the following five segments:

• Weekly mobility data: Each week of mobility data
for all the users in the considered duration is
represented by one data frame. These frames are the
input to the feature extraction model.

• Channels for in-time and out-time: Each frame is
split into two channels; one for in-time and the other
for out-time for all the users. The subsequent
functions were repeated for each channel
separately.

• Frame-by-frame training: For training the
convolutional feature extractor, the frames in a
group of 50 were arranged in a single block. In the
next timestep, a single stride of each frame was
made for further predictions till all the frames were
considered, as shown in Fig. 12.

• Model: This is the CNN model for convolutional
feature extractor without the classifier, as shown in
Fig. 11. The model is architected using three blocks
of varied convolutional and max-pooling layers, as
shown in Fig. 13. We considered a filter of
dimension 3x3. Block 1 comprises a single
convolutional layer with a dimension of 50x50 and
16 filters and a max-pooling layer of dimension
25x25. Block 2 comprises two convolutional layers
with a dimension of 23x23 and 21x21, along with
32 and 64 filters, respectively. It also has a max-
pooling layer of dimension 10x10. In block 3, there
are two convolutional layers, 8x8 and 6x6, along
with 32 and 16 filters, respectively.

• Feature extraction: The extracted features from
each input data frame were stored in a vector form,
which was fed into the LSTM prediction model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 12

Fig. 10. The in- and out-times of three sample users over a period of 30 days

Frames ChannelsSamples Rows Columns

 Sample
input

7n 2 mx n

Total no.
of users

Total no.
of weeks

In
time

Out
time

No. of
days

x: window
size

1 1
Input

description

Fig. 11. Input parameters for the considered CNN model

Fig. 12. Distribution of the frames for training the feature extractor model

09:36:00

12:00:00

14:24:00

16:48:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
-t

im
e

14:24:00

16:48:00

19:12:00

21:36:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

O
ut

-t
im

e

Days U1 U2 U3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 13

50x50x16

25x25x16

23x23x32

21x21x64

10x10x64

8x8x32

6x6x16
3x3x16

Conv 1 Max-pool 1 Conv 1 Conv 2 Conv 2Max-pool 1 Max-pool 1Conv 1

Block 1 Block 2 Block 3

Fig. 13. Convolutional feature extraction architecture

C12C11 C13 ...
C22C21 C23 ...

 CNN CNN

Frame 2

C1 C2

Frame 3

C1 C2

Frame 1

C1 C2

Frame-
by-frame
training

Model

Feature
extraction

Extracted
features

for in-time

Extracted
features for

out-time

Weekly
mobility
data

Channels
for in-
time and
out-time

C1p C2p

Fig. 14. Feature extraction for in- and out-time using CNN

2. FEATURE SELECTION

Not all the features in the dataset are really useful. Irrelevant
and redundant features increase the training time, decrease
the accuracy, and make it complex to interpret. That is why,
for model construction, it is important to select only those
features that are essential and can represent all the features.
Feature selection is used for selecting relevant features from

the dataset by eliminating the redundant or irrelevant
features or the features that are strongly correlated in the data
without losing much information. The primary reasons for
using feature selection and the popular regression methods
are mentioned in Fig. 15. The features that contribute most
to the desired prediction or output are generally retained.
Even after convolutional feature extraction, the model may

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 14

contain some features that may cause performance
degradation due to multi-collinearity. Feature selection not
only removes multi-collinearity and improves the prediction

accuracy but also reduces training time, simplifies the model
for better interpretation, and improves the chances of
generalization, thus, avoiding overfitting.

Feature

selection

What?Methods Purpose

Making the model easier to interpret

Reducing the problem size for efficient
working with high-dimensional data

Reducing the model training time
significantly

Increasing the accuracy and
robustness of the model

Reducing overfitting

A process that chooses a reduced
number of explanatory variable to

describe a response variable.

OLS
regression

Stepwise model
selection

Ridge

PLS
regression

LASSO

Fig. 15. Purpose of feature selection and the popular regression methods

Though there are a few regression methods for feature
selection, as shown in Fig. 15, we avoided the traditional
methods such as Ordinary Least Squares (OLS) regression,
stepwise model selection, and partial least squares (PLS)
regression, etc., due to their sensitiveness to random errors.
In the case of multi-collinearity in the input values, Ridge
and LASSO methods perform effectively. However, we
preferred LASSO (least absolute shrinkage and selection
operator) because the major problem with Ridge is that
though it shrinks the coefficients nearly to zero but not
exactly to zero. Hence the ridge regression fails to provide
an unambiguous and easily interpretable sparse model,
especially when the number of predictors is large [110]. On
the other hand, LASSO offers a better prediction accuracy
and model interpretability by eliminating the irrelevant
variables/coefficients that are not associated with the
response variable. If there is a high correlation in a set of
predictors, LASSO picks only one among them while
shrinking the others exactly to zero. The leftover non-zero
values are selected to be used as features in the model. This
method leads to a reduction in variance without increasing
the bias much. This is especially beneficial when the dataset
consists of a small number of observations and a large
number of features. The cost function of LASSO is defined
by Eq. 7. 𝐽(𝑤) = 12𝑚 ∑ (𝑦𝑖 − (𝑤0 + ∑ 𝑥𝑖𝑗𝑤𝑗𝑋𝑗=1))2 + 𝜆 ∑ |𝑤𝑗𝑋𝑗=1𝑚𝑖=1 |
(7)

where, m is the total number of training samples or instances
in the dataset, X is the total number of features, 𝑦𝑖 represents
the value of target variable for ith training example, 𝑥𝑖𝑗is the
ith observation for jth feature, 𝑤0 is the intercept term, 𝑤𝑗
represents the weight of the jth feature, and λ is the tuning
parameter that controls the feature reduction. The larger λ
becomes, the more feature coefficients shrink to zero. Also,
as λ increases, bias increases, and variance decreases. Here,
the goal is to minimize the error function ∑ (𝑦𝑖 − (𝑤0 +𝑛𝑖=1∑ 𝑥𝑖𝑗𝑤𝑗𝑚𝑗=1))2, subject to the regularization term 𝜆 ∑ |𝑤𝑗𝑚𝑗=1 |.

After applying the convolutional feature extraction, we had
a total of 46,384 features in our considered user mobility
dataset. After using LASSO on this feature set, the total
number of features was reduced to 4,976.

G. PREDICTION METHOD

1. BASIC LSTM ARCHITECTURE

An LSTM cell is a special variant of an RNN cell that can
handle information of a more extended sequence of
information, which can help make the prediction more
accurate for longer sequences. Each cell is capable of barring
information from flowing through or allowing it to flow
through without any change. Allowing the information
without change enables LSTM to remember the information
from the previous timesteps. Through the LSTM cell
sequence chain, there are several inputs and outputs which
allow adding or removing information to the cell
state. Adding or eliminating information to a cell is done
through gates. The gates are the neural networks used to
regulate the information flow through the sequence chain of
LSTM cells. These gates or the sigmoid layers turn all output
values in a value between 0 and 1, where 0 indicates nothing
of the component should pass through, and 1 is for the
opposite, i.e., everything would be through. The three gates
that control the cell states of an LSTM are briefed below, and
a typical LSTM block is shown in Fig. 16.

Forget gate: This gate gets rid of the information we want
to remove from the cell state. The forget gate (𝑓𝑡) is defined
by Eq. 8. 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (8)

where, 𝜎 is the sigmoid gate activation function, 𝑊𝑓 and 𝑈𝑓
are the weight matrices for mapping the current input layer
and previous output layer into the forget gate, ℎ𝑡−1 is the
output from the previous cell, 𝑥𝑡 is the input layer, and 𝑏𝑓 is
the bias vector for the forget gate calculation.

Input gate: The input gate (𝑖𝑡) controls how much
information from the current input layer (𝑥𝑡) pass to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 15

current input cell state (č𝑡). This gate, defined by Eq. 9, gives
the outputs between 0 and 1 and decides which values to
update. The candidate values which are to be used to update
the cell state are calculated by a tanh layer, as shown in Eq.
10. The input gate combined with the current cell state
updates the current output cell state (𝑐𝑡), as defined by Eq.
11. 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (9) č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (10) 𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × č𝑡 (11)

where, 𝑊𝑖 and 𝑈𝑖 are the weight matrices for mapping the
current input layer and previous output layer into the input
gate, 𝑊𝑐 and 𝑈𝑐 are the weight matrices for mapping the
current input layer and previous output layer into the current
input cell state, 𝑏𝑖 and 𝑏𝑐 are the bias vectors for the input
gate and input cell state calculation, and tanh, a hyperbolic

tangent function, is the activation function for current input
cell state.

Output gate: The output gate (𝑜𝑡) controls the amount of
information passed from the current cell state to the current
output cell state. To get the filtered output, the current cell
state is passed through a sigmoid layer, as shown in Eq. 12,
which decides what parts of the cell state would be considered
as output. The final output (ht) is derived, as shown in Eq. 13,
by multiplying the output of the sigmoid gate, with the output
cell state that is passed through a tanh layer (for squeezing the
values between -1 and 1). 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (12) ℎ𝑡 = 𝑜𝑡 × tanh (𝑐𝑡) (13)

where, 𝑊𝑜 is the weight matrix for mapping the current input
layer into the output gate, 𝑏𝑜 is the bias vector for the output
gate calculation, and 𝑐𝑡−1 is the previous output cell state.

Input

xt Input vector

ct-1
Memory from
previous block

ht-1
Output of
previous block

Output

ct
Memory from
current block

ht
Output of
current block

Nonlinearities

Sigmoids

tanh
Hyperbolic
tangent

Vector operations

Element-wise
multiplication

Element-wise
summation

0 Bias

Copy

Legends

ct+1

ht+1ht-2

ct-2

ht+1ht-1

xt-1 xt+1

ht-1

ht

ht

ct ct-1

xt

0 1 2 3

Forget
gate

Input gate Output gate

tanhs s

tanh

s

ft
it'

it" ot

Fig. 16. A typical LSTM block

2. BASIC GRU ARCHITECTURE

Unlike LSTM, a GRU unit does not have any output gate;
rather, it has only two gates – a) update gate and b) reset gate.
The input and forget gates of LSTM are combined into an
update gate in GRU. A GRU model uses the update gate to
determine how much of the information from the previous
blocks are to be forwarded to the next block. The update gate
(zt) at timestep t is defined by Eq. 14. Here, xt is the input at
timestep t, and ht-1 is the hidden state that holds the
information of the previous t-1 units. Wz and Uz are the
respective weights of xt and ht-1. s is the activation function
that keeps the value of zt between 0 and 1. The reset gate (rt),
defined by Eq. 15, decides the amount of past information to

forget. The current memory content (h't) uses the reset gate
to keep the relevant information from the past. The current
block's information is held by the final memory (ht), which
is thereafter passed to the next block. h't and ht are estimated
using Eq. 16 and 17, respectively, where ʘ denotes the
elementwise product. How much information to be retained
from the current (h't) and previous (ht-1) memory contents is
determined by the update gate. A typical GRU architecture
is shown in Fig. 17.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 16

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (14) 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (15) ℎ𝑡′ = tanh (𝑊𝑥𝑡 + 𝑟𝑡ʘ𝑈ℎ𝑡−1) (16) ℎ𝑡 = 𝑧𝑡ʘℎ𝑡−1 + (1 − 𝑧𝑡)ʘℎ𝑡′ (17)

ht-1

yt

ht

xt

tanhs s
rt

h tzt

Ur

Wz

Uz

Wr

U

W

-1
xt Input vector

ht-1
Information of
previous block

Element-wise
multiplication

Element-wise
summation

Legends

Memory from
current blockht

Output of
current blockyt

Update gates

tanh
Hyperbolic
tangent

s Reset gate

Fig. 17. A typical GRU block

3. CONVOLUTIONAL LSTM AND GRU MODELLING

To model the CLSTM and CGRU (convolutional GRU), we
used two layers of the LSTM and GRU networks,
respectively, with an input of frame groups with 50 samples,
as shown in Fig. 12.

The layered representation of the CLSTM/CGRU prediction
model is shown in Fig. 18. The objective of both models is
to maximize the conditional probability of the convolutional
features at the current timestep (C) over the input (N), for
which the prediction is to be made, at the next timestep, as
given in Eq. 18. This implies that the model optimizes the
current prediction based on N. The timestep and the input
frames can be modified during the training phase to check
for improvements. In our experiment, the number of input
vectors is quite low; therefore, we proceeded with a single
stride over the input vectors for each timestep. 𝑝(𝐶|𝑁) = ∏ 𝑝(x(i+j)j , 𝑁)𝑚𝑗=1 (18)

where, m is the total number of days, xijis the input frame for

user j, and i = 50.

The input to the initial LSTM/GRU cell is the convolutional
feature vector of the input data at timestep t, while the current
LSTM/GRU cell output at timestep t is qt, and the hidden
states are ht. The input to the next LSTM/GRU cell is the
output of the previous LSTM/GRU cell, which then passes
into a SoftMax layer for classification, as shown in Eq. 19. 𝑝(𝑥𝑡|(𝑥𝑡+1)) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑊𝑓ℎ𝑡) (19)

where, Wf is a learnable parameter, and xt and xt+1 are two
adjacent input vectors to the model.

The output hidden states at the current timestep for CLSTM
and CGRU are generated using Eq. 20 and Eq. 21,
respectively. ℎ𝑡 = 𝐿𝑆𝑇𝑀 (𝑥𝑡 , 𝑐𝑡−1, ℎ𝑡−1) (20) ℎ𝑡 = 𝐺𝑅𝑈 (𝑥𝑡 , ℎ𝑡−1) (21)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 17

X1 X2 X3 X50

LSTM LSTM LSTM LSTM

Prediction X51

Input
features

Model

Output

LSTM LSTM LSTM LSTM

Layer
1

Layer
2

...

...

...

Convolutional feature extractor

Input data

Normalisation

Feature
optimisation

Pixel-wise data transformer

Time-series data

Fig. 18. Layered representation of the CLSTM prediction model

4. TRAINING

Training a model is used for making the model learn the
trainable parameters and tuning the hyperparameters. The
objective of the training phase is to decrease the error in the
training dataset d of size m. The training objective function
Tt is defined by Eq. 22. 𝑇𝑡 = ∑ − log 𝑝 (𝑝𝑖|𝑎𝑖)𝑚𝑖=1 (22)

where, pi is predicted output and ai is the actual output.

H. EXPERIMENT, RESULTS, AND ANALYSIS

1. EXPERIMENTAL SETUP

The hardware specifications of the system used in training
and testing the prediction model is as follows:

• Operating system: Windows 10 Professional

• CPU: AMD® Ryzen™ 7-3700X Processor

• RAM: 32GB DDR4

• GPU: NVIDIA GeForce® GTX 1080 Ti

The Windows version of the Python (64-bit) with IPython
notebook [111] was used to build the models. Several
important APIs including TensorFlow [112], NumPy
packages [113], SciPy [114], scikit-learn [115] and
Matplotlib [116] were used in the experiment. NVIDIA
CUDA Version 9.1 [117] for Windows environment was
used to avail GPU (graphics processing unit) computing.

2. PERFORMANCE MEASUREMENT METRICS

We assessed the performance of the proposed prediction
model by calculating the followings metrics:

• Accuracy: It is the measurement of a prediction
model's performance based on the total number of
correct predictions made. Higher accuracy indicates
better efficacy of the prediction model.

• Perplexity: It measures how well a probability
model predicts an output and is often used for
comparing probabilistic prediction models [118].
Although perplexity is popularly used in NLP
(natural language processing) [119], here, we used
it to represent the prediction loss for an input
sample in the current timestep. A lower perplexity
signifies a better prediction.

• Mean Absolute Error (MAE): An error, in this
problem, is defined as the difference between the
actual out-time and the predicted out-time of each
SMD. MAE is calculated as the average of the
prediction errors where all the error values are
forced to be positive, as given in Eq. 𝑀𝐴𝐸=1𝑚 ∑ |(𝑝𝑖 − 𝑎𝑖𝑚𝑖=1)| (23. 𝑀𝐴𝐸 = 1𝑚 ∑ |(𝑝𝑖 − 𝑎𝑖𝑚𝑖=1)| (23)

where,
Since

• Root Mean Squared Error (RMSE): It measures the
root of the average of the errors' squares, as shown
i
n

R
E
F

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 18

important error measure for a model's performance
if the main purpose of the model is prediction. Since
RMSE tends to exaggerate large errors, it might be
insightful when comparing different prediction
methods. Also, it is easier to interpret because the
RMSE values are in the same units as the samples.
A lower RMSE value suggests a better prediction,
while a zero value means no error in prediction. 𝑅𝑀𝑆𝐸 = √ 1𝑚 ∑ (𝑝𝑖 − 𝑎𝑖)2𝑚𝑖=1 (24)

• R-squared (R2): In comparison to RMSE, which is
an absolute measure of correct prediction, R-
squared is a relative measure of it. The value of R2

ranges between 0 to 1, while a higher R2 generally
suggests a better prediction performance. 𝑅2 = 1 − ∑ (𝑎𝑖−𝑝𝑖)2𝑚𝑖=1∑ (𝑎𝑖− 1𝑚 ∑ 𝑎𝑗)𝑚𝑗=1 2𝑚𝑖=1 (25)

where, m is the number of samples, pi is predicted
out-time, and ai is the actual out-time.

3. TRAINING AND TESTING SPLIT

To conduct a prediction experiment and evaluate the model
performance, the complete dataset is generally split into two
parts as training and testing sets. This ensures that the model
trains on the known data and is able to perform predictions
properly for unknown data, which is validated using the test
set. Though in this problem, the dataset is too small (150 data
instances for each user) to split into two sub-datasets, we had
to do it because no other data was available for validating the
accuracy of the model in case of unfamiliar data. Hence, the
existing data was split into training and testing sets in the

ratio of 7:3, as it is found that 70% as the training set can
sufficiently represent the data patterns. This splitting ratio is
used throughout the experiment. Further, the sequence of the
entire data is maintained properly after splitting.

4. ERROR ESTIMATION OF CLSTM

In this section, we estimate the prediction error of CLSTM
while comparing the same with other prediction methods:
ARIMA, LSTM, GRU, and CGRU. In Section I.D, we
categorically stated that the traditional statistical prediction
methods would not work well for this problem. However, to
prove our claim, in this comparison, we included ARIMA,
the most popularly time-series prediction method, along with
other deep learning based prediction methods.

Fig. 19 shows the error estimation results in terms of MAE,
RMSE, and R2. The MAE and RMSE errors are calculated
in minutes, while R2 is presented in percentage. It can be
observed that for each error estimation, CLSTM produces
least errors than other methods. It was also observed that not
only the CLSTM but other models also performed better if
the size of the training dataset increased.

It can be further discerned that ARIMA exhibits the worst
error estimations. This can be due to the fact that ARIMA
cannot handle datasets with missing values. In this, the
missing values should be handled by some fillers.
Furthermore, ARIMA is suitable for short-time prediction
because due to the absence of memory, the prediction
window is very limited. That is why it fails in long-term
prediction.

Since ARIMA generates a very high degree of prediction
error which is unacceptable for our problem, we did not
consider it for further comparative analysis.

(a) (b) (c)

Fig. 19. Error comparison of CLSTM with ARIMA, GRU, LSTM, and CGRU based predictions: (a) MAE (b) RMSE, and
(c) R2

5. PREDICTION RESULTS USING CONVENTIONAL
LSTM

The training and testing statistics of the LSTM prediction
model are shown in Fig. 20. The training and testing
accuracy for 150 days are 45.6 and 44.35, respectively, and

2
2

5
.4

1

2
0

5
.3

9

2
8

.7
2

2
4

.9
8

2
1

.6

1
9

.6
1

1
6

.7
4

1
2

.8
4

1
3

.1
5

8
.1

6

0

50

100

150

200

250

120 days 150 days

E
rr

o
r

in
 m

in
u

te
s

ARIMA GRU LSTM CGRU CLSTM

2
7

3
.1

5

2
4

9
.2

9

8
7

.7
2

3
9

.7
66
5

.7
9

3
6

.3
7

4
3

.8
6

2
2

.0
9

2
1

.9
3

8
.8

3

0

50

100

150

200

250

300

120 days 150 days

E
rr

o
r

in
 m

in
u

te
s

ARIMA GRU LSTM CGRU CLSTM

0
.3

1

0
.3

4

0
.4

8 0
.5

4

0
.5

3 0
.5

8

0
.6

9 0
.7

5

0
.8

5

0
.8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

120 days 150 days

ARIMA GRU LSTM CGRU CLSTM

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 19

for 120 days, 41.9 and 32.89. The accuracy improvements of
CLSTM over LSTM are 104.9% and 90.03% for 120 and 150
days, respectively.

(a) (b)

Fig. 20. Statistics of LSTM for two datasets of (a) Training and (b) Testing

6. PREDICTION RESULTS USING CONVOLUTIONAL
LSTM

To evaluate the proposed CLSTM model's performance, we
considered evaluating these metrics over 22 epochs because
the training model's perplexity and accuracy did not improve
after 22 epochs. The perplexity vs. accuracy graph for
training and testing is shown in Fig. 21. It is observed that

for 150 days of data, the achieved training accuracy of the
model over 22 epochs is 89.97%, and the testing accuracy is
84.28%, while for 120 days, it is 80.44% and 67.39%,
respectively. A difference of 5.69% and 13.05% are seen
between the training and testing models in the two cases,
which signifies that the model is not overfitting.

(a) (b)

Fig. 21. Statistics of CLSTM for two datasets of (a) Training and (b) Testing

7. PREDICTION RESULTS USING CONVENTIONAL GRU

The training and testing statistics of the GRU prediction
model are shown in Fig. 22. The training and testing

accuracy for 150 days are 39.9 and 38.1, respectively, and
for 120 days, 33.4 and 28.9. The accuracy improvements of
CLSTM over GRU are 133.18% and 121.2% for 120 and 150
days, respectively.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14T
ra

in
in

g
P

er
pl

ex
it

y
an

d
A

cc
ur

ac
y

Epochs
Perplexity (150 days) Accuracy (150 days)
Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
es

ti
ng

 P
er

pl
ex

it
y

an
d

A
cc

ur
ac

y

Epochs

Perplexity (150 days) Accuracy (150 days)
Perplexity (120 days) Accuracy (120 days)

0

25

50

75

100

125

1 4 7 10 13 16 19 22T
ra

in
in

g
P

er
pl

ex
it

y
an

d
A

cc
ur

ac
y

Epochs

Perplexity (150 days) Accuracy (150 days)
Perplexity (120 days) Accuracy (120 days)

0

25

50

75

100

125

1 4 7 10 13 16 19 22

T
es

ti
ng

 P
er

pl
ex

it
y

an
d

A
cc

ur
ac

y

Epochs

Perplexity (150 days) Accuracy (150 days)
Perplexity (120 days) Accuracy (120 days)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 20

(a) (b)

Fig. 22. Statistics of GRU for two datasets of (a) Training and (b) Testing

8. PREDICTION RESULTS USING CONVOLUTIONAL
GRU

The training and testing statistics of the CGRU prediction
model are shown in Fig. 23. The training and testing

accuracy for 150 days are 79.7 and 76.8, respectively, and
for 120 days, 69.8 and 66. The accuracy improvements of
CLSTM over GRU are 2.11% and 7.48% for 120 and 150
days, respectively.

(a) (b)

Fig. 23. Statistics of CGRU for two datasets of (a) Training and (b) Testing

9. COMPARING CLSTM WITH OTHER METHODS

The performance of the proposed CLSTM was compared
with the other three prediction models. Fig. 24 shows the
accuracy comparison between the proposed CLSTM model
and the other compared models. It is observed that CLSTM

has significantly higher accuracy over GRU and LSTM.
However, there is not much difference between CLSTM and
CGRU in terms of accuracy. This suggests that when the
traditional LSTM and GRU are combined with our proposed
convolutional feature extractor, they perform considerably
better. This proves the efficacy of the proposed model.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

T
ra

in
in

g
 P

e
rp

le
x

it
y

 a
n

d
 A

cc
u

ra
cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12T
e

st
in

g
 P

e
rp

le
x

it
y

 a
n

d
 A

cc
u

ra
cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

120

0 5 10 15 20

T
ra

in
in

g
 P

e
rp

le
x

it
y

 a
n

d
 A

cc
u

ra
cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

120

0 5 10 15 20

T
e

st
in

g
 P

e
rp

le
x

it
y

 a
n

d
 A

cc
u

ra
cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 21

(a) (b) (c)

Fig. 24. Accuracy comparison between (a) GRU and CLSTM (b) LSTM and CLSTM and (c) CGRU and CLSTM

To compare the model's sensitiveness towards the input data
size, we checked the model's accuracy by varying set sizes.
It is observed from Fig. 25 that all the models perform better
with the larger data size. However, for the traditional LSTM
and GRU models, the accuracy improvement with larger data
set is comparatively greater than CLSTM and CGRU. It is
always desirable to have a higher improvement percentage,
but the final attained accuracy value also needs to be

considered. This implies that even if the traditional models
have the highest improvement percentage, their final attained
accuracies are too low compared to the convolutional
models. Furthermore, the accuracy improvement of CLSTM
is much higher than CGRU, from which we can expect to
have further higher accuracy for CLSTM with a larger data
set.

Fig. 25. Improvement percentage of testing accuracy of each model with respect to the number of days of data used

I. SMD SELECTION

After the initial ranking, the top-ranked (as per other criteria)
SMD is forwarded to the prediction model along with its in-
time and the job duration. The minimum required out-time is
calculated by adding current time and job duration. The
CLSTM model predicts the out-time against the in-time of
the SMD and forwards it to the selection module. Now, if the
predicted out-time is more than the minimum required out-
time, then the selection module selects the SMD.

J. DISCUSSION

In this section, we present a brief discussion on two crucial
aspects of the proposed solution method.

1. CONCERN OVER SPACE AND TIME COST OF LSTM

LSTM models provide satisfactory accuracy in predicting or
forecasting. However, there is a general concern over LSTM
models is that they usually involve high processing and
memory costs because of linear layers present in each cell.

However, nowadays, the space requirement issue is not a big
deal considering the availability of cheap and compact
memory. Similarly, the processing requirement can be
minimized by exploiting the parallel execution capability of
the modern many-core GPUs, which are powerful enough to
carry out computing-intensive jobs quickly.

Furthermore, the complexity of the machine learning model
mainly contributed to its training process. During the testing,
when the model is already built, the runtime is minimal.
Hence, the time requirement of implementing the LSTM-
based availability prediction process would be negligible,
and the proposed system can be deployed for real-time
purposes.

120 days 150 days

2
8

.9

3
8

.1

6
7

.3
9

8
4

.2
8

1
3

3
.1

8

1
2

1
.2

GRU CLSTM Improvement %

120 days 150 days

3
2

.8
9

4
4

.3
5

6
7

.3
9

8
4

.2
8

1
0

4
.9

9
0

.0
3

LSTM CLSTM Improvement %

120 days 150 days

6
6 7

6
.8

6
7

.3
9 8
4

.2
8

2
.1

1

7
.4

8

CGRU CLSTM Improvement %

0

20

40

60

80

GRU LSTM CGRU CLSTM

28.9 32.89

66 67.3938.1 44.35

76.8 84.28

31.83 34.84

16.36
25.06

120 days

150 days

Improvement %

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 22

In our proposed MCC system, the prediction model runs on
a dedicated MCC coordinator. Moreover, as we considered a
local MCC environment, the number of SMDs or users is
limited. Also, the time span of data gathering is not much
wide. Therefore, the data volume is not exceptionally huge.
As a result, the hardware requirement would not be too
extensive. In our experiment, we leveraged the parallel
processing capability of NVIDIA GPU using CUDA API,
and it was found quite acceptable.

However, if the MCC is implemented in an environment
where such a powerful system is not present, or if the data
size is hugely voluminous such as in a smart city scenario,
the cloud services can always be availed. Today's
commercial cloud services such as AWS, Google, etc., not
only offer on-demand highly scalable GPU and TPU (tensor
processing unit) stacks but they are also proffered with viable
and affordable prices. Therefore, the LSTM model can be
trained on the cloud, leveraging the powerful heterogeneous
hardware environments to achieve significant speedups.

2. CNN FOR TEMPORAL DATA

It is observed that LSTM performs quite satisfactorily with
higher accuracy in many forecasting applications while
combined with CNN. In our experiment also, we observed
significant performance improvement by using CLSTM
compared to only LSTM. It is known that LSTM works well
on temporal data, whereas CNN is designed to exploit the
spatial correlation in the data and works well on the data
having spatial features; they are not generally capable in
efficient handling of complex and long temporal
dependencies [120]. While in our SMD availability problem,
the dataset is only temporal in nature. Even then, the CLSTM
provides much better performance than LSTM. In our
dataset, there is some inherent inconsistency that cannot be
reflected using traditional LSTM. So, to avail the advantages
of CNN, the sequential data is needed to be mapped
somehow into a spatio-temporal pattern.

To the best of our knowledge, besides extracting the new
features using CNN, the technicality behind mapping
temporal or sequential data to spatio-temporal data for
prediction performance improvement is still not quite
obvious. However, from Fig. 10, it is intuitive that
identifying the shape of the users' in- and out-time patterns
may significantly improve the performance of the predictive
model. The obvious reason behind this assumption is that the
mobility pattern shape can capture the hidden features
associated with the dataset. If we treat the users' in- and out-
time patterns as an object, then acquiring the object's shape
would allow us to extract the unknown features, as in the case
of image analysis.

V. CONCLUSIONS AND FUTURE SCOPE

Due to unpredicted user mobility, the uncertainty of the
availability of the SMDs (smart mobile devices), considered
as computing resources, is a great challenge in maintaining
QoS in mobile crowd computing (MCC). There is always a

high probability that a task is assigned to a crowdworker, but
it leaves the network without finishing it. In this paper, we
proposed an SMD availability prediction method and an
availability-aware crowdworker selection scheme for a local
MCC where people join the MCC regularly and stay
connected for varying periods. Before submitting the job to
a crowdworker, the probability of the considered
crowdworker being available until the job execution is
finished is evaluated. If the job execution time is greater than
the predicted availability duration, an alternative
crowdworker is considered. This will improve the QoS of
MCC by minimizing the job reassignment. Utilizing the real
user mobility traces for a Wi-Fi access point deployed in a
research lab, a convolutional LSTM based prediction method
was applied to predict the out-time of the user for each in-
time. The prediction model was implemented on two datasets
of different volumes. It was able to forecast the availability
better with an accuracy of 84.28% for the larger dataset,
which suggests that with an increase in dataset size, the
performance of the model improves significantly. Also, with
the increase in the dataset, the error estimation of the model
gets better. This justifies the correctness of the proposed
model. The proposed model competes favorably against
other compared models, viz. ARIMA, LSTM, GRU, and
convolutional GRU for both datasets.

However, there is a scope for improvement of this work.
Since the job completion time of different devices will be
different, the variance of the completion time over various
devices could be measured separately to make the model
more accurate and justified.

Further, we considered only the longest duration of a user's
presence time in the network for each day. This somehow
curbs the effectiveness of the crowdworker selection. It may
happen that a session duration of a crowdworker is
sufficiently larger than a job to be assigned, but since this
session is not this crowdworker's longest session on that day,
it would not be listed as the probable candidate crowdworker,
even it fulfills all other criteria adequately. Increasing the
depth and, hence, dimension of the data frame may allow the
model to consider all the sessions.

The prediction may further be enriched by considering the
difference in the predicted out-time and the job duration to
get a confidence value that may be used to rank the SMDs
based on availability in the absence of any prior ranking
scheme, where the minimum confidence threshold for
selection criterion will depend on the particular application,
job execution time, etc.

ACKNOWLEDGMENTS

We would like to sincerely thank Dr. Gautam
Bandyopadhyay, Associate Professor, Dept. of Management
Studies, National Institute of Technology Durgapur, India,
for his valuable comments and suggestions to improve the
manuscript. We also thankfully acknowledge the help of
Mrs. Tumpa Banerjee, Assistant Professor, Dept. of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 23

Computer Applications, Siliguri Institute of Technology,
Siliguri, India, in modeling and calculating the prediction
error of ARIMA.

REFERENCES

[1] H. Tamimi, N. AlMazrooei, S. Hoshang and F. Abu-Amara,
“Factors Influencing Individuals to Switch from Personal
Computers to Smartphones,” in 5th HCT Information Technology

Trends (ITT), Dubai, UAE, 2018.

[2] P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban,
A. Maity, B. K. Upadhyaya, J. B. Holm-Nielsen and P.
Choudhury, “Power Consumption Analysis, Measurement,
Management, and Issues: A State-of-the-art Review on
Smartphone Battery and Energy Usage,” IEEE Access, vol. 7, no.
1, pp. 182113-182172, 2019.

[3] P. K. D. Pramanik, P. Choudhury and A. Saha, “Economical
Supercomputing thru Smartphone Crowd Computing: An
Assessment of Opportunities, Benefits, Deterrents, and
Applications from India’s Perspective,” in 4th International

Conference on Advanced Computing and Communication Systems

(ICACCS), Coimbatore, India, 2017.

[4] P. K. D. Pramanik, S. Pal and P. Choudhury, “Smartphone Crowd
Computing: A Rational Solution towards Minimising the
Environmental Externalities of the Growing Computing
Demands,” in Emerging Trends in Disruptive Technology

Management, R. Das, M. Banerjee and S. De, Eds., New York,
Chapman and Hall/CRC, 2019, pp. 45-80.

[5] P. K. D. Pramanik, S. Pal and P. Choudhury, “Green and
Sustainable High-Performance Computing with Smartphone
Crowd Computing: Benefits, Enablers, and Challenges,” Scalable

Computing: Practice and Experience, vol. 20, no. 2, pp. 259-283,
2019.

[6] P. K. D. Pramanik, S. Pal, G. Pareek, S. Dutta and P. Choudhury,
“Crowd Computing: The Computing Revolution,” in
Crowdsourcing and Knowledge Management in Contemporary

Business Environments, R. Lenart-Gansiniec, Ed., IGI Global,
2018, pp. 166-198.

[7] A. Zhou, S. Wang, J. Li, Q. Sun and F. Yang, “Optimal mobile
device selection for mobile cloud service providing,” Journal of

Supercomputer, vol. 72, no. 8, pp. 3222-3235, 2016.

[8] K. Habak, M. Ammar, K. A. Harras and E. Zegura, “Femto
Clouds: Leveraging Mobile Devices to Provide Cloud Service at
the Edge,” in IEEE 8th International Conference on Cloud

Computing, New York, USA, 2015.

[9] B. Zhu and Y. Wei, “Carbon price forecasting with a novel hybrid
ARIMA and least squares support vector machines methodology,”
Omega, vol. 41, no. 3, pp. 517-524, 2013.

[10] N. H. Miswan, N. A. Ngatiman, K. Hamzah and Z. Z. Zamzamin,
“Comparative performance of ARIMA and GARCH models in
modelling and forecasting volatility of Malaysia market properties
and shares,” Applied Mathematical Sciences, vol. 8, no. 140, pp.
7001-7012, 2014.

[11] R. Fu, Z. Zhang and L. Li, “Using LSTM and GRU neural network
methods for traffic flow prediction,” in 31st Youth Academic

Annual Conference of Chinese Association of Automation (YAC),
Wuhan, China, 2016.

[12] N. N. Zakaria, M. Othman, R. Sokkalingam, H. Daud, L. Abdullah
and E. A. Kadir, “Markov Chain Model Development for
Forecasting Air Pollution Index of Miri, Sarawak,” Sustainability,

vol. 11, p. 5190, 2019.

[13] S. Elgharbi, M. Esghir, O. Ibrihich, A. Abarda, S. El Hajji and S.
Elbernoussi, “Grey-Markov Model for the Prediction of the
Electricity Production and Consumption,” in Big Data and

Networks Technologies (BDNT 2019). Lecture Notes in Networks

and Systems, vol. 81, Y. Farhaoui, Ed., Springer, Cham, 2020, pp.
206-219.

[14] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE

Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[16] A. Yadava, C. K. Jhaa and A. Sharan, “Optimizing LSTM for time
series prediction in Indian stock market,” Procedia Computer

Science, vol. 167, pp. 2091-2100, 2020.

[17] Y.-g. Zhang, J. Tang, Z.-y. He, J. Tan and C. Li, “A novel
displacement prediction method using gated recurrent unit model
with time series analysis in the Erdaohe landslide,” Natural

Hazards, vol. 105, pp. 783-813, 2021.

[18] Q. Tan, M. Ye, B. Yang, S. Liu, A. J. Ma, T. C.-F. Yip, G. L.-H.
Wong and P. Yuen, “DATA-GRU: Dual-Attention Time-Aware
Gated Recurrent Unit for Irregular Multivariate Time Series,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol.
34, no. 1, pp. 930-937, 2020.

[19] M. d. Caux, F. Bernardini and J. V. Viterbo, “Short-Term
Forecasting in Bitcoin Time Series Using LSTM and GRU RNNs,”
in Symposium on Knowledge Discovery, Mining and Learning

(KDMILE 2020), Rio Grande, Brazil, 2020.

[20] K. Fukushima, “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position,” Biological Cybernetics, vol. 36, pp. 193-202, 1980.

[21] Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Hubbard, L.
D. Jackel and D. Henderson, “Handwritten digit recognition with a
back-propagation network,” Advances in neural information

processing systems, vol. 2, pp. 396-404, 1990.

[22] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the

IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[23] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang and W. Xu, “CNN-
RNN: A Unified Framework for Multi-label Image Classification,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, USA, 2016.

[24] A. Borovykh, S. Bohte and C. W. Oosterlee, “Conditional Time
Series Forecasting with Convolutional Neural Networks,” arXiv,

no. 1703.04691v5, 2018.

[25] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao and S.
Yan, “HCP: A Flexible CNN Framework for Multi-Label Image
Classification,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 38, no. 9, pp. 1901-1907, 2016.

[26] C.-L. Liu, W.-H. Hsaio and Y.-C. Tu, “Time Series Classification
With Multivariate Convolutional Neural Network,” IEEE

Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4788-
4797, 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 24

[27] T.-Y. Kim and S.-B. Cho, “Predicting residential energy
consumption using CNN-LSTM neural networks,” Energy, vol.
182, no. Sept, pp. 72-81, 2019.

[28] I. E. Livieris, E. Pintelas and P. Pintelas, “A CNN–LSTM model
for gold price time-series forecasting,” Neural Computing and

Applications, vol. 32, pp. 17351-17360, 2020.

[29] I. E. Livieris, E. Pintelas, N. Kiriakidou and S. Stavroyiannis, “An
Advanced Deep Learning Model for Short-Term Forecasting U.S.
Natural Gas Price and Movement,” in Applications and

Innovations (AIAI 2020), IFIP WG 12.5, International

Workshopsmhdw 2020 and 5G-PINE 2020, Neos Marmaras,
Greece, 2020.

[30] N. Xue, I. Triguero, G. P. Figueredo and D. Landa-Silva,
“Evolving Deep CNN-LSTMs for Inventory Time Series
Prediction,” in IEEE Congress on Evolutionary Computation

(CEC), Wellington, New Zealand, 2019.

[31] A. Mtibaa, A. Fahim, K. A. Harras and M. H. Ammar, “Towards
resource sharing in mobile device clouds: power balancing across
mobile devices,” in 2nd ACM SIGCOMM workshop on Mobile

cloud computing (MCC '13), Hong Kong, China, 2013.

[32] S. W. Loke, K. Napier, A. Alali, N. Fernando and W. Rahayu,
“Mobile Computations with Surrounding Devices: Proximity
Sensing and MultiLayered Work Stealing,” ACM Transactions on

Embedded Computing Systems, vol. 14, no. 2, 2015.

[33] M. Hirsch, C. Mateos and A. Zunino, “Augmenting computing
capabilities at the edge by jointly exploiting mobile devices: A
survey,” Future Generation Computer Systems, 2018.

[34] D. M. Shila, W. Shen, Y. Cheng, X. Tian and X. S. Shen,
“AMCloud: Toward a Secure Autonomic Mobile Ad Hoc Cloud
Computing System,” IEEE Wireless Communications, vol. 24, no.
2, pp. 74-81, 2017.

[35] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran and S.
Guizani, “Mobile ad hoc cloud: A survey,” Wireless

Communications and Mobile Computing, vol. 16, no. 16, pp. 2572-
2589, 2016.

[36] V. Balasubramanian and A. Karmouch, “An infrastructure as a
Service for Mobile Ad-hoc Cloud,” in IEEE 7th Annual Computing

and Communication Workshop and Conference (CCWC), Las
Vegas, USA, 2017.

[37] A. Khalifa, M. Azab and M. Eltoweissy, “Resilient hybrid Mobile
Ad-hoc Cloud over collaborating heterogeneous nodes,” in 10th

IEEE International Conference on Collaborative Computing:

Networking, Applications and Worksharing, Miami, USA, 2014.

[38] J. Brevik, D. Nurmi and R. Wolski, “Automatic methods for
predicting machine availability in desktop Grid and peer-to-peer
systems,” in IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2004), Chicago, USA, 2004.

[39] A. Andrzejak, D. Kondo and D. P. Anderson, “Ensuring Collective
Availability in Volatile Resource Pools Via Forecasting,” in
Managing Large-Scale Service Deployment (DSOM 2008),

Lecture Notes in Computer Science, vol. 5273, F. De Turck, W.
Kellerer and G. Kormentzas, Eds., Berlin, Heidelberg, Springer,
2008, pp. 149-161.

[40] S. S. Vaithiya and S. M. S. Bhanu, “Mobility and Battery Power
Prediction Based Job Scheduling in Mobile Grid Environment,” in
International Conference on Parallel Distributed Computing

Technologies and Applications (PDCTA 2011), 2011.

[41] V. V. Selvi, S. Sharfraz and R. Parthasarathi, “Mobile Ad Hoc
Grid Using Trace Based Mobility Model,” in Advances in Grid

and Pervasive Computing (GPC 2007), Paris, France, 2007.

[42] M. Á. Sipos and P. Ekler, “Predicting Availability of Mobile Peers
in Large Peer-to-Peer Networks,” in 3rd Eastern European

Regional Conference on the Engineering of Computer Based

Systems, Budapest, Hungary, 2013.

[43] P. K. D. Pramanik, G. Bandyopadhyay and P. Choudhury,
“Predicting Relative Topological Stability of Mobile Users in a
P2P Mobile Cloud,” SN Applied Sciences, vol. 2, no. 11, article no.
1827, 2020.

[44] S. C. Haryanti and R. F. Sari, “Improving Resource Allocation
Performance in Mobile Ad Hoc Grid with Mobility Prediction,” in
International Conference on Intelligent Green Building and Smart

Grid (IGBSG), Taipei, Taiwan, 2014.

[45] U. Farooq and W. Khalil, “A Generic Mobility Model for
Resource Prediction in Mobile Grids,” in Proceedings of the

International Symposium on Collaborative Technologies and

Systems, Las Vegas, USA, 2006.

[46] S. Dargan, M. Kumar, M. R. Ayyagari and G. Kumar, “A Survey
of Deep Learning and Its Applications: A New Paradigm to
Machine Learning,” Archives of Computational Methods in

Engineering, vol. 27, pp. 1071-1092, 2020.

[47] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-
L. Shyu, S.-C. Chen and S. S. Iyengar, “A Survey on Deep
Learning: Algorithms, Techniques, and Applications,” ACM

Computing Surveys, vol. 51, no. 5, pp. 1-36, 2019.

[48] C. A. Dhawale, K. Dhawale and R. Dubey, “A Review on Deep
Learning Applications,” in Deep Learning Techniques and

Optimization Strategies in Big Data Analytics, J. J. Thomas, P.
Karagoz, B. B. Ahamed and P. Vasant, Eds., USA, IGI GLobal,
2020, pp. 21-31.

[49] S. Khan and T. Yairi, “A review on the application of deep
learning in system health management,” Mechanical Systems and

Signal Processing, vol. 107, pp. 241-265, 2018.

[50] R. Miotto, F. Wang, S. Wang, X. Jiang and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,”
Briefings in Bioinformatics, vol. 19, no. 6, pp. 1236-1246, 2018.

[51] B. Yang and Y. Xu, “Applications of deep-learning approaches in
horticultural research: a review,” Horticulture Research, vol. 8
(Article number: 123), 2021.

[52] A. Carrio, C. Sampedro, A. Rodriguez-Ramos and P. Campoy, “A
Review of Deep Learning Methods and Applications for
Unmanned Aerial Vehicles,” Journal of Sensors, vol. 2017 (Article
ID 3296874), 2017.

[53] J. Huang, J. Chai and S. Cho, “Deep learning in finance and
banking: A literature review and classification,” Frontiers of

Business Research in China, vol. 14 (Article number: 13) , 2020.

[54] A. Sarraf, M. Azhdari and S. Sarraf, “A Comprehensive Review of
Deep Learning Architectures for Computer Vision Applications,”
American Scientific Research Journal for Engineering,

Technology, and Sciences, vol. 77, no. 1, pp. 1-29, 2021.

[55] Y. Zhang, J. Yan, S. Chen, M. Gong, D. Gao, M. Zhu and W. Gan,
“Review of the Applications of Deep Learning in Bioinformatics,”
Current Bioinformatics, vol. 15, no. 8, pp. 898-911, 2020.

[56] M. I. Tariq, N. A. Memon, S. Ahmed, S. Tayyaba, M. T. Mushtaq,
N. A. Mian, M. Imran and M. W. Ashraf, “A Review of Deep

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 25

Learning Security and Privacy Defensive Techniques,” Mobile

Information Systems, vol. 2020 (Article ID 6535834), 2020.

[57] A. Sagheer and M. Kotb, “Time series forecasting of petroleum
production using deep LSTM recurrent networks,”
Neurocomputing, vol. 323, no. 5, pp. 203-213, 2019.

[58] J. Y. Choi and B. Lee, “Combining LSTM Network Ensemble via
Adaptive Weighting for Improved Time Series Forecasting,”
Mathematical Problems in Engineering, vol. 2018 (Article ID
2470171), 2018.

[59] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen and J. Liu, “LSTM
network: a deep learning approach for short-term traffic forecast,”
IET Intelligent Transport Systems, vol. 11, no. 2, 3, pp. 68-75,
2017.

[60] P. B. Weerakody, K. W. Wong, G. Wang and W. Ela, “A review of
irregular time series data handling with gated recurrent neural
networks,” Neurocomputing, vol. 441, pp. 161-178, 2021.

[61] Z. Che, S. Purushotham, K. Cho, D. Sontag and Y. Liu, “Recurrent
Neural Networks for Multivariate Time Series with Missing
Values,” Scientific Reports, vol. 8, p. 6085, 2018.

[62] K. Lu, X. R. Meng, W. X. Sun, R. G. Zhang, Y. K. Han, S. Gao
and D. Su, “GRU-based Encoder-Decoder for Short-term CHP
Heat Load Forecast,” IOP Conference Series: Materials Science

and Engineering, vol. 392, no. 6, p. 062173, 2018.

[63] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon
and K. P. Soman, “Stock price prediction using LSTM, RNN and
CNN-sliding window model,” in International Conference on

Advances in Computing, Communications and Informatics

(ICACCI), Udupi, India, 2017.

[64] J. M.-T. Wu, Z. Li, N. Herencsar, B. Vo and J. C.-W. Lin, “A
graph-based CNN-LSTM stock price prediction algorithm with
leading indicators,” Multimedia Systems, 2021.

[65] T. Kim and H. Y. Kim, “Forecasting stock prices with a feature
fusion LSTM-CNN model using different representations of the
same data,” PLoS ONE, vol. 14, no. 2, p. e0212320, 2019.

[66] W. Lu, J. Li, Y. Li, A. Sun and J. Wang, “A CNN-LSTM-Based
Model to Forecast Stock Prices,” Complexity, vol. 2020 (Article ID
6622927), 2020.

[67] Y. Li and W. Dai, “Bitcoin price forecasting method based on
CNN-LSTM hybrid neural network model,” The Journal of

Engineering, vol. 2020, no. 13, pp. 344-347, 2020.

[68] T. Ni, L. Wang, P. Zhang, B. Wang and W. Li, “Daily tourist flow
forecasting using SPCA and CNN-LSTM neural network,”
Concurrency and Computation: Practice and Experience, vol. 33,
no. 5, p. e5980, 2021.

[69] J. Zhao, J. Lin, S. Liang and M. Wang, “Sentimental prediction
model of personality based on CNN-LSTM in a social media
environment,” Journal of Intelligent & Fuzzy Systems, vol. 40, no.
2, pp. 3097-3106, 2021.

[70] T.-Y. Kim and S.-B. Cho, “Predicting the Household Power
Consumption Using CNN-LSTM Hybrid Networks,” in Intelligent

Data Engineering and Automated Learning (IDEAL 2018). Lecture

Notes in Computer Science, vol. 11314, H. Yin, D. Camacho, P.
Novais and A. Tallón-Ballesteros, Eds., Springer, Cham, 2018, pp.
481-490.

[71] M. Tovar, M. Robles and F. Rashid, “PV Power Prediction, Using
CNN-LSTM Hybrid Neural Network Model. Case of Study:
Temixco-Morelos, México,” Energies, vol. 13, no. 24, p. 6512,
2020.

[72] H. Kuang, Q. Guo, S. Li and H. Zhong, “Short-term wind power
forecasting model based on multi-feature extraction and CNN-
LSTM,” IOP Conference Series: Earth and Environmental

Science, vol. 702, p. 012019, 2021.

[73] C. Ding, G. Wang, X. Zhang, Q. Liu and X. Liu, “A hybrid CNN-
LSTM model for predicting PM2.5 in Beijing based on
spatiotemporal correlation,” Environmental and Ecological

Statistics, 2021.

[74] T. Li, M. Hua and X. Wu, “A Hybrid CNN-LSTM Model for
Forecasting Particulate Matter (PM2.5),” IEEE Access, vol. 8, pp.
26933-26940, 2020.

[75] W. He, J. Li, Z. Tang, B. Wu, H. Luan, C. Chen and H. Liang, “A
Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission
Prediction in FCC Unit,” Mathematical Problems in Engineering,

vol. 2020 (Article ID 8071810), 2020 .

[76] W. Boulila, H. Ghandorh, M. A. Khan, F. Ahmed and J. Ahmad,
“A novel CNN-LSTM-based approach to predict urban
expansion,” Ecological Informatics, vol. 64, no. Sept, p. 101325,
2021.

[77] K. Cao, H. Kim, C. Hwang and H. Jung, “CNN-LSTM Coupled
Model for Prediction of Waterworks Operation Data,” Journal of

Information Processing Systems, vol. 14, no. 6, pp. 1508-1520,
2018.

[78] P. K. Jonnakuti and U. B. T. V. Sai, “A hybrid CNN-LSTM based
model for the prediction of sea surface temperature using time-
series satellite data,” in 22nd EGU General Assembly (EGU2020-

817), Online, 2020.

[79] R. Chen, X. Wang, W. Zhang, X. Zhu, A. Li and C. Yang, “A
hybrid CNN-LSTM model for typhoon formation forecasting,”
Geoinformatica, vol. 23, no. 3, pp. 375-396, 2019.

[80] S. Khaki, L. Wang and S. V. Archontoulis, “A CNN-RNN
Framework for Crop Yield Prediction,” Frontiers in Plant Science,

vol. 10, p. 1750, 2020.

[81] Md. ZabirulIslam, Md. Milon Islam, Amanullah Asraf, “A
combined deep CNN-LSTM network for the detection of novel
coronavirus (COVID-19) using X-ray images,” Informatics in

Medicine Unlocked, vol. 20, p. 100412, 2020.

[82] A. G. Dastider, F. Sadik and S. A. Fattah, “An integrated
autoencoder-based hybrid CNN-LSTM model for COVID-19
severity prediction from lung ultrasound,” Computers in Biology

and Medicine, vol. 132, no. May, p. 104296, 2021.

[83] S. Dutta, S. K. Bandyopadhyay and T.-H. Kim, “CNN-LSTM
Model for Verifying Predictions of Covid-19 Cases,” Asian

Journal of Research in Computer Science, vol. 5, no. 4, pp. 25-32,
2020.

[84] S. A. Rahman and D. A. Adjeroh, “Deep Learning using
Convolutional LSTM estimates Biological Age from Physical
Activity,” Scientific Reports, vol. 9 (Article number: 11425), 2019.

[85] Y. Zhang, J. Yao and H. Guan, “Intelligent Cloud Resource
Management with Deep Reinforcement Learning,” IEEE Cloud

Computing, vol. 4, pp. 60-69, 2017.

[86] Y. Lu, L. Liu, J. Panneerselvam, B. Yuan, J. Gu and N.
Antonopoulos, “A GRU-Based Prediction Framework for
Intelligent Resource Management at Cloud Data Centres in the
Age of 5G,” IEEE Transactions on Cognitive Communications and

Networking, vol. 6, no. 2, pp. 486-498, 2020.

[87] H. Jing, Y. Zhang, J. Zhou, W. Zhang, X. Liu, G. Min and Z.
Zhang, “LSTM-Based Service Migration for Pervasive Cloud

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 26

Computing,” in IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Halifax, Canada, 2018.

[88] Y. Zhu, W. Zhang, Y. Chen and H. Gao, “A novel approach to
workload prediction using attention-based LSTM encoder-decoder
network in cloud environment,” EURASIP Journal on Wireless

Communications and Networking, vol. 2019 (Article number: 274),
2019.

[89] J. Kumar, R. Goomer and A. K. Singh, “Long Short Term Memory
Recurrent Neural Network (LSTM-RNN) Based Workload
Forecasting Model For Cloud Datacenters,” Procedia Computer

Science, vol. 125, pp. 676-682, 2018.

[90] Anupama K C, Shivakumar B R, Nagaraja R, “Resource
Utilization Prediction in Cloud Computing using Hybrid Model,”
International Journal of Advanced Computer Science and

Applications, vol. 12, no. 4, pp. 373-381, 2021.

[91] H. Li, K. Ota and M. Dong, “Learning IoT in Edge: Deep Learning
for the Internet of Things with Edge Computing,” IEEE Network,

vol. 32, no. 1, pp. 96-101, 2018.

[92] J. Shuja, K. Bilal, W. Alasmary, H. Sinky and E. Alanazi,
“Applying machine learning techniques for caching in next-
generation edge,” Journal of Network and Computer Applications,

vol. 181, p. 103005, 2021.

[93] J. Violos, E. Psomakelis, D. Danopoulos, S. Tsanakas and T.
Varvarigou, “Using LSTM Neural Networks as Resource
Utilization Predictors: The Case of Training Deep Learning
Models on the Edge,” in Economics of Grids, Clouds, Systems, and

Services. GECON 2020. Lecture Notes in Computer Science, vol,
vol. 12441, K. Djemame, J. Altmann, J. Á. Bañares, O. Agmon
Ben-Yehuda, V. Stankovski and B. Tuffin, Eds., Springer, Cham,
2020, pp. 67-74.

[94] F. Hussain, S. A. Hassan, R. Hussain and E. Hossain, “Machine
Learning for Resource Management in Cellular and IoT Networks:
Potentials, Current Solutions, and Open Challenges,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1251-
1275, 2020.

[95] B. Gu, X. Zhang, Z. Lin and M. Alazab, “Deep Multi-Agent
Reinforcement Learning-Based Resource Allocation for Internet of
Controllable Things,” IEEE Internet of Things Journal, vol. 8, no.
5, pp. 3066-3074, 2021.

[96] K. Li, W. Ni, E. Tovar and A. Jamalipour, “Deep Q-Learning
based Resource Management in UAV-assisted Wireless Powered
IoT Networks,” in IEEE International Conference on

Communications (ICC), Dublin, Ireland, 2020.

[97] U. Challita, L. Dong and W. Saad, “Proactive Resource
Management for LTE in Unlicensed Spectrum: A Deep Learning
Perspective,” IEEE Transactions on Wireless Communications,

vol. 17, no. 7, pp. 4674-4689, 2018.

[98] R. C. Bhaddurgatte, B. P. Vijaya Kumar and S. M. Kusuma,
“Machine Learning and Prediction-Based Resource Management
in IoT Considering Qos,” International Journal of Recent

Technology and Engineering, vol. 8, no. 2, pp. 687-694, 2019.

[99] Y. Peng, G. Zhang, J. Shi, B. Xu and L. Zheng, “SRA-LSTM:
Social Relationship Attention LSTM for Human Trajectory
Prediction,” arXiv:2103.17045v1 [cs.CV], 2021.

[100] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei and S.
Savarese, “Social LSTM: Human Trajectory Prediction in
Crowded Spaces,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, USA, 2016.

[101] H. Manh and G. Alaghband, “Scene-LSTM: A Model for Human
Trajectory Prediction,” arXiv:1808.04018v2 [cs.CV], 2019.

[102] N. Nikhil and B. T. Morris, “Convolutional Neural Network for
Trajectory Prediction,” in Computer Vision – ECCV 2018

Workshops. Lecture Notes in Computer Science, vol. 11131, L.
Leal-Taixé and S. Roth, Eds., Springer, Cham, 2019, pp. 186-196.

[103] X. Song, K. Chen, X. Li, J. Sun, B. Hou, Y. Cui, B. Zhang, G.
Xiong and Z. Wang, “Pedestrian Trajectory Prediction Based on
Deep Convolutional LSTM Network,” IEEE Transactions on

Intelligent Transportation Systems, 2020.

[104] G. Xie, A. Shangguan, R. Fei, W. Ji, W. Ma and X. Hei, “Motion
trajectory prediction based on a CNN-LSTM sequential model,”
SCIENCE CHINA Information Sciences, vol. 63, no. 11, p.
212207, 2020.

[105] H. R. Pamuluri, “Predicting User Mobility using Deep Learning
Methods,” Master's Thesis, Blekinge Institute of Technology,
Karlskrona, Sweden, 2020.

[106] C. Cui, M. Zhao and K. Wong, “An LSTM-Method-Based
Availability Prediction for Optimized Offloading in Mobile
Edges,” Sensors (Basel), vol. 19, no. 20, p. 4467, 2019.

[107] R. Li, C. Wang, Z. Zhao, R. Guo and H. Zhang, “The LSTM-
Based Advantage Actor-Critic Learning for Resource Management
in Network Slicing With User Mobility,” IEEE Communications

Letters, vol. 24, no. 9, pp. 2005-2009, 2020.

[108] P. K. D. Pramanik, N. Sinhababu, A. Nayyar and P. Choudhury,
“Predicting Device Availability in Mobile Crowd Computing using
ConvLSTM,” in 7th International Conference on Optimization and

Applications, Wolfenbüttel, Germany, May 2021.

[109] François Chollet and others, “Keras,” 2015. [Online]. Available:
https://keras.io/. [Accessed 13 February 2021].

[110] R. Muthukrishnan and R. Rohini, “LASSO: A Feature Selection
Technique In Predictive Modeling for Machine Learning,” in IEEE

International Conference on Advances in Computer Applications

(ICACA), Coimbatore, India, 2016.

[111] F. Perez and B. E. Granger, “IPython: a system for interactive
scientific computing,” Computing in Science & Engineering, vol.
9, no. 3, 2007.

[112] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, et al.,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems,” Google, 2015.

[113] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P.
Virtanen, D. Cournapeau, et al., “Array programming with
NumPy,” Nature, vol. 585, pp. 357-362, 2020.

[114] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261-72, 2020.

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
et al., “Scikit-learn: Machine learning in Python,” Journal of

Machine Learning Research, vol. 12, no. Oct, pp. 2825-2830,
2011.

[116] J. D. Hunter, “Matplotlib: A 2D graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95,
2007.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3103903, IEEE Access

VOLUME XX, 2017 27

[117] NVIDIA, P. Vingelmann and F. H. Fitzek, “CUDA, release:
10.2.89,” 2020. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit. [Accessed 3 July 2021].

[118] W. Shen, Z. Wei, C. Yang and R. Zhang, “Travel pattern
modelling and future travel behaviour prediction based on GMM
and GPR,” Int. J. Simulation and Process Modelling, vol. 13, no.
6, pp. 548-556, 2018.

[119] F. Jelinek, R. L. Mercer, L. R. Bahl and J. K. Baker, “Perplexity - a
measure of the difficulty of speech recognition tasks,” The Journal

of the Acoustical Society of America, vol. 62, no. S1, p. S63, 1977.

[120] Y. Bengio, A. Courville and P. Vincent, “Representation learning:
a review and new perspectives,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828,
2013.

