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Visual examination of the workplace and in-time reminder to the failure of wearing a safety helmet is of particular importance to
avoid injuries of workers at the construction site. Video monitoring systems provide a large amount of unstructured image data
on-site for this purpose, however, requiring a computer vision-based automatic solution for real-time detection. Although a
growing body of literature has developed many deep learning-based models to detect helmet for the traffic surveillance aspect, an
appropriate solution for the industry application is less discussed in view of the complex scene on the construction site. In this
regard, we develop a deep learning-based method for the real-time detection of a safety helmet at the construction site. ,e
presented method uses the SSD-MobileNet algorithm that is based on convolutional neural networks. A dataset containing 3261
images of safety helmets collected from two sources, i.e., manual capture from the video monitoring system at the workplace and
open images obtained using web crawler technology, is established and released to the public. ,e image set is divided into a
training set, validation set, and test set, with a sampling ratio of nearly 8 :1 :1. ,e experiment results demonstrate that the
presented deep learning-based model using the SSD-MobileNet algorithm is capable of detecting the unsafe operation of failure of
wearing a helmet at the construction site, with satisfactory accuracy and efficiency.

1. Introduction

Construction is a high-risk industry where construction
workers tend to be hurt in the work process. Head injuries
are very serious and often fatal. According to the accident
statistics released by the state administration of work safety
from 2015 to 2018, among the recorded 78 construction
accidents, 53 events happened owing to the fact that the
workers did not wear safety helmets properly, accounting for
67.95% of the total number of accidents [1].

In safety management at the construction site, it is es-
sential to supervise the safety protective equipment wearing
condition of the construction workers. Safety helmets can
bear and disperse the hit of falling objects and alleviate the
damage of workers falling from heights. Construction
workers tend to ignore safety helmets because of weak safety
awareness. At the construction site, workers that wear safety
helmets improperly are much more likely to be injured.

Traditional supervision of the workers wearing safety hel-
mets on construction sites often requires manual work [2].
,ere are problems such as a wide range of operations and
difficult management of site workers. ,ese factors make
manual supervision difficult and inefficient and it is difficult
to track and manage the whole workers at the construction
sites accurately in real time [3]. Hence, it is hard to satisfy the
modern requirement of construction safety management
only relying on the traditional manual supervision. In this
context, it remains a significant issue to study on the au-
tomatic detection and recognition of safety helmets wearing
conditions.

,e automatic monitoring method can contribute to
monitoring the construction workers and confirm the safety
helmet wearing conditions at the construction site. In
particular, considering that the traditional manual super-
vision of the workers is often costly, time-consuming, error-
prone, and not sufficient to satisfy the modern requirements
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of construction safety management, the automatic super-
vision method can be beneficial to real-time on-site
monitoring.

In this paper, based on the previous studies on computer
vision-based object detection, we develop a deep learning-
based method for the real-time detection of safety helmet at
the construction site.,emajor contributions are as follows:
(1) a dataset containing 3261 images of safety helmets col-
lected from two sources, i.e., manual capture from the video
monitoring system at the workplace and open images ob-
tained using web crawler technology, is established and
released to the public. (2),e SSD-MobileNet algorithm that
is based on convolutional neural networks is used to train
the model, which is verified in our study as an alternative
solution to detect the unsafe operation of failure of wearing a
helmet at the construction site. ,e article is organized as
follows. Section 2 gives a brief description of the related
work. Section 3 describes the methodology of the research.
Section 4 introduces the construction of the database.
Section 5 reports the experiment results of the study.
Sections 6 and 7 discuss the pros and cons of the study and
conclude the paper.

2. Literature Review

2.1. Related Research into the Safety Helmets Detection. At
present, previous studies of safety helmets detection can be
divided into three parts, sensor-based detection, machine
learning-based detection, and deep learning-based detec-
tion. Sensor-based detection usually locates the safety hel-
mets and workers (Kelm et al. [4], Torres et al. [5]). ,e
methods usually use the RFID tags and readers to locate the
helmets and workers and monitor how personal protective
equipment is worn by workers in real time. Kelm et al. [4]
designed a mobile Radio Frequency Identification (RFID)
portal for checking personal protective equipment (PPE)
compliance of personnel. However, the working range of the
RFID readers is limited and the RFID readers can only
suggest that the safety helmets are close to the workers but
unable to confirm that the safety helmets are being properly
worn.

Up to date, machine learning-based object detection
technologies are widely used in many domains for its
powerful object detection and classification capacity (e.g.,
Rubaiyat et al. [6], Shrestha et al. [7], Waranusast et al. [8],
Doungmala et al. [9], Jia et al. [10], and Li et al. [11]).
Remarkable studies are made by Rubaiyat et al. [6], who
proposed an automatic detection method to obtain the
features of construction workers and safety helmets and
detect safety helmets. ,e method combines the frequency
domain information of the image with the histogram of
oriented gradient (HOG) and the circle Hough transform
(CHT) extractive technique to detect the workers and the
helmets in two steps. ,e detection methods based on
machine learning can detect safety helmets accurately and
precisely under various scenarios but also have some
drawbacks. Sometimes the method can only detect safety
helmets with a specific color and it is difficult to distinguish
the hats with similar color and shape to the safety helmets.

Moreover, the method cannot detect faces and safety hel-
mets thoroughly under some circumstances; for example,
some workers do not turn their faces towards the camera at
the construction site.

2.2. Deep Learning-Based Object Detection. ,e above-
mentioned methods are commonly based on traditional
machine learning to detect and classify the helmets and
choose features artificially with a strong subjectivity, a
complex design process, and poor generalization ability. In
recent years, with the rapid development of deep learning
technology, the object detection algorithm turns to the one
based on convolutional neural networks with a great pro-
motion of speed and accuracy (e.g., Wu et al. [12]).

,e methods construct convolutional neural networks
with different depths to detect safety helmets. Some other
strategies such as multiscale training, increasing the number
of anchors and introducing the online hard example mining,
are added to increase the detection accuracy (e.g., Xu et al.
[13]). However, these methods have some limitations in the
preprocessing aspects of image sharpness, object proportion,
and the color difference between background and
foreground.

Deep learning-based methods are very potential for the
purpose of people’s unsafe behavior identification. Many
previous studies have presented a solution to this topic.
Remarkable studies include the following: Ding et al. [14]
developed a hybrid deep learning model that integrates a
convolution neural network (CNN) and long short-term
memory (LSTM) that automatically recognizes workers’
unsafe actions. ,e results demonstrated that the model can
precisely detect safe and unsafe actions conducted by
workers on-site. However, some behaviors cannot be rec-
ognized owing to the lack of data, the small sample size used
for training, and the limited number of unsafe actions that
were considered. Fang et al. [15] proposed a novel deep
learning-based framework to check whether a site worker is
working within the constraints of their certification. ,e
framework includes key video clips extraction, trade rec-
ognition, and worker competency evaluation. Results
demonstrate that the proposed framework offers an effective
and feasible solution to detect noncertified work. However,
some workers cannot be detected when the workers’ faces
hardly appear or are obstructed by the safety helmets or
other equipment. Also, the worker close to the camera failed
to be recognized. Fang et al. [16] integrated a Faster R-CNN
and a deep CNN to detect the presence of a worker from
images and the harness, respectively, which can identify
whether workers wear safety harness while working at
heights or not. ,e research is limited by the restricted
activities working at heights and the dataset size. Fang et al.
[17] developed a computer vision-based approach which
uses a Mask R-CNN to detect people and recognize the
relationship between people and concrete supports to
identify unsafe behaviors. ,e study has some restrictions: it
focuses on a limited number of activities related to the
construction of deep foundation-pits. Luo et al. [18] pro-
posed an increased CNN that integrates Red-Green-Blue,
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optical flow, and gray stream CNNs to monitor and assess
workers’ activities associated with installing reinforcement
at the construction site. ,e research is limited by occlu-
sions, insufficient knowledge of a time series of actions
definition, and lack of a large-scale database.

Considering its excellent ability to extract features, in the
paper, we use the convolutional neural network (CNN) to
build a safety helmet detection model. Automatic detection
of safety helmets worn by construction workers at the
construction site and timely warning of workers without
helmets can largely avoid accidents caused by workers
wearing safety helmets improperly. ,e designed CNN is
trained using the TensorFlow framework. ,e contributions
of the research include a deep learning-based safety helmet
detection model and a safety helmet image dataset for
further research. ,e model provides an opportunity to
detect the helmets and improve safety management.

Deep learning-based methods are commonly used to
detect unsafe behaviors on-site. Nevertheless, many tradi-
tional measures of safety helmet detection are commonly
sensor-based and machine-based, thus limited by problems
such as sensor failure over long distances, the manual and
subjective features choice, and the chaotic scene interference.
Based on the previous studies, we present a deep learning-
based method to detect the safety helmets in the workplace,
which is supposed to avoid the abovementioned limitations.

3. Methodology

A convolutional neural network (CNN) is a multilayer
neural network. It is a deep learning method designed for
image recognition and classification tasks. It can solve the
problems of too many parameters and difficult training of
the deep neural networks and can get better classification
effects. ,e structure of most CNNs consists of input layer-
convolutional layer (Conv layer)-activation function-pool-
ing layer-fully connected layer (FC layer). ,e main char-
acteristics of CNNs are local connectivity and parameter
sharing in order to reduce the number of parameters and
increase the efficiency of detection.

,e Conv layer and the pooling layer are the core parts,
and they can extract the object features. Often, the con-
volutional layer and the pooling layer may occur alternately.
,e Conv layers can extract and reinforce the object features.
,e pooling layers can filter multiple features, remove the
unimportant features, and compress the features. ,e ac-
tivation layers use nonlinear activation functions to enhance
the expression ability of the neural network models and can
solve the nonlinear problems effectively. ,e FC layers
combine the data features of objects and output the feature
values. By this means the CNNs can transfer the original
input images from the original pixel values to the final
classification confidence layer by layer.

In order to better extract the object features and classify
the objects more precisely, Hinton et al. [19] proposed the
concept of deep learning which is to learn object features from
vast amounts of data using deep neural networks and then
classify new objects according to the learned features. Deep

learning algorithm based on convolutional neural networks
has achieved great results in object detection, image recog-
nition, and image segmentation. Girshick et al. [20] proposed
R-CNN detection framework (region with CNN features) in
2014.Manymodels based on R-CNNwere proposed after that
including SPP-net (spatial pyramid pooling network) [21],
Fast R-CNN (fast region with CNN features) [22], and Faster
R-CNN (faster region with CNN features) [23].

Classification-based CNN object detection algorithms
such as Faster R-CNN are widely used methods. However,
the detection speed is slow and cannot detect in real time.
Regression-based detection algorithms are becoming in-
creasingly important. Redmon et al. [24] proposed YOLO
(You Only Look Once) algorithm in 2016. At the end of
2016, Liu et al. [25] combined the anchor box of Faster
R-CNN with the bounding box regression of YOLO and
proposed a new algorithm SSD (Single Shot MultiBox
Detector) with higher detection accuracy and faster speed.

Although the SSD algorithm is not capable of the highest
accuracy, the detection speed of the SSD algorithm is much
faster and comparable to the YOLO algorithm and the
precision can be higher than that of the YOLO algorithm
when the sizes of the input images are smaller. While the
Faster R-CNN algorithm tends to lead to more accurate
models, it is much slower and requires at least 100ms per
image [26]. ,erefore, considering the real-time detection
requirements, the SSD algorithm is chosen in the research.
In order to reduce greatly the calculation amount and model
thickness, the MobileNet [27] model is added. ,erefore, in
the paper, the SSD-MobileNet model is selected to detect
safety helmets worn by the workers.

,e SSD algorithm is based on a feed-forward con-
volutional network to produce bounding boxes of fixed sizes
and generate scores for the object class examples in the
boxes. A nonmaximum suppression method is used to
predict the final results.

,e early network layers of the SSD model are called the
base network, based on a standard framework to classify the
image. ,e base network is truncated before the classifica-
tion layers, and the convolutional layers are added at the end
of the truncated base network.,e sizes of the convolutional
feature maps decrease progressively to predict the detections
at multiple scales.

,e SSD algorithm sets a series of fixed and different size
default boxes on the cell of each feature map as shown in
Figure 1. Each default box predicts two kinds of detections.
One is the location of bounding boxes including 4 offsets
(cx, cy, w, h), which represent, respectively, x and y coor-
dinates of the center of the bounding box and the width and
height of the bounding box; the other is the score of each
class. If there are C classes of the objects, the SSD algorithm
predicts a total of C+1 score including the score of the
background.

,e setting of default boxes can be divided into two
aspects: size and aspect ratio.,e sizes of the default boxes in
every feature map will be calculated as follows:

SK � Smin +
Smax − Smin

m − 1
k − 1, k ∈ [1, m]. (1)
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In the formula, Smin is 0.2, Smax is 0.95. ,e aspect ratios
are set different for the default boxes, expressed as
ar ∈ 1, 2, 3, (1/2), (1/3){ }. ,e width of the default boxes is
calculated as follows:

wak � Sk
��
ar

√
. (2)

,e height of the default boxes is calculated as follows:

hak �
Sk��
ar

√ . (3)

When the aspect ratio is 1, a default box size is added:
Sk′ �

�����
SkSk+1
√

. ,erefore, there are six default boxes of dif-
ferent sizes for each feature cell.

,e default boxes will be matched to the ground truth
boxes. Each ground truth box can choose default boxes of
different locations, aspect ratios, and sizes to match. ,e
ground truth box will be matched to the default box with the
best Jaccard overlap. ,e Jaccard overlap is also called the
IoU (Intersection over Union), or the Jaccard similarity
coefficient. ,e IoU is the ratio of the intersection and the
union of the default box to the ground truth box. ,e
schematic illustration of IoU is shown in Figure 2:

J(A, B) � |A∩B||A∪B| �
|A∩B|

|A| +|B| +|A∩B|. (4)

After the match process, most default boxes are negative
examples which do not match the objects but the back-
ground.,erefore, the SSD algorithm uses the hard negative
mining strategy to avoid the significant imbalance between
the positive and negative training examples. ,e default
boxes are ranked in the descending order according to the
confidence error and the top ones are chosen to be the
negative examples so the ratio between the negative and
positive examples is almost 3 :1.

,e SSD algorithm defines the total loss function as the
weighted sum between localization loss and confidence loss:

L(x, c, l, g) � 1

N
Lconf(x, c) + αLloc(x, l, g)( ). (5)

In the prediction process, the object classes and confi-
dence scores will be confirmed according to the maximum
class confidence score and the prediction box that belongs to
the background will be filtered out. ,e prediction boxes with
confidence scores below 0.5 are also removed. As for the left
boxes, the location will be obtained according to the default
boxes. ,e prediction boxes are ranked in the descending
order according to the confidence score and the top ones are
retained. Finally, the nonmaximum suppression algorithm is
used to filter out the prediction boxes with higher but not the
highest IOU and the left prediction boxes are the results.

Although the SSD algorithm performs well in the speed
and the precision, the large model and a large amount of
calculation make the training speed a bit slow.,erefore, the
base network of the SSDmodel is replaced by the MobileNet
model to reduce the calculation amount and the model
thickness. In the paper, the SSD-MobileNet model is chosen
to detect the safety helmets worn by the workers.

,e core concept of the MobileNet model is the fac-
torization of the filters. ,e main function is to reduce the
calculation amount and the network parameters. ,e model
is used to factorize a standard convolution into a depthwise
convolution and a pointwise convolution. ,e model is
shown in Figure 3.

,e model also introduces two hyperparameters: width
multiplier and resolution multiplier to reduce the channel
numbers and reduce the image resolutions, respectively. ,e
network model with less calculation amount can be built.
Hence, using the SSD-MobileNet model can reduce the
thickness of the SSD model effectively.

4. Database

,e data required for the experiment were collected by the
author. Since there are few object detection applications of
safety helmets using deep learning and there is no off-the-
shelf safety helmets dataset available, part of the experi-
mental data was collected using web crawler technology,
making full use of network resources. By using several

(a) (b)

Loc:∆ (cx, cy, w, h)

Conf: (c1, c2, …, cp)

(c)

Figure 1: Detection process. (a) Image with GT box. (b) 8 × 8 feature map. (c) 4 × 4 feature map.
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keywords, such as “workers wear safety helmets” and
“workers on the construction site,” python language is used
to crawl relevant pictures on the Internet.

However, the quality of the crawled images varies greatly.
,ere are problems that there is an only background and no
objects in some images, the size of the safety helmet is small,
and the shape is blurred. ,erefore, images were also collected
manually besides web crawling. 3500 images were collected in
total. ,e images that did not contain safety helmets, duplicate
images, and the images that are not in the RGB three-channel
format were eliminated and 3261 images were left, forming the
safety helmet detection dataset. Some images in the dataset are
shown in Figure 4. To increase the detection effect of the safety
helmet detection model in detecting helmets with different
directions and brightness in images, the image dataset was
preprocessed such as rotation, cutting, and zooming.

,en, the samples in the dataset are divided into three parts
randomly: training set, validation set, and test set. Commonly,

a ratio of 6 : 2 : 2 is suggested for dividing the training set,
validation set, and test set in the previous machine learning
studies, such as the course of AndrewNg from deeplearning.ai.
In deep learning, the dataset scale is much larger and the
validation and test sets tend to be a smaller percentage of the
total data which are commonly less than 20% or 10%. In this
sense, an adequate ratio of 8 :1 :1 according to the previous
experience is adopted in our study. ,e numbers of the three
sets are 2769, 339, and 153, respectively. All the images that
contained safety helmets were manually prelabeled, using the
open-source tool LabelImage (available in https://github.com/
tzutalin/labelImg). In each labeled image, the sizes and the
locations of the object are recorded (Figure 5).

5. Results

In the paper, the open-source TensorFlow framework is
chosen to train the model. ,e pretrained

Input Kernel Feature

∑ + b

∑ + b

(a)

Input
Group 0 Depthwise feature

Group 1

Group 2

(b)

Depthwise feature Pointwise feature

(c)

Figure 3: Schematic illustration of MobileNet separate convolution. (a) Standard convolution. (b) Depthwise convolution. (c) Pointwise
convolution.

A

A ∩ B 

A ∪  B 

IoU =

B

Figure 2: Schematic illustration of IoU.
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SSD_mobilenet_v1_COCOmodel with the COCO dataset is
used to learn the characteristics of the safety helmet in the
built dataset to reduce the training time and save the
computing resources. ,e initial weights and the parameter
values of our own model are the same as the SSD_mobi-
lenet_v1_COCO model. Finally, the weights and the pa-
rameter values of the safety helmet detection model are
trained and obtained through the training process.

Among the 3261 images, 2769 images were divided
into the training set, 339 images were divided into the
validation set, and 153 images were divided into the test
set. ,e training set is used to train the model or to de-
termine the parameters of the model. ,e validation set is
used to adjust the hyperparameters of the model and to
evaluate the capacity of the model preliminarily. ,e test
set is used to evaluate the generalization ability of the final
model [28].

In the course of training, the change of the mean average
precision (mAP) and the loss function during training was
recorded by TensorBoard. As a measure index, the mean
average precision (mAP) [29] is generally used in the field of
object detection. Figure 6 illustrated that the mean Average

Precision shows an overall upward trend, and the trend has
ups and downs and is not a steady rise. When training rounds
up to 50,000, the mean average precision of the detection
model is 36.82%. Figure 7 shows that the total loss values
decrease slowly at the beginning of the training and converge
at the end of the training. ,e values of the loss function are
the differences between the true value and the predicted value
in general speaking. ,e change in the values of the loss
function represents the training process of the model. ,e
smaller the values are, the better the model is trained. ,e
convergence of the loss functions demonstrates that the
training of the model is completed. Hence, loss functions
mainly influence the training process but not detection.
Figures 8(a) to 8(c) show the variation of the classification loss
function, localization loss function, and regularization loss
function against the steps. Figures 8(a) and 8(b) demonstrate
that the values of the classification loss function decrease
slowly at first and, then, decrease rapidly when training
rounds up to nearly 7,000; the values of the localization loss
function decrease rapidly at first and converge at the end of
the training. ,e convergence of the loss functions demon-
strates that the training of the model is completed.

Figure 4: Image dataset.

(a)

Image (1).jpg
Image (1).jpg
Image (1).jpg
Image (1).jpg
Image (1).jpg
Image (1).jpg

Filename

315
315
315
315
315
315

Width

207
207
207
207
207
207

Height

Helmet
Helmet
Helmet
Helmet
Helmet
Helmet

Class

100
162
206
238

1
46

Xmin

6
35
53
45
30
45

Ymin

152
200
229
258
33
83

Xmax

51
61
69
60
68
74

Ymax

(b)

Figure 5: (a) Manual labeling. (b). Data recording.
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After the model was trained, it was used to validate the
collected validation set by using the Spyder software.,e 153
images of the validation set were input into the model and
the detected images were output. ,e output images show
the predicted labels and the confidence scores of safety
helmets. Some validation results are shown in Figure 9.

,e precision and recall are the commonly used metrics
to evaluate the performance and reliability of the trained
model. Precision is the ratio of true positive (TP) to true
positive and false positive (TP + FP). TP + FP is the number
of helmets detected. Recall is the ratio of true positive (TP) to
true positive and false negative (TP+ FN). TP+ FN means

the actual number of helmets. ,ere are 250 true positive
objects, 12 false positive objects, and 73 false negative objects
in the detected images. ,e precision of the trained model is
95% and the recall is 77%, which demonstrates that the
proposed method performs well in safety helmet detection.

As the pictures above show, the probabilities of recog-
nizing the safety helmets worn by workers as safety helmets
are more than 80%. However, the output images of the
model demonstrate some errors in the detection model. For
example, it is hard for the model to detect the safety helmets
of small sizes or large rotation angles. It is possible to
recognize the objects of the same colors in the images as the
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Figure 7: Total loss change during training.
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Figure 8: Partial loss function value change. (a) Classification loss. (b) Localization loss. (c) Regularization loss.
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safety helmets. When the illumination intensity of the
construction site in the images and the objects are not clear,
the safety helmets are difficult to be recognized. ,at sug-
gests the detection model established in the paper is not
accurate enough.

As shown in Figure 10(a), the probability predicted by the
model is 98%, but the probability of recognizing the back-
ground as safety helmets is 78%.,is fake detection generates
false positive. ,is is a case of false detection which predicted
the false object as correct. ,e case of Figure 10(c) is the same
as the first one. In Figure 10(b), the red helmet is missed and
this is a case of false negative. ,e errors occur because of the
interference of the complex background, the limitation of the
number of the image dataset, and the safety helmets pro-
portion in the images. In order to improve the performance of
the model, some measures must be taken such as increasing
the number of the image dataset and adding the pre-
processing operations of the images. Besides the above
measures, ameliorating the nonmaximum suppression al-
gorithm, adjusting the parameters and weights, and so forth
can also be a great solution to reduce the false positives.

In summary, there are several detection errors of the
model. (1) ,e hats with the same shapes and colors or the
background are recognized mistakenly as the safety helmets.
(2) ,e safety helmets of incomplete shapes and small sizes
are hard to be recognized. (3) ,e two or more helmets that
are very close to each other are often recognized as a safety
helmet.

6. Discussion

6.1. Effect of the Presented Method. ,e proposed automatic
detection method based on deep learning to detect safety
helmets worn by workers provides an effective opportunity
to improve safety management on construction sites. Pre-
vious studies have demonstrated the effectiveness of locating
the safety helmets and workers and detecting the helmets.

However, most of the studies have limitations in practical
application. Sensor-based detection methods have a limited
read range of readers and cannot be able to confirm the
position relationship between the helmets and the workers.
,e machine learning-based detection methods choose
features artificially with a strong subjectivity, a complex
design process, and poor generalization ability. ,erefore,
the study proposed a method based on deep learning to
detect safety helmets automatically using convolutional
neural networks. ,e experimental results have suggested
the effectiveness of the proposed method.

In the paper, the SSD-MobileNet algorithm is used to
build the model. A dataset of 3261 images containing various
helmets is trained and tested on the model.,e experimental
results demonstrate the feasibility of the model. And the
model does not require the selection of handcraft features
and has a good capacity of extracting features in the images.
,e high precision and recall show the great performance of
the model. ,e proposed model provides an opportunity to
detect the helmets and improve construction safety man-
agement on-site.

6.2. Limitations. However, the detection model has a poor
performance when the images are not very clear, the safety
helmets are too small and obscure, and the background is too
complex as shown in Figure 10. Moreover, the presented
model is limited by the problems that some images of the
dataset are less in quantity; the preprocessing operations of
the images are confined to rotation, cutting, and zooming;
the manual labeling is not comprehensive and may miss
some objects. In some extreme cases, for example, only part
of the head is visible and the safety helmet is obstructed, the
model cannot detect the helmets accurately. ,is is the
common limitation of the-state-of-art algorithms. Due to
the above reasons, the detection performance is not good
enough and there are some detection errors.

Figure 9: Validation results.
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,e algorithm we use emphasizes the real-time detection
and fast speed. However, the accuracy of the detection is also
quite important and the performance needs to be improved.
Hence, in the ongoing studies, we are working at the ex-
pansion and improvement of the dataset in order to solve the
problems of inadequate data with poor quality. More
comprehensive preprocessing operations should be done to
improve the performance of the model.

7. Conclusions

,e paper proposed a method for detecting the wearing of
safety helmets by the workers based on convolutional neural
networks. ,e model uses the SSD-MobileNet algorithm to
detect safety helmets. ,en, a dataset of 3261 images con-
taining various helmets is built and divided into three parts
to train and test the model. ,e TensorFlow framework is
chosen to train the model. After the training and testing
process, the mean average precision (mAP) of the detection
model is stable and the helmet detection model is built. ,e
experiment results demonstrate that the method can be used
to detect the safety helmets worn by the construction
workers at the construction site. ,e presented method
offers an alternative solution to detect the safety helmets and
improve the safety management of the construction workers
at the construction site.
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