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Internet of +ings (IoT) applications have been used in a wide variety of domains ranging from smart home, healthcare, smart
energy, and Industrial 4.0. While IoT brings a number of benefits including convenience and efficiency, it also introduces a
number of emerging threats. +e number of IoT devices that may be connected, along with the ad hoc nature of such systems,
often exacerbates the situation. Security and privacy have emerged as significant challenges for managing IoT. Recent work has
demonstrated that deep learning algorithms are very efficient for conducting security analysis of IoT systems and have many
advantages compared with the other methods. +is paper aims to provide a thorough survey related to deep learning applications
in IoT for security and privacy concerns. Our primary focus is on deep learning enhanced IoT security. First, from the view of
system architecture and the methodologies used, we investigate applications of deep learning in IoT security. Second, from the
security perspective of IoT systems, we analyse the suitability of deep learning to improve security. Finally, we evaluate the
performance of deep learning in IoT system security.

1. Introduction

+e advancement of network theory and architecture in line
with the development of sensors andmicroprocessors paved the
way for the Internet of +ings, and applications such as smart
homes and smart cities are now becoming widely adopted.
According to Gartner, 5.8 billion endpoints will be deployed in
2020, a 21% increase from 2019 [1]. +e market for IoT was
valued at $190 billion in 2018 and is projected to reach $1102.6
billion by 2026, exhibiting a compound annual growth rate
(CAGR) of 24.7% in the forecast period [2]. Banking and fi-
nancial services have the greatest market share, followed by
information technology and telecommunications. Healthcare
and government applications also account for a large pro-
portion of the total IoT market. +e explosive growth of IoT
offers the potential for billions of devices to be connected and
exchanging data for various applications. +e unique charac-
teristics that IoToffers have also brought a series of new security
and privacy threats, of which are a major concern for sus-
tainable growth of IoT adoption.

Often, IoT devices are reported to have vulnerabilities
due to their limited resources which can make them an
attractive target for attack. With billions of devices inter-
connected, many and other connected devices launched a
targeted attack at the domain name provider Dyn [3],
causing a denial of service (DoS) attack against many
popular websites such as GitHub, Twitter, and others. Many
of the devices used for this attack by the Mirai botnet were
using default usernames and passwords. Connected au-
tonomous vehicles (CAVs) are a unique form of IoT, yet
attacks have been demonstrated to show how an Internet-
enabled vehicle could be controlled remotely through a
vulnerability in the media control system that could cause
serious physical harm [4]. To be efficient and lightweight to
deploy, many IoTapplications run on embedded CPUs with
limited memory and battery capacity. Many IoT system
designs highlight the limitation in computing efficiency as a
potential attack vector for security and privacy concerns. IoT
devices are widely used as core controllers in critical in-
frastructures, and they convey valuable information. Stuxnet
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[5] is a well-documented malicious computer worm that
targeted a specific industrial control system (Uranium En-
richment Plant), which suspended the progress of nuclear
weapons program of Iran. IoT technologies play a crucial
role in enhancing real-life applications, such as healthcare,
smart home, and surveillance.
Given the complexity of developing IoT systems inte-

gration, this can potentially provide a wide attack surface for
an adversary. Like the Mirai botnet, devices that have weak
authentication requirements can be easily compromised and
controlled as part of an attack; as the number of connected
devices increases, this attack surface continues to grow.
In this paper, we study how deep learning can be used to

enhance security and privacy in the IoT era. Firstly, we
review security and privacy concerns in IoT systems. We
then survey deep learning-based IoT security and privacy
applications and develop a taxonomy to consider these
works from the viewpoint of deep learning algorithms used
and the IoT security problems that they solve. Finally, we
present the future research trends and challenges that we
have identified. +e main contributions of this paper are
summarised as follows:

(1) We summarize and provide a taxonomy of recent
work using deep learning to enhance the security and
privacy property of IoT system and how deep
learning can help to build a secure IoT system

(2) We identify the weaknesses that still exist in current
research and the discrepancies between these
weaknesses and the requirements of the IoT setting

(3) We investigate the possible future research direc-
tions toward deep learning enhanced IoT security

2. Background

Minerva et al. introduced the architecture of an IoT system
and highlighted the set of features that a systemmust possess
in order to be considered as an IoT system [6]. +e main
features include the following:

(1) Interconnection of -ings. Here, the “+ing” means
smart object that can collect, create, process, and
store data from a user or application perspective.

(2) Connectivity. +e IoT provides Internet connectivity
for objects in the system, including devices, appli-
cations, and key IoT infrastructures.

(3) Uniquely Identifiable -ings. IoT devices should be
uniquely identifiable.

(4) Ubiquity. +e IoT system can provide services that
are available for users anywhere and at any time.

(5) Sensing/Actuation Capability. As the key component
senses the environment, a smart sensor can collect
data from environment and transmit this to the IoT
systems. An actuator can conduct specific operations
depending on the commands received from the IoT
system.

(6) Embedded Intelligence. Advances in artificial intel-
ligence are to be embedded into edge IoT systems.

(7) Interoperable Communication Capability. An IoT
system should be able to communicate using stan-
dard and interoperable communication protocols.

(8) Self-Configurability. Due to the fact that there are a
large number of heterogeneously connected devices
in an IoT system, it is natural that IoT devices may
need to manage and configure themselves, which
could range from software and hardware manage-
ment to resource allocation.

(9) Programmability or Software Defined. Physical de-
vices in IoT systems can be easily customized with a
user’s command or software defined functions
without physical changes.

In our previous works, we defined a service-oriented
architecture (SoA) for the general IoT [7], as shown in
Figure 1. +is paper extends previous works by detailing the
sensing layer, network layer, service layer, and interface
layer. +e sensing layer is integrated with available hardware
objects to sense the statuses of things. +e network layer is
the infrastructure to support wireless or wired connections
among things. +e core of this architecture is the service
layer, which consists of service discovery, service compo-
sition, service management, and service interfaces. +e
service layer allows developers to meet the request of end
users with minimal workload. +e interface layer consists of
the interaction methods with users or applications. We
adopt this architecture for the remainder of the paper.

3. Behaviour Modelling and Analysis of IoT
Using Deep Learning

Deep learning (DL) is considered to be the founding pillar of
modern artificial intelligence [8]. DL has been widely used in
computer vision, speech recognition, robotics, and many
other application areas. Compared with traditional machine
learning techniques, deep learning has some key advantages.
(1) +e use of many hidden layers within a neural network
structure means that deep learning can fit complex nonlinear
relationships between attributes. (2) Popular architectures
such as convolution neural networks (CNNs) and long
short-term memory (LSTM) networks have the ability to
extract and identify useful features directly from raw data
(e.g., autoencoders) instead of relying on hand-crafted
statistical features as performed in traditional machine
learning. (3) Deep learning is particularly well suited for
dealing with ‘big data’ challenges [9].
With billions of devices interconnected together to sense

and share information worldwide, IoT systems naturally
produce a huge volume of data. Deep learning has significant
potential to help analyse user (events, apps) behaviours in
complicated IoT systems. Furthermore, deep learning could
enable IoTdevices to learn complex behaviour patterns more
effectively than traditional learning techniques.
+e IoT is a complete ecosystem that contains a variety of

devices and connections, a tremendous number of users, and
a huge volume of data. To identify the potential vulnera-
bilities that exist within an IoTsystem, it is necessary to look
at the whole IoT ecosystem and the behaviours exhibited
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rather than to focus on the individual device or layers. In this
work, we focus on the following three problems: (1) to
identify the uniqueness of each IoT device by classifying,
training, and extracting device fingerprint of an IoT device;
(2) to investigate the network behaviours in IoT; and (3) to
model data abuse in IoT environment.

3.1. Identify the Uniqueness of IoT Devices Using DL.
Each device in an IoT system will often have some fixed
features, such as physical characteristics or services that it
provides. Based on such features, we can profile a device to
uniquely identify it from other IoT devices in the same
system.
For example, an IoT digital camera could be used to take

photographs and record audio/video and could even link with
social networking data sources if permitted access. +e CCD
sensor in the digital camera has a unique sensor pattern noise
(SPN)which could be used to create a unique fingerprint of the
device. Such fingerprints for IoT devices could also be iden-
tified based on the device users, which can be further analysed
using techniques such as deep learning. Having a means to
fingerprint an IoTdevice and specifically the data generated by
the IoT device (rather than merely relying on serial numbers,
IMEI numbers, and so on) would be particularly beneficial
should there be a need to identify malicious usage of devices in
a complex interconnected IoTsystem. Likewise, this notion of
fingerprinting can also be used as part of authentication and
trust between connected devices:

(1) Device Identification Using DL. Traditional methods
of device identification may use serial numbers, IMEI
codes, or other static identifiers; however, these can
potentially be spoofed or manipulated by an attacker.
Deep learning has the potential to identify subtle
differences between classes when considering a large
feature set to characterise data and therefore could be
effective for device identification as discussed previ-
ously. Deep learning methods can extract features

from the signal or traffic produced by the device in
order to recognise and identify the device.

An example of this is camera model identification,
where the objective is to determine the device that
captured the image provided. Work in [10] proposes
the method of using deep CNNs to automatically
extract features to identify the capture device. +ey
calculate residual noise in the image by subtracting a
denoised version of the image from the image pro-
vided. +e residual noise is then used as input to the
CNN model to extract and identify distinct features
from various device types.Work in [11] uses a CNN to
extract model-related features and then uses a support
vectormachine (SVM) to predict the cameramodel. In
both of these cases, the role of deep learning is primary
for the feature extractor. Similar examples have also
been applied for audio device identification [12].

Radio fingerprinting has also been studied where
devices are identified by their wireless radio device
properties. In [13], Yu et al. propose a solution using
partially stacking-based convolutional DAE to
classify devices through reconstructing a high-SNR
signal. Based on RF fingerprinting techniques,
Bassey et al. proposed a framework to detect
unverified smart devices with deep learning [14].
First, they use a convolutional neural network to
automatically extract high-level features from RF
traces; then, they perform dimensionality reduction
and decorrelation on deep features. Finally, they use
clustering techniques to classify IoT devices.

(2) Service Fingerprint Extraction Using DL. Due to the
dynamic nature of IoTnetworks, it can be difficult to
maintain static fingerprints for devices as they are
connected or removed from the network. +erefore,
establishing a dynamic behaviour baseline is es-
sential. Fingerprinting IoT devices can also be a
challenge due to the heterogeneous nature of IoT
devices, protocols, and command interfaces. Service

(a) (b) (c) (d)

Figure 1: Service-oriented architecture (SOA) of the IoT system: (a) sensor layer; (b) network layer; (c) service layer; (d) interface layer.
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fingerprints identify IoT devices based on the ser-
vices that they provide, which then generates a
profile that can be used to identify the type of device
that it is likely to be. Typically, this would be achieved
using system logs and web traffic as inputs to extract
behavioural fingerprints.

Previously, researchers have employed machine
learning to address challenges in IoT [15–17]. Meidan
et al. propose an IoT device classification framework
based on HTTP packet analysis [15]. +ey perform
this as a two-pass classification to firstly distinguish
between IoT devices and non-IoT devices and then
perform a fine-grain classification model to differ-
entiate between nine distinct IoT devices. In [16], the
authors propose to approximately model IoT be-
haviour by the collection of communication protocols
used, and the set of request and response traffic se-
quences observed, fromwhich device features are then
extracted from the network traffic. Finally, features are
aggregated using a statistical model as a base profile
for device identification. In [17], the proposed scheme
extracts up to 23 features from each packet, from
which they form a fingerprint matrix and use a
random forest to develop a classification model.

More recently, deep learning has been adopted for
IoT behaviour fingerprinting. Reference [18] pro-
poses to use information from network packets to
identify devices. +ey observed that packet inter-
arrival time (IAT) is unique among devices. +ey
extract and plot the IAT graph for packets where
each graph contains 100 IATs. +en, they use the
CNN to learn features from device graphs and
distinguish different devices. Another study in [19]
attempts to automatically identify the semantic type
of a device by analysing its network traffic. First, they
define a collection of discriminating features from
raw traffic flows, and those features are used to
characterise the attributes of devices.

+en, they use a LSTM-CNN model to infer the
semantic type of a device. Due to the large variety of
devices and manufacturers in IoT setting, other re-
searchers [20] argue that traditional intrusion de-
tectionmethods cannot suitably detect compromised
IoT devices given the scale of devices being moni-
tored. +ey propose DI¨OT, a self-learning distrib-
uted anomaly-based intrusion detection system, to
identity compromised devices. DI¨OTcan effectively
build device-type-specific behaviour profile with
minimal human efforts. Federated learning is uti-
lized in DI¨OT to efficiently aggregate behaviour
profiles across devices. Compared with traditional
machine learning, in the works described using deep
learning, features are often automatically extracted
from raw device traffic.

(3) Device Integrity Testing Based on DL. Hardware
Trojans are a major security concern where hardware
can be accessed by untrusted third-party. Based on

the availability of trusted (i.e., golden) chips, hard-
ware Trojan detection methods can be split into
methods that utilise golden chips and alternative
approaches. Traditional methods include one-class
anomaly detection, two-class classification, cluster-
ing, and outlier-based, utilising training data such as
on-chip sensor data and on-chip traffic data.

Research on the topic of deep learning-based hardware
Trojan detection methods is limited but increasing, with
many currently based on simple neural networks as an
anomaly detector. In works such as [21], they use power
consumption data as the model input. To reduce the noise in
data acquisition, wavelet transforms are used. A neural
network is used to distinguish between normal chip power
consumption and deviation in chip performance where a
Trojan may be present. Wen et al. [22] use self-organizing
maps (SOMs) to detect hardware Trojans. +ey employ
Hotspot to catch the steady-state heat-map from running IC.
+en, a 2-dimensional principal component analysis (PCA)
is used to extract features from the heat-map. +e SOM is
used to automatically distinguish Trojan-infected chips.
Both of these methods can efficiently detect hardware
Trojan. Reshma et al. [23] argue that there exists a large
intercluster distance between normal nodes and Trojan
infected nodes, especially in the controllability and transi-
tion probability. +ey extract features from chips using
autoencoders and use k-means to find Trojan nodes. Work
by [24] proposes to extract features from netlists; for each
netlist, they get 11 features. +en, the deep multilayer neural
network is used to find out malicious netlist. However, the
role they play is as an anomaly detector with predefined
features. It is suggested that further research of deep learning
in this application is still required.

3.2. Network Behaviours in IoT. Here, we focus on the
modelling of network behaviours as a result of IoT devices,
including device access control, connection-related activi-
ties, firmware upgrades, and remote access and control of
devices. In particular, it would be beneficial to develop a
model that can identify malicious behaviours across the
network so as to block remote access. +e following network
activities will be considered: network nefarious activity/
abuse, eavesdropping interception/hijacking, outage, dam-
age/loss, and failures/malfunctions. Since IoT devices are
typically constrained in terms of computational resource,
detectors that are designed to operate on the devices will
therefore need to be lightweight and maintain efficiency.
Botnet and DDoS are two primary threats that have been
observed on IoTnetworks in recent times, such as the Mirai
botnet that managed to access and control millions of low-
level devices. As the number of connected IoT devices in-
creases, so will the nature of attacks that attempt to leverage
these to conduct large-scale DDoS operations. Deep learning
has recently been used to attempt to identify such attacks.
Meidan et al. [25] use deep autoencoders to build normal
behaviour profiles for each device. +ey extract statistical
traffic features and train autoencoders with features from
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benign traffic. When applied to new traffic observations for a
new IoTdevice, there exists a bigger reconstruction error on
the trained autoencoder which can be used to indicate that
the device could be compromised. Similar approaches used
in Kitsune [26] use ensembles of autoencoders to identify
anomalies in IoT such as Mirai. Both of the above ap-
proaches assume that normal traffic activity can be ap-
proximately reconstructed, while an anomaly would cause
large reconstruction error. While many detection methods
borrow ideas from traditional intrusion detection or
anomaly detection methods, the above two methods con-
sidered the heterogeneous and resource constraints in IoT
environment.
Other methods use the CNN to automatically identify

malicious traffic in IoT. In [27], they turn the payload in the
traffic packet into a hexadecimal format and visualize it into
a 2D image. +en, they employ a lightweight CNN frame-
work calledMobileNet to extract features from traffic images
and malware classification. To deal with the volume of traffic
needed to analyse this in a DDoS setting, in [28], they
propose a deep learning lightweight DDoS detection system
called LUCID. +ey exploit the weight sharing properties of
the CNN to classify the traffic, which makes it efficient to be
deployed in resource-constrained hardware. To efficiently
extract features from network traffic, authors in [29] employ
damped incremental statistics as basic features. +ey then
use triangle area maps (TAMs)-based multivariate corre-
lation analysis (MCA) to generate grayscale images as
training data from normalized traffic features. +ey then use
these as input to a CNN to learn a model for detecting
anomalies.

3.3.ModelDataAbuse in IoTEnvironment. Data gathered by
IoTnetworks can be of great value, and abuse of this data can
result in serious consequence, e.g., the case made against
Cambridge Analytica. It is therefore crucial that IoT devices
manage data responsibly. Data leakage can occur from the
generation of data, the use of data, and the transmission/
storage of data over the IoT network. For example, data
collection by smart meters will reflect home usage patterns
for electricity, gas, or water, which if leaked could expose
attackers to information about when the house is occupied
or not. Similarly, this information could be exposed by other
smart devices such as kitchen and entertainment appliances.
Intelligent IoT services will naturally aim to gather personal
information to further inform the services being provided,
where personalisation is deemed as enriching user experi-
ence. Five context parameters related to IoTdata privacy are
proposed by [30]: place (“where”), type of collected infor-
mation (“what”), agent (“who”), purpose (“reason”), and
frequency (“persistence”). In this section, we briefly review
works related to data privacy and data integrity.

(1) Data Privacy in IoTwith Deep Learning. In [31], they
study visual privacy within an IoT setting. With low-
end IoT cameras, they propose a method for

constructing privacy protected and forgery-proof
high frame-rate videos. +ey deployed their software
prototype on three different IoT settings: on-site,
vehicular, and aerial surveillance. In [32], the authors
propose a deep and private-feature learning frame-
work called deep private-feature extractor (DPFE).
Based on information theoretic constraints, they are
training a deep model which allows the user to
prevent sharing sensitive information with a service
provider and at the same time enables the service
provider to extract approved information using the
trained model. Similar work in [33] proposes a
feature learning framework that leverages a double
projection deep computation model (DPDCM).
Different from the traditional deep learning frame-
work, they use double projection layers to replace the
hidden layers, which can learn interactive features
from big data. Furthermore, they design a training
algorithm to fit the DPDCM model. To improve the
learning efficiency, cloud computation is used. +ey
also propose privacy-preserving DPDCM based on
BGV encryption to protect personal data.

(2) Federated Learning. Recently, there has been much
interest in developing methods where a collective of
devices can contribute towards a global shared
model, whilst maintaining the privacy of data that is
stored locally on each device. +is is well suited in
settings where there is a large population of devices
that would benefit from collective knowledge but
where there are not the rights or the ownership of
the devices to control the data. Smart phone devices
benefit from federated learning for the purpose of
improving predictive services (e.g., predictive text
and location recommendations) whilst not dis-
closing information about other mobile phone
users. Smart meters and other IoT devices would
benefit in a similar manner. Works by [34] dem-
onstrate that decentralized federated learning can
improve data privacy and security, while reducing
economic cost. Works in [35] integrate deep re-
inforcement learning algorithms and the federated
learning framework into an IoT edge computing
system. +e main focus of their work is to improve
the efficiency of the mobile edge computing system.
+ey design a framework called “In-Edge AI” to
maximise the collaborative efficiency among de-
vices and edge nodes. With this framework,
learning parameters can be exchanged efficiently for
better training and inference. +eir framework can
reduce unnecessary system communication while at
the same time carry out dynamic system level op-
timization and application-level enhancement.
Wang et al. studied a broad range of machine
learning models optimized with gradient descent
algorithms [36]. +eir research first analyses the
convergence bound of distributed gradient descent

Security and Communication Networks 5



algorithms. +en, they propose an algorithm to
reach the best trade-off between local and global
parameter learning while given limited resource
budget.

(3) Data Integrity in IoT with Deep Learning. In an IoT
setting, upholding integrity is vital to ensure that
there is consistency between the actual, physical
observation, and the transmitted data or signals that
represent this activity. False data injection (FDI) is an
attack against a cyber-physical system by modifi-
cation of the sensor data, which could include
SCADA (supervisory control and data acquisition)
systems used widely in sectors supporting critical
national infrastructure. For example, an FDI attack
on an engine sensor could cause erroneous sensor
outputs which would result in severe impact on
physical maintenance algorithms. Likewise, the in-
famous Stuxnet attack [5] involved FDI to falsify the
behaviour of the centrifuges that then caused
physical destruction to the premises.

Recently, deep learning has been used in false data in-
jection detection both in Internet and IoT.Works in [37] use
deep learning algorithms to learn the behaviour feature
model from historical sensor data and employ the learned
model to infer the FDI behaviour in real time. Similar work
was proposed by Wang et al. WangH2018 used a two-stage
sparse scenario-based attack model to detect attack in smart
grid given incomplete network information. To effectively
detect established cyber-attacks, they develop a defense
mechanism based on interval state model. In their model,
they use a dual optimization method to model the lower and
upper bounds of each state parameter, which will maximise
variation intervals of the system variable. At last, they
employ the deep learning model to properly learn nonlinear
and nonstationary behaviour features from historical electric
usage data.

3.4. Deep Learning Methods for IoT Security. In this section,
we will summarize the methods using deep learning tech-
niques to enhance IoTsecurity. Building on this, we propose
methodologies that can extend towards improved IoT
security.

3.4.1. Feature Learning Process. Traditionally, feature ex-
traction consists of data collection, data preprocessing, and
feature extraction. For the purpose of our work, we will
separate this out further to consider four steps: data col-
lection, data encoding, feature definition, and feature ex-
traction. Figure 2 shows the behaviour analysis using a
multilayered hierarchical Bayesian networks, in which se-
curity features are categorised into static features, dynamic
features, and causal features based on existing features
extracted from IoT security behaviour databases.
In the data collection phase, raw data such as RF signals,

device features, heat-map, and raw network packets are
collected. Raw data can often be very large, of mixed data
types, and can contain many unrelated records, and so there

is a need to establish how to manage this information. Data
encoding is the process of defining the basic element of
interest that is contained within the input, such as individual
pixels within a given image or individual packets within a
network traffic stream. Here, we represent each element as xi.
In the feature definition stage, data are organised such that a
coherent understanding of the data object can be analysed.
Typically, input elements could be organized as a distri-
bution, a sequence, a matrix, or more recently in deep
learning, a tensor. Following data encoding, raw inputs can
be transformed into a format that could be used as input for
a deep learning model. Here, we define the feature definition
process asD, and then the data after feature definition can be
represented as

X � D x1, x2, . . . , xk( ), (1)

where D is the process to organize basic element into
predefined orders. Based on feature definition, features are
from inputs. Methods such as statistical methods, series
analysis, frequency analysis, or machine learning are used to
extract features from organized data elements. Here, we
define the feature extraction as

V � F(X) � F D x1, x2, . . . , xk( )( ), (2)

where F is used to represent the feature extraction methods.
Usually, the output in feature extraction is feature vectors
with fixed length V � (v1, v2, . . . , vm). In this work, a two-
step data preprocessing phase is introduced: (1) a data
encoding process that can be used to extract suitable features
from mixed raw inputs and (2) a feature definition process
that provides structure to our data.

3.4.2. Deep Learning for Device Feature Extraction. IoT
networks can consist of a very large number of connected
devices, which can mean that identifying a specific device
within a network becomes challenging. Here, we focus on
techniques to extract features that can identify a specific IoT
device.
One of the most powerful aspects of deep learning is the

ability to automatically learn useful features from raw inputs,
e.g., autoencoders. For device identification, deep learning
methods for device feature extraction can be classified based
on the raw data that they use. Information such as sensor
noise pattern, radio frequency features, or energy con-
sumption can reflect the uniqueness of devices. Using deep
learning, higher level features can be extracted and even very
subtle differences between devices can be discovered. Such is
the case in camera identification, where raw images captured
by using the camera can be gathered. Here, we first define the
raw image set as I and then extract the noise pattern from
images, which are considered to be unique for a given device.
Usually, noise patterns can be calculated as follows:

N � I − F(I), (3)

where I is the original image containing the original noise
and F(i) is the denoised version of I. +e residual noise N is
called signal noise which is typically unique for a given
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device. To extract signal noise patterns from an image, sta-
tistical methods treat the residual noise as a two-dimensional
distribution and extract features such as mean, max, skew-
ness, and kurtosis. Using a frequency representation, noise
signals can be treated as a two-dimensional signal, and then
methods such as wavelet transform or Fourier transform can
be used to identify the frequency of noise level. Different from
methods above, deep learning methods such as in [10] feed
the signal noise matrix directly into the CNN that aims to
automatically extract features from noise with minimal hu-
man intervention.
Using deep learning, in [11], they learn the signal noise

pattern with the signal noise extraction step. For each colour
image I, with its camera model L, the authors extract K
nonoverlapping patches Pk, k ∈ [1, K], with each of size 64
×,64 pixels. To avoid selecting uninformative regions of the
image (e.g., dark or saturated pixels), they exclude all regions
where the average pixel value is near to half of the image
dynamic range. +ey use the CNN to extract noise feature
representation from regions. After that a set of N (N− 1)/2
linear binary SVMs are trained to identify the difference
between different camera models.
Similar work has been performed for RF fingerprinting

[13, 38]. In [38], RF signals (IQ) are collected from multiple
devices. +ey consider the Zigbee device baseband as a
complex time series represented as follows:

r(t) � s1(t) + n1(t), (4)

where n(t) represents the noise. +e training data used here
are historical in-phase and quadrature (I and Q) data from
six ZigBee devices transmitting at 0, −1, −5, −10, and −15
dBm. +ey experiment using different window sizes of 16,
32, 64, 128, and 256 which represent the number of I and Q
input sequences into the deep learning models. Finally, they
utilise different deep learning architectures to assess how
they perform for classifying Zigbee devices.
From the view of energy consumption, a heat-map of

devices can formulate a normal device template. In this
manner, malicious modification of hardware could be
detected. In work [22], authors split chips into several
equal sized grids. +en, they use a randomly generated
“excitation vector” to feed the running chip. Finally, for
each grid, they measure the steady-state temperature. A
2D PCA is used to identify the feature map from the
original heat-map.
To train a device recognition model, data must first be

collected from devices. +en, data must be transformed to
provide features that can be used as input to a deep learning
model. Typical input to the deep learning framework can be

matrix-based, sequence-based or statistical-based. +en,
with the help of deep learning, a normal template of devices
can be formulated.
Traditional ML methods rely on human efforts to extract

features which may not easily scale when considering IoT
devices [39]. Also, manually curated features may be sus-
ceptible to attack or could be manipulated by an attack.
Using deep learning techniques such as autoencoders,
representative features could be identified automatically,
which can be used for fingerprinting devices.

3.4.3. Network Behaviour Modelling with Deep Learning.
+e basic elements that are often considered for network
behaviour modelling are packets, flows, and conversations
between communication entities. Unlike other data, data in
network traffic are heterogeneous. Basic input in network
traffic can be divided into three parts: timestamp, connection
identifier, and data description. A packet could therefore be
represented as p�<time, header, content>. Network be-
haviour can be formally defined as sequence of packets
running between communication nodes:

X � p1, p2, . . . , pm( ), (5)

where packets are sorted based on timestamps.
Given the heterogeneous nature of a network capture, it

can be challenging to extract features directly from a packet
sequence. Typically, statistical features are calculated over
some short time interval to inform feature representation.
Features such as interarrival time, packet length, packet
count, bytes send, and bytes received can be extracted. +is
information can reflect network behaviour property such as
communication frequency, traffic volume, and connectivity.
Furthermore, these features can reflect buffer size and
computational ability and also reflect the services that a
device provides. +is process can be defined as follows:

S � S(X) � S w1, w2, . . . , wk( ), (6)

where wi can be represented as the sequence of packets that
fall in the ith time window. Typically, researchers may ex-
tract uncorrelated statistical features from time, connection,
and content.
Deep learning in network behaviour modelling plays two

roles: (1) automatic extraction of high-level features from
network traffic and (2) automatic identification of corre-
sponding features across feature dimensions. Behaviour
modelling based on deep learning can be defined as

V � H(S) � H w1, w2, . . . , wk( ), (7)

whereH represents the black box, nonlinear function used in
deep learning. After that a fixed length behaviour vector to
represent network behaviour can be achieved.
As mentioned, features such as interarrival time and

packet length could inform of device properties such as
buffer size, computational ability, and the services that the
device provides. With CNN, LSTM, and other deep learning
methods, complex service pattern can be extracted. Such as
work in [18], they use interarrival time (IAT) as features to

Data
encoding

Feature
definition

Feature
extraction

Raw data
collection

Figure 2: Feature learning processes.
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generate a graph of IAT for 100 packets. +e graphs are then
treated as images, and all images are converted to a size of
150×150, where they are then given as input to a neural
network to identify device behaviour pattern. Research from
[19] considers network traffic from devices as sequences of
packets. +ey first split traffic into subflows with fixed time
interval T. For each subflow, features related to the number
of packets, packet length statistics, and protocol-related
features are extracted. +en, a LSTM-CNN cascade model is
used to extract high-level features from the whole flow. Both
[25, 26] use autoencoders to get normal profiles of IoT
devices. Both of them extract packet size, packet count,
packet jitter, and packet size from the flow of packets, and
then the autoencoder is used to reconstruct the original
input to find devices that exhibit deviation in their
behaviour.

3.4.4. Proposed Approach

(1) Semantically Meaningful Device Modelling.Although
deep learning methods may achieve greater accuracy
in device identification, semantically meaningful
device modelling is still lacking. Since the range of
possible IoT devices increases every day, signature-
based methods would fail to recognise new device
types and provide accurate device property records.
Here, we propose a semantically meaningful device
identification framework. +e main concept is to
decouple the feature learning process and devices
identification process via a middle-layer process
called service identification or functional identifi-
cation. For example, a functional collection may
consist of the following activities: {capture image,
record video, share photo, make phone call, play
music}. We could then represent a camera and a
smart phone as follows:

(1) Camera (1, 1, 1, 0, 0)
(2) Smart phone (1, 1, 1, 1, 1)

From the example above, it can be inferred that se-
mantic representation would be more robust for device
modelling. Even though devices may be updated fre-
quently, the basic functionality that such devices offer
will change at a much slower rate. Using deep learning,
a three-step device identification framework can be
introduced: (1) using deep learning, basic features of
devices can be extracted; (2) from the features extracted,
the functional or behaviour model can be constructed,
and the output of this step would be the functions or
services that the device provides; and (3) using the
inferred service type to identify the device. +e training
process of our framework can be described formally as
follows:

Step 1. Extract data from devices including signal
noise pattern, network traffic, device heat-map, and

other relevant attributes. +is data are then
transformed to a tensor input for a deep learning
model. We define the raw data of the ith device as
di, the training data sets as D� di, d2, ···, dn, the
device type of ith device as yi, the training labels of
devices as Y� y1, y2, ···, yn, and the function set of
devices as A� a1,a2,···,ak where k is the size of
function set.
Step 2. Use deep learning to extract features from
raw data, where the feature extraction process can
be defined asΦ, and the extract features are defined
as fi�Φ(di), where fi is the vector of dimension m.
+e feature extraction process can be seen as a
nonlinear mapping from n dimensional raw data
space to m dimensional feature space.
Step 3. Find the mapping between features and
attributes. Here, the mapping can be a linear or
nonlinear decision or even based on a decision tree.
+e mapping here is defined as Ψ, which maps
input of m dimension into a k dimension binary
vector, e.g., (1, 0, 1, 0, 0).
Step 4. Based on attributes, use Bayesian theorem to
calculate the most possible device type.

Compared against previous deep learning ap-
proach, our method clearly separates feature
learning and device type recognition using an
intermediate layer. Whilst features of a device type
may change rapidly, the functions served may
change much slower, and so by using a functional
(or service) layer, we can develop a much more
robust framework for device identification.

(2) Behaviour Analysis via Multilayered Hierarchical
Bayesian Network. Compared with traditional
approaches, deep learning can learn to extract
features from a collection of basic statistics au-
tomatically. One advantage is that deep learning
can find high-level complex features which may be
hard to identify in a statistical setting. Similarly, as
feature extraction can be used in device identifi-
cation, network behaviour modelling using deep
learning can be considered using the same ap-
proach, with the main difference being the
product of the deep learning model. In IoT net-
work behaviour analysis, the aim of deep learning
is to identify patterns in network behaviour. Using
this network behaviour model, malicious behav-
iours can then be identified at the network level.

However, it is important to note that deep learning
models may fail to capture the causal relationship be-
tween traffic features and traffic behaviour. Consequently,
the inner relationships between features and behaviour
may be overlooked by the training process, which is
clearly a vital aspect when examining the network
characteristics. Here, we follow the approach in our
previous work [40], as illustrated in Figure 3, where
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features may be extracted using three approaches si-
multaneously: statistical, time-related, and volume-
related.
+en, using a three-layer Bayesian network, we can

capture interactions between these different feature
representations.

4. Evaluation

To evaluate the performance of DL-based methods, we need
a set of performance measures and we need some bench-
mark dataset to verify the deep learning framework.

4.1.EvaluationMeasure. Precision is one of themost common
used measures in machine learning. Precision is defined as the
number of true positive predictions over the total number of
positive predictions made (where either true or false). In an
intrusion detection system, fp would be the number of false
alerts.

Precision �
tp

tp + fp
, (8)

where tp represents the number of correct cases that were
classified as positive examples and fp represents the number of
incorrect cases that were classified as positive. Another common
performancemeasure is recall (also known as sensitivity). Recall
is defined as the number of true positive predictions over all
positive instances. Recall can be defined as follows:

recall �
tp

tp + fn
, (9)

where fn is the number of positive instances which are in-
correctly classified as negative (false negatives). In an in-
trusion detection system, fn would be the number of attacks
that go undetected. Often, there is an inverse relationship
between precision and recall, where it is possible to increase
one at the cost of reducing the other.
In binary classification, usually the F1 score (also

known as F-Measure or F-score) is used to measure
accuracy. It combines the precision and recall at the same
time to compute the final score. +e F1 score is defined as
the harmonic mean of precision and recall. F1 score is
defined as follows:

F1 � 2∗ precision∗ recall
precision + recall

. (10)

+e maximum score for the F1 measure is 1, where
essentially both perfect precision and perfect recall are both
achieved.
+e receiver operating characteristic (ROC) curve is a

graphical plot that can help us find the discrimination
threshold of a binary classification system. It is a
graphical plot created by plotting the true positive rate
against the corresponding false positive rate with dif-
ferent threshold setting. +e area under curve (AUC) is
the performance measure used for classification systems
with different threshold settings. +e AUC represents the
size of area under the ROC curve, which can be seen as a
measurement of separability. It can give us information
about how much the learning model is capable of dis-
tinguishing between classes. Higher the AUC, the better
the classifier can predict a result that matches with the
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Figure 3: Behaviour analysis via multilayered hierarchical bayesian networks.
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provided labels. Essentially, the higher the AUC, the
higher the model’s classification power.

4.2. Evaluation Dataset

(1) Device Identification. Miettinen et al. [17] introduce
the captures _IoT Sentinel dataset. +ey collect
network traffic during the setup stage of 31 smart
home IoT devices across 27 different device types (4
types are represented by 2 devices each). +ey repeat
the collection process 20 times for each device type.

+e IEEE Signal Processing Society [39] provides a
camera model identification dataset, where images
exhibit noise patterns that are specific to camera
models. +ey use 10 different camera models to
produce images for the training set. For each camera
model (one device per camera model), they take 275
full images. +ey use the same camera models to
create a test set but using different devices. Each
instance of the test data consists of a 512 × 512 pixel
image that is cropped from the centre of an image
taken with the specific camera device.

(2) Intrusion Detection and Anomaly Detection.+eBot-
IoTdataset [41] was created by researchers at UNSW
Canberra Cyber. +ey simulated attacks including
DDoS, DoS, OS and service scans, keylogging, and
data exfiltration attacks in a designated realistic
network environment. +e dataset incorporates a
combination of both normal and malicious traffic.
+e dataset is provided in various data format, such
as original pcap files, the generated Argus files, and
extracted features in csv format. To assist with the
labelling process, they separate the data based on
attack category and subcategories.

IoT-23 [42] is a dataset created by researchers at the
Stratosphere Laboratory to model realistic network
traffic behaviour from IoT devices. +e dataset
contains 23 captures, with 3 captures representing
benign IoT traffic and 20 representing malware
traffic captures. For each malicious packet capture,
they execute a specific malware sample on a Rasp-
berry Pi, with each malware using several protocols
to perform various actions. Samples in their dataset
include raw pcap files and Bro generated json files.
+ey separate the dataset into different folders to
provide labels.

AWID [43] is a dataset created for wireless network
intrusion detection. It contains traffic collected from
real-worldWiFi traffic. Kolias et al. [43] apply several
traditional supervised machine learning approaches
to perform intrusion detection on the AWID dataset.
+ey use mutual information to select the top 20
most informative features to then train 8 classifiers.
Result shows that their framework can achieve an
overall accuracy ranging from 89.43% to 96.2%. In
the original AWID dataset, each data instance in-
cludes 155 features along with the corresponding
training label.

(3) Data Privacy. Lee et al. investigated 14 IoT scenarios
in [30] to randomly structure five contextual pa-
rameters to create IoT scenario descriptions. +ey
request for users to describe their opinions using the
free text field. +ey then use cluster analysis to infer
how these five contextual parameters affect people’s
reaction in IoT environments.

An aggregated electronic signals dataset, namely,
REDD [44], was established to infer devices behind
the smart meter, which is also known as the task of
energy disaggregation. +e REDD dataset consists of
whole-home and circuit/device-specific electricity
consumption for a number of real houses over a
period of several months. With this data, the re-
searchers were able to identify the correspondence
between devices and electricity usage.

5. Challenges and Research Trends

5.1. Research Challenges

(1) Efficiency. Resource constraints of IoT devices re-
main an important impediment towards deploying
deep learning models. Memory efficiency and time
efficiency would be two core concerns in imple-
menting deep learning in real IoT systems. Although
deep learning models can be trained offline, how to
deploy the model remains to be a problem.

+e power of a deep learning model originates from
the large amount of nonlinear, stacked neurons used
in the deep learning architecture. Deep learning
models consume raw data which pass through lay-
ered neurons to inform a decision. How to reduce
the storage and computation needed for execution of
the deep learning model in resource constraints
applications is an ongoing challenge.

With the development of deep learning methods,
various new architectures surpass state-of-the-art
performance. However, many of them have not
necessarily been developed for the IoT setting. To
fully adapt these algorithms to an IoT setting would
certainly help to improve the performance of recent
studies [45, 46].

(2) Adaptive. Devices and applications in the IoT eco-
system are evolving every day, and so deep learning
must also be adaptable in the same way. In a real-world
network, zero-day attacks will occur. New devices are
introduced into the IoT system subsequently. Also, the
distribution of network traffic or signal frequency
would likely change as new devices join the network. A
static trained model cannot easily adapt to changing
conditions and so could result in an increase in false
positives and false negatives. Another ever-changing
element is the request from the end user.+ose changes
bring new challenges to deep learning applications in
the IoT setting. Deep learning algorithms must cope
with the fast-evolving environment both from the
macro- and micro-perspective.
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Another consideration is that many IoTdevices may
be deployed in a wide scale of areas.+e properties of
the environment where IoT are deployed may vary
from each other. Retraining a deep learning model
for each setting not only costs a lot of time but also
requires further labelled training data.

(3) Heterogeneous Data. IoT devices produce a lot of
data with different type and scale, such as data from
signal frequency and network traffic, which although
they may originate from the same device, they will
have different formats. Even data of same type may
differ in scale, such as packets number and bytes
number. Although they all belong to network fea-
tures, they use different scale. How to handle those
heterogeneous data is an ongoing problem [47, 48].

5.2. Research Trends

(1) Resource Efficient Deep Learning. Here are two ways
toward resource efficient deep learning: (1) modifi-
cation on deep learning model itself, compressing or
pruning the original deep learning model and (2)
result cache, preventing duplicate computation by
sharing result among devices.

Previous illuminating studies on neural network
focused on compressing dense parameters matrices
into sparse matrices. One possible approach to re-
duce model complexity would be to convert pa-
rameters into a set of small dense matrices. A small
dense matrix does not require additional storage for
element indices and is efficiently optimized for
processing.

+e ultimate goal of the deep learning model is to
inform decisions. One question is if it is needed to
make decision for every event in system. One ob-
servation shows that device with more computation
power would convey richer services, while compu-
tation limited devices would be inclined to do a
limited set of jobs. So instead, would it be possible to
cache the result instead of repeatedly calculating the
same decision? Similar ideas have been widely used
in computer architecture and operation system de-
sign. Methods such as latest recently used (LRU)
have long been used in the operating system to avoid
duplicate storage access, which could reduce large
amount of unnecessary computation.

(2) Lifelong Learning. Human and animals have the
ability to quickly adapt to new environments; they
can continually acquire, fine-tune, and transfer
knowledge and skills throughout their lifespan. +is
ability, known as the ability of lifelong learning, is
mediated by a rich set of neuron cognitive mecha-
nisms that together contribute to the development
and specialization of our sensorimotor skills as well
as to long-term memory consolidation and retrieval.
Consequently, lifelong learning capabilities are
crucial for computational learning systems and au-
tonomous agents interacting in the real world and

processing continuous streams of information. In
the IoT setting, with dynamically changing envi-
ronments and low-powered devices, lifelong learning
is needed to create more intelligent and efficient
agents.

However, lifelong learning remains a long-standing
challenge in machine learning. +e most common
phenomenon in lifelong learning using traditional
machine learning algorithms is called catastrophic
forgetting, which means with continual acquisition
of incrementally available data from unknown
nonstationary data distributions will decrease the
performance of learning algorithms. +is breaks the
basic assumption of deep learning or other machine
learning, which needs a stationary data distribution
in training data. To improve scaling of deep learning
algorithms in IoT setting, lifelong learning is needed
to co-operate with information incrementally
available over time.

6. Conclusion

In this survey, it is seen that deep learning offers significant
potential across the IoTsetting.+is survey focuses primarily
on the use of deep learning technology to investigate the
security features of devices in the context of IoT. Specifically,
deep learning-based device profiling and fingerprinting were
comprehensively discussed. An approach for semantically
meaningful device modelling was proposed using a func-
tional layer to improve feature mapping for device identi-
fication. Finally, we discussed challenges and research trends
that we intend to explore in our future research.
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