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Abstract. Tumor volume is a topic of interest for the prognostic assessment, treatment response
evaluation, and staging of malignant pleural mesothelioma. Many mesothelioma patients present
with, or develop, pleural fluid, which may complicate the segmentation of this disease. Deep
convolutional neural networks (CNNs) of the two-dimensional U-Net architecture were trained
for segmentation of tumor in the left and right hemithoraces, with the networks initialized
through layers pretrained on ImageNet. Networks were trained on a dataset of 5230 axial sec-
tions from 154 CT scans of 126 mesothelioma patients. A test set of 94 CT sections from 34
patients, who all presented with both tumor and pleural effusion, in addition to a more general
test set of 130 CT sections from 43 patients, were used to evaluate segmentation performance of
the deep CNNs. The Dice similarity coefficient (DSC), average Hausdorff distance, and bias in
predicted tumor area were calculated through comparisons with radiologist-provided tumor
segmentations on the test sets. The present method achieved a median DSC of 0.690 on the
tumor and effusion test set and achieved significantly higher performance on both test sets when
compared with a previous deep learning-based segmentation method for mesothelioma. © 2020
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1 Introduction

Malignant pleural mesothelioma is a cancer of the pleura, the tissue that forms the inner lining of
the thoracic cavity and the outer lining of the lungs. Mesothelioma is an aggressive disease with
a median survival time of 13–16 months for patients on standard chemotherapeutic treatment;
a patient history of asbestos exposure is evident in ∼80% of cases.1,2

Mesothelioma commonly grows as rind-like pleural thickening and exhibits an irregular, non-
spherical morphology.3,4 A majority of mesothelioma patients present with, or develop, pleural
effusion.4,5 These aspects of the disease, combined with the often large anatomical extent of the
tumor and low contrast between tumor and adjacent soft tissues, complicate the image-based evalu-
ation of tumor bulk for treatment response assessment in mesothelioma patients. Tumor bulk is
clinically assessed during treatment through summed linear thickness measurements made accord-
ing to the modified Response Evaluation Criteria in Solid Tumors guidelines.6,7 Considerable
observer variability in mesothelioma tumor thickness measurements and the irregular morphology
and growth patterns of this disease have called into question how accurately such measurements
capture the extent of disease at a given treatment time point.8,9 Volumetric segmentation of tumor
may provide a more comprehensive assessment of tumor bulk; however, the time-consuming
nature of manual outlining of the tumor has prevented the use of volumetric assessment for clinical
purposes. A number of studies have investigated the correlation of image-based mesothelioma
tumor volumewith patient survival and tumor response to treatment and the potential role of tumor
volume in the staging of this disease.10–14
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Deep convolutional neural networks (CNNs) are machine learning-based classifiers that have
shown promise for the classification and segmentation of lesions and other anatomy in medical
images.15,16 Deep CNNs consist of layers of convolutional filters that, through an optimization
process, learn to detect features in images that are associated with a given classification of the
images; downsampling the input image allows the network to analyze and combine features at
different scales of the image. A common CNN architecture used for the segmentation of struc-
tures on medical images is the U-Net architecture.17

Data scarcity is a common issue in the training of deep CNNs for medical imaging-related
tasks. To alleviate this problem, researchers have investigated the use of convolutional layers
pretrained on large natural image datasets, such as ImageNet,18 to initialize deep CNNs applied
to clinical tasks through a process called “transfer learning.”19 This strategy can be used to
directly extract feature descriptors of medical image regions-of-interest for further classification
using a nondeep learning-based machine learning classifier (e.g., in the classification of benign
and malignant lesions) or to initialize the layers of a deep CNN that is subsequently fine-tuned
for a given clinical task through further training.20,21

Previous work on the automated segmentation of mesothelioma tumor on CT scans includes
a stepwise method that aimed to isolate pleural thickening in patients through the segmentation
of the lungs and the ribcage22 and our study that used a deep CNN-based segmentation method
based on the U-Net architecture for the automated segmentation of mesothelioma on CT scans
(“2018 Method”).23 In our prior deep learning-based study, the 2018 Method showed superior
performance to the nondeep learning-based method on an independent test set of CT scans of
mesothelioma patients with radiologist-provided tumor contours. It was found, however, that the
2018 Method showed increased disagreement with observer-provided tumor contours in the
presence of pleural effusion.

Other studies that have explored the correlation of mesothelioma tumor volume with patient
survival and other clinically relevant factors have used semiautomated methods to obtain image-
based patient tumor volumes. These methods typically rely on user-provided tumor contours on
every few axial CT sections; interpolation is subsequently used to obtain tumor segmentations on
other sections.12,13 Such semiautomated methods are more time-efficient when compared with
the fully manual approach; yet, they are still too time consuming to be have been adapted for day-
to-day clinical purposes.

This study aimed to improve the deep learning-based segmentation of malignant pleural
mesothelioma tumor on CT scans of patients who present with pleural effusion through the ini-
tialization of deep CNNs with pretrained convolutional layers, an expanded set of effusion-con-
taining CT scans for training of the networks, and a comprehensive strategy for the evaluation of
the segmentation performance of the networks during training. These modifications of the deep
CNN-based method for the segmentation of mesothelioma were intended to aid in the reduction
of nontumor pixels (in particular, pleural effusion) erroneously classified as tumor by the net-
works. The development of a robust automated segmentation method of mesothelioma tumor
should focus on the exclusion of effusion from segmented tumor, and the performance of such a
method should be assessed on a set of scans that exhibit both tumor and pleural fluid. Volumetric
segmentations of mesothelioma tumor could provide clinicians with additional data to aid them
in their patient management-related decisions; a deep learning-based automated segmentation
method for mesothelioma could eventually lead to an efficient way to estimate tumor bulk for the
clinical evaluation of treatment response of this aggressive disease and allow for efficient data
collection toward advanced pixel-based analyses of tumor in research studies.

2 Materials and Methods

Mesothelioma patients commonly present with pleural effusions and atelectatic (i.e., collapsed)
lung; these abnormalities have considerable overlap in Hounsfield unit (HU) values with
mesothelioma.24 Mesothelioma may invade the chest wall, mediastinum, and/or the abdomen
in late-stage patients.25 This disease rarely affects both sides of the chest; ∼95% of mesothelioma
patients exhibit unilateral disease.26 The present study addressed the identification of meso-
thelioma tumor in patients who exhibited unilateral diseases that had not invaded other structures
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or organs. Deep CNNs were trained separately for the segmentation of disease in the left and
right hemithoraces. Results of the present method were compared with (1) a set of manual tumor
outlines constructed by three thoracic radiologists on CT sections of two test sets not included in
the training set and (2) the output of the 2018 Method on the same test sets.23

2.1 Data Preprocessing

All CT scans used for training, validation, and testing underwent an in-house thoracic segmen-
tation method developed in MATLAB (Mathworks Inc., Natick, Massachusetts) to exclude the
patient table and surrounding air. All CT sections used for training, validation, and testing were
converted from HU values to 32-bit floating-point values in the range [0,1] according to the
following piecewise linear scaling:

• Pixels outside the thorax and pixels of value equal to or below −1000 HUwere assigned a value
of 0, and pixels of value ≥240 HU were assigned a value of 1.

• Pixel values on the range ð−1000 HU;−700 HU� were linearly scaled to the floating-point
range (0, 0.15].

• Pixel values on the range ð−700 HU;−160 HU�were linearly scaled to the floating-point range
(0.15, 0.25].

• Pixel values on the range ð−160 HU; 240 HUÞ were linearly scaled to the floating-point range
(0.25, 1).

This rescaling of pixel values was used to increase the contrast of pixels of values in the “soft-
tissue window” range of ½−160 HU; 240 HU�. The values of the HU ranges and the correspond-
ing floating-point ranges were determined prior to the study through visualization of a subset of
the training set. Following the conversion to the range [0, 1], the rescaled arrays were copied to
three-channel arrays and appropriately normalized for use with the pretrained networks of
this study.

2.2 Training Set

The training set of the present study consisted of 2663 sections from 76 scans of 61 meso-
thelioma patients with disease in the left hemithorax and 2567 sections from 78 scans of 65
mesothelioma patients with disease in the right hemithorax (see Table 1). Of these sections,
525 and 520 sections presented with pleural effusion in the left and right hemithorax, respec-
tively. CT sections that did not present with tumor were excluded from the training set of the
present study.

2.3 Test Sets

Two test sets of CT sections of mesothelioma patients with radiologist-provided reference tumor
segmentations were used for testing the deep CNNs trained in this study. The first of these test

Table 1 Characteristics of CT scans used for training the deep CNNs.

Value

Characteristic Left hemithorax Right hemithorax

No. of patients 61 65

No. of CT scans 76 78

No. of CT sections 2663 2567

Median slice thickness (range) 3 (0.625–5) mm 3 (0.625–5) mm

Median pixel spacing (range) 0.731 (0.561–0.977) mm 0.720 (0.588–0.943) mm
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sets consisted solely of sections on which both tumor and pleural effusion were present; this test
set was collected specifically for this study to test the segmentation performance of the present
method and the 2018 Method on a set of cases with a variety of pleural effusion presentations.
The second test set consisted of sections that did not all present with both tumor and pleural
effusion; this set was used in the present study to test the segmentation performance of the
present method and the 2018 Method on a more general collection of CT scans of mesothelioma
patients.

The test set specifically created for the present study (“Tumor and Effusion Test Set”) con-
sisted of 94 axial CT sections (that all exhibited both tumor and pleural effusion) randomly
selected from 46 CT scans of 34 patients not included in the training or validation sets of the
present study. Reference tumor segmentations on this test set were constructed by a radiologist
experienced in the measurement of mesothelioma (F.L.). Sections exhibiting bilateral disease
and invasion of anatomic structures adjacent to the pleura were excluded from the test set (see
Fig. 1). To reduce anatomic correlation between sections from the same scan, only a single sec-
tion randomly selected from within each of the upper, mid, and lower thoracic regions of any one
scan were included in the test set (for a maximum of three sections per scan); furthermore, all
sections from the same scan were separated in the axial direction by at least 1 cm. Of the 94 axial
sections of this test set, 40 had left-hemithorax disease and 54 had right-hemithorax disease (see
Table 2).

The second test set (“Test Set 2”) of the present study consisted of 130 CT sections from 43
scans of 43 mesothelioma patients not included in the training or validation sets of the present

Fig. 1 Examples of CT sections excluded from the test sets of this study due to (a) bilateral tumor

(tumor foci shown with white arrows) and (b) tumor chest wall invasion (chest wall invasion shown

with white arrow).

Table 2 Test sets used for segmentation performance assessment.

Value

Characteristic Tumor and Effusion Test Set Test Set 2

No. of sections (%)

Left-sided disease 40 (43) 40 (31)

Right-sided disease 54 (57) 90 (69)

Median slice thickness (range) 3 (2.5–4) mm 3 (1–5) mm

Median pixel spacing (range) 0.747 (0.557–0.926) mm 0.723 (0.535–0.883) mm
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study. This test set was created through the combination of the two test sets of our prior published
study on the deep learning-based segmentation of mesothelioma (i.e., the “2018 Method”).23 To
simplify the analysis of the present study, a single set of reference tumor contours for Test Set 2
was constructed using only the reference contours provided by the single observer with the high-
est average interobserver Dice similarity coefficient (DSC) value on each of the test sets of our
prior study (observers A and 4 of our prior study). Exclusion criteria for Test Set 2 included
prominent calcifications, chest-wall invasion, surgical intervention, a mean DSC value across
all observers ≤0.5, and lack of observer agreement on the laterality of disease. Of the 130 axial
sections in Test Set 2, 40 exhibited left-hemithorax disease and 90 exhibited right-hemithorax
disease (see Table 2). In this test set, 39 sections (30%) exhibited pleural effusion.

2.4 Deep CNN Architecture

The Visual Geometry Group (VGG) 16 network architecture, pretrained on the ImageNet
database, was used as the downsampling path of a U-Net deep CNN for the experiments of
the present study.17,27–29 The layers of the downsampling path were initialized using weights
acquired when the VGG16 was trained with scale-jittering on the ImageNet dataset of natural
images (configuration D in the original paper of Simonyan et al.).18,27 The weights of the first two
pretrained convolutional layers of the network were kept fixed during training; other pretrained
layers were fine-tuned during training. The weights of the layers of the upsampling path of the
networks were initialized using Glorot uniform initialization.30

The network architecture is shown in Fig. 2. The network accepted as input a 512 × 512

image matrix and produced a tumor segmentation mask of the same size as the input.
Convolutional layers in the network were followed by a rectified linear unit (ReLU) activation
function, except at the last layer, for which a sigmoid activation function was used to produce
values on the range (0, 1).31 The continuous output of the network was transformed into binary
tumor segmentations using a predetermined threshold value of 0.5. A 2 × 2 max pooling oper-
ation with stride 2 was used to implement the downsampling of the feature matrix at each level of
the downsampling path. The number of feature channels was doubled at each downsampling
step, starting with 64 channels at the input level of the network. Dropout layers of probability
0.5 were used during later stages of the downsampling path to prevent overfitting.32 At each level
of the upsampling path, a two-dimensional upsampling operation using nearest-neighbor inter-
polation was applied to the feature matrix, and the resulting feature map was concatenated with
the feature map from the corresponding level of the downsampling path.

Network loss during training was calculated per image as the binary cross-entropy L,
summed over all pixels, between the deep CNN-predicted segmentation and the corresponding
reference tumor segmentation:

EQ-TARGET;temp:intralink-;e001;116;291Lðti; piÞ ¼ −½ti logðpiÞ þ ð1 − tiÞ logð1 − piÞ� (1)

where ti is an indicator variable taking the value 1 if the reference classification of pixel i is
tumor and 0 otherwise, and pi is the deep CNN-predicted probability that pixel i is tumor
or background. The Adam method was used to optimize the network during training using
an initial learning rate of 10−5, chosen after initial investigations on a subset of the training
set.33 The deep CNN architecture was implemented with the Keras and Tensorflow deep learning
frameworks.34 Experiments were run using a batch size of 1 on a scientific computing cluster at
The University of Chicago using Nvidia GeForce GTX Titan and Nvidia Tesla K20c Kepler-
class graphics processing units (GPUs; Nvidia, Santa Clara, California).

2.5 Experiments

Deep CNNs were trained separately on sections and reference segmentations of mesothelioma
patients with visible disease in the left and right hemithoraces. Validation sets were used to select
the optimal deep CNN of each hemithorax for application to the test sets. For the left hemithorax,
372 CT sections from 10 scans of nine patients were excluded from the training set and used as
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a validation set during training; for the right hemithorax, 316 CT sections from 10 scans of 10
patients were excluded from the training set and used as a validation set during training.

The training and validation sets of each hemithorax were divided into subsets of (1) sections
that exhibited tumor with no apparent effusion (“tumor only”) and (2) sections that exhibited
both tumor and effusion (“tumor and effusion”). Table 3 presents the number of sections in each
subset of the training and validation sets of each hemithorax. The training set of each side of the
chest contained approximately four times as many sections that exhibited tumor without appar-
ent effusion than sections that exhibited both tumor and effusion. To determine the optimal rel-
ative proportion of the two classes of sections (i.e., “tumor only” and “tumor and effusion”) in

Fig. 2 The VGG16/U-Net deep CNN architecture of the present study. Dashed outlines indicate

VGG16 layers pretrained on the ImageNet database. Arrows indicate the flow of the input matrix

and feature matrix through the network. Convolutional layers are labelled with “Conv” and a triplet

of numbers that represents the number of feature channels, height of the convolution window, and

width of the convolution window, respectively. A dropout probability of 0.5 was used during train-

ing. ReLU activation functions were used following convolutional layers, except where noted.

Upsampling was implemented through nearest neighbor interpolation.
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the training set of each hemithorax, the values of 1:1, 2:1, and 4:1 were explored for the relative
proportion of the two classes during training; the validation set of each hemithorax was used to
determine the optimal relative frequency of the two classes.

Three metrics of segmentation performance were calculated on the validation set of each
hemithorax during training: the median DSC, the median average Hausdorff distance (AHD;
also known as the modified Hausdorff distance), and the ratio P of the total number of predicted
tumor pixels to the total number of reference tumor pixels. The DSC is defined as follows:

EQ-TARGET;temp:intralink-;e002;116;336DSCðS1; S2Þ ¼
2jS1 ∩ S2j

jS1j þ jS2j
; (2)

where jS1j and jS2j represent the respective area of each segmentation and jS1 ∩ S2j represents
the area of the intersection of the two segmentations.35,36 AHD is an evaluation metric for a pair
of segmentations that takes into account the spatial location of the segmentation boundaries:36,37

EQ-TARGET;temp:intralink-;e003;116;255AHDðA; BÞ ¼ max ½dðA; BÞ; dðB; AÞ� (3)

where A and B represent the two tumor contours (i.e., tumor segmentation outlines) under com-
parison and dðA; BÞ is defined as the Euclidean distance to the nearest point on contour B from a
point on contour A averaged across all points on contour A. The AHD metric has been found to
be more robust in the presence of outliers relative to the original Hausdorff distance.37 These
three metrics were calculated on the validation set approximately every 1000 network updates
during training. Deep CNNs were trained for 3 × 105 updates or until performance metric values
on the validation set indicated that the deep CNN had started to overfit the training set.

Minimal data augmentation was applied to the training set due to the inherent asymmetry of
chest anatomy. For the present study, a rotation of either −10 deg or þ10 deg and scaling of
either 0.9 or 1.1 were selected for each CT scan of the training set. The values of rotation and
scaling were determined by visualizing different rotation angles and scaling values on example
CT sections from the training set.

Table 3 Division of training and validation sets of each hemithorax into sections that exhibit tumor

without apparent effusion (“tumor only”) and sections that exhibit tumor with apparent effusion

(“tumor and effusion”). No scans of the same patient formed a part of both the training and

validation sets of a given hemithorax.

Characteristic No. of scans Median no. of sections per scan

Left hemithorax, training set

Tumor only 33 (2138 sections) 58 (range: 8–126)

Tumor and effusion 54 (525 sections) 7 (range: 1–68)

Left hemithorax, validation set

Tumor only 4 (275 sections) 70 (range: 58–77)

Tumor and effusion 8 (97 sections) 9 (range: 3–33)

Right hemithorax, training set

Tumor only 35 (2047 sections) 59 (range: 14–112)

Tumor and effusion 50 (520 sections) 6 (range: 1–48)

Right hemithorax, validation set

Tumor only 4 (215 sections) 56 (range: 16–88)

Tumor and effusion 8 (101 sections) 6.5 (range: 1–38)
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Median AHD was found to be a more representative metric of overall segmentation perfor-
mance during training than the median DSC. Figure 3 shows a scatter plot of the median DSC
and median AHD values obtained for the “tumor only” and “tumor and effusion” subsets of
the validation set of the left hemithorax. The general trend shown in Fig. 3, for which lower
median AHD values were associated with relatively high median DSC values and higher median
DSC values were not necessarily associated with low median AHD values, was evident on plots
of median DSC as a function of median AHD for the validation sets of both hemithoraces. The
minimum median AHD on the validation set of each hemithorax was therefore selected as the
segmentation performance metric for the selection of CNNs for application to the test sets. Only
a single optimal deep CNN was chosen for application to the test sets for each hemithorax.

To evaluate interobserver agreement in the manual segmentation of mesothelioma tumor on
CT sections that exhibit pleural effusion, the mean interobserver DSC value among five radi-
ologists (i.e., the mean of the ten interobserver comparisons made for each section) on a set of 69
axial CT sections from 27 scans of 27 patients was compared between (1) sections for which at
least one observer excluded an area of pleural effusion from the tumor contours and (2) sections
for which none of the five observers excluded an area of pleural effusion from tumor contours.
These images formed a part of Test Set 2 of the present study and were used in a previously
published study on observer variability in mesothelioma tumor measurements.38

2.6 Statistical Analysis

The two-sided Wilcoxon signed-rank test was used to test the null hypothesis that the distri-
butions of DSC values and AHD values were identical for the present method and the 2018
Method when compared with reference tumor segmentations of the two test sets of this study.
The two-sided Wilcoxon rank-sum test was used to test the null hypothesis that the distribu-
tions of average interobserver DSC values were identical for (1) sections on which at least one
out of five radiologists excluded an area of effusion from mesothelioma tumor contours and
(2) sections on which none of the five radiologists excluded an area of effusion from tumor
contours on a set of 69 CT sections. The Bonferroni–Holm correction was used to account for the
five statistical comparisons made in this study.39 Statistical tests were made using MATLAB.

Bland–Altman plots were used (1) to evaluate the agreement between tumor area segmented
by the present method and observer-segmented tumor area on each test set of this study and (2) to
evaluate the agreement between tumor area segmented by the 2018 Method and observer-seg-
mented tumor area on each test set of this study. Absolute differences in the segmented area of

Fig. 3 Median DSC as a function of the median AHD obtained on the “tumor only” and “tumor and

effusion” subsets of the validation set during training, shown for the left hemithorax and a 4:1 rel-

ative frequency of tumor only and tumor and effusion sections in the training set. The same general

trend was observed for both sides of the chest across all relative frequencies of tumor only and

tumor and effusion sections in the training sets.
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the computerized methods and observer-segmented area were found to correlate with the average
segmented tumor area of the segmentation approaches being compared, violating the normality
assumption for calculation of 95% limits of agreement according to the Bland–Altman method.
Therefore, the 95% limits of agreement were estimated using relative differences in segmented
area as d� 1.96s, where d is the mean and s is the standard deviation of the relative differences
between the two segmentation approaches being compared.40 The standard error (SE) of d was

estimated as
ffiffiffiffiffiffiffiffiffiffi

s2∕n
p

and the SE of the 95% limits of agreement was estimated as
ffiffiffiffiffiffiffiffiffiffiffiffi

3s2∕n
p

, where
n is the number of samples. 95% confidence intervals (CIs) for d and the 95% limits of agree-
ment were found by adding and subtracting 1.96 × SE from each value in question.41

3 Results

For the left hemithorax, a 4:1 relative frequency of tumor only and tumor and effusion subsets of
the training set was found to achieve the lowest median AHD on the validation set. For the right
hemithorax, a 1:1 relative frequency of tumor only and tumor and effusion subsets of the training
set was found to achieve the lowest median AHD on the validation set. All results presented in
this section refer to these cases for the respective side of the chest.

Fig. 4 Average loss L on the training set, and average loss L, median DSC and median AHD on

the validation sets during training (a) of the left-hemithorax deep CNN and (b) of the right-hemi-

thorax deep CNN. Solid lines indicate average values on the training set across the tumor only and

tumor and effusion validation sets of each hemithorax. Shaded areas indicate the range of the

average loss, median DSC, and median AHD across the tumor only and tumor and effusion val-

idation sets of each hemithorax. Median DSC values are shown with a scaling factor of 10 for

visual clarity. Validation set performance was assessed approximately every 1000 updates.

The vertical dashed lines indicate the training updates after which the deep CNNs were applied

to the test sets.
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3.1 Training

The average binary cross-entropy loss L on the training and validation set of each hemithorax
and the median DSC and median AHD across the validation set of each hemithorax during train-
ing are shown in Fig. 4 for each hemithorax. The lines in Fig. 4 indicate the average loss on the
training set, and the average loss, average median DSC, and average median AHD across the
tumor only and tumor and effusion validation sets for each hemithorax. The shaded areas in
Fig. 4 indicate the range of the loss, median DSC, and median AHD between the tumor only
and tumor and effusion validation sets of each hemithorax. An overall better segmentation per-
formance across both subsets of the validation sets of each hemithorax was found when choosing
the optimal network based on the minimum median AHD achieved on the tumor and effusion
subset of the left hemithorax and based on the minimum median AHD achieved on the tumor
only subset of the right hemithorax. Table 4 lists the minimum median AHD achieved on the
tumor and effusion and the tumor only validation set of the left and right hemithorax, respec-
tively, and the corresponding median DSC, loss, and ratio of the number of deep CNN-predicted
tumor pixels to reference tumor pixels for both validation sets at the corresponding training
update.

3.2 Tumor and Effusion Test Set

Figure 5 shows boxplots of DSC values and AHD values obtained when comparing the predicted
tumor segmentations of the present deep CNN method and the 2018 Method with the reference
tumor contours on the Tumor and Effusion Test Set. The median DSC and median AHD for the

Table 4 Minimum median AHD value achieved on the tumor and effusion validation set of the left

hemithorax and the minimum median AHD value achieved on the tumor only validation set of the

right hemithorax and the corresponding average loss L, median DSC value, median AHD value,

and ratio of the number of predicted tumor pixels to reference tumor pixels (pixel ratio) for both

validation sets of each hemithorax during training.

Hemithorax Validation set Metric Training update Value

Left Tumor and effusion Minimum median AHD 167,236 3.05 pixels

Average L — 0.048

Median DSC — 0.844

Pixel ratio — 0.95

Tumor Only Median AHD — 3.07 pixels

Average L — 0.048

Median DSC — 0.844

Pixel ratio — 0.82

Right Tumor and effusion Median AHD 182,620 2.22 pixels

Average L — 0.032

Median DSC — 0.885

Pixel ratio — 1.08

Tumor only Minimum median AHD — 2.12 pixels

Average L — 0.020

Median DSC — 0.809

Pixel Ratio — 1.00
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present method on this test set were 0.690 (range: 0.070–0.936) and 5.1 mm (range: 0.9–
59.1 mm), respectively. The median DSC and median AHD for the 2018 Method on the same
CT sections were 0.499 (range: 0.055–0.907) and 6.3 mm (range: 2.0–57.0 mm), respectively.
Differences in the distributions of DSC values (p < 0.00001) and AHD values (p < 0.001)
between the two methods on this test set were found to be statistically significant using the
two-sided Wilcoxon signed-rank test.

Figure 6(a) shows a Bland–Altman plot of the relative differences in the segmented tumor
area by the present deep CNN method and the observer-segmented tumor area on the Tumor and
Effusion Test Set. The mean relative difference in the segmented tumor area between the present
method and the observer-segmented area was −8.2% (95% CI:−17.5% to 1.1%) with 95% limits
of agreement [−96.3%, 79.9%] (95% CIs: −112.1% to −80.6% and 64.2% to 95.6% for the
lower and upper limits, respectively). Figure 6(b) shows a Bland–Altman plot of the relative
differences in the segmented tumor area by the 2018 Method and the tumor area segmented
by the observer on the Tumor and Effusion Test Set. The mean relative difference in the

Fig. 5 Boxplots showing segmentation performance of the present method and the 2018 Method

when comparing predicted tumor segmentations with radiologist-acquired reference tumor seg-

mentations on the Tumor and Effusion Test Set. Horizontal lines inside boxes indicate the median

value of each distribution; crosses indicate the mean value of each distribution. (a) DSC values on

the Tumor and Effusion Test Set. (b) AHD values on the Tumor and Effusion Test Set.

Fig. 6 Bland–Altman plots showing relative differences between the segmented tumor area of the

present method and of the 2018 Method and the observer-segmented tumor area on the Tumor

and Effusion Test Set. Means of relative differences and 95% limits of agreement are shown as

dashed lines. (a) Relative differences in tumor area between the present method and the observer

on the Tumor and Effusion Test Set. (b) Relative differences in tumor area between the 2018

Method and the observer on the Tumor and Effusion Test Set.
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segmented tumor area between the 2018 Method and the observer-segmented area was 68.6%
(95% CI: 58.4%–78.7%) with 95% limits of agreement [−27.7%, 164.9%] (95% CIs: −44.9% to
−10.5% and 147.7% to 182.1% for the lower and upper limits, respectively).

Figure 7 shows the preprocessed CT sections, reference tumor segmentations, and predicted
tumor segmentations of the present method for three example CT sections selected at random
from the lowest 10th percentile, the interquartile range, and the top 10th percentile of the DSC
values found when comparing predicted tumor segmentations of the present method with refer-
ence segmentations on the Tumor and Effusion Test Set of this study.

3.3 Test Set 2

Figure 8 shows boxplots of DSC values and AHD values obtained when comparing the predicted
tumor segmentations of the present method and the 2018 Method with the set of reference tumor
contours on Test Set 2. The median DSC and median AHD for the present method on Test Set 2
was 0.780 (range: 0.175–0.927) and 2.9 mm (range: 0.7–50.7 mm), respectively. The median
DSC and median AHD for the 2018 Method on Test Set 2 was 0.764 (range: 0.108–0.938) and
3.3 mm (range: 0.8–56.9 mm), respectively. The difference in the distributions of AHD values
between the two methods on this test set was found to be statistically significant (p ¼ 0.008)
using the two-sided Wilcoxon signed-rank test; the difference in the DSC value distributions did
not reach statistical significance on this test set using the two-sided Wilcoxon signed-rank
test (p ¼ 0.23).

Figure 9(a) shows a Bland–Altman plot of the relative differences in the segmented tumor
area by the present method and the average observer-segmented tumor area on Test Set 2.

Fig. 7 Preprocessed CT sections (top), observer reference tumor segmentations (middle; black

outlines), and predicted tumor segmentations by the present method (bottom; black outlines), for

three sections from different CT scans of the Tumor and Effusion Test Set. Sections were selected

at random from (a) the bottom 10th percentile (DSC ¼ 0.086, AHD ¼ 33.6 mm), (b) the inter-

quartile range (DSC ¼ 0.619, AHD ¼ 4.5 mm), and (c) the top 10th percentile (DSC ¼ 0.880,

AHD ¼ 3.0 mm) of the DSC values obtained when comparing predicted tumor segmentations

of the present method and observer reference segmentations.
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The mean relative difference in the segmented tumor area by the present method and the
observer-segmented area was −17.4% (95% CI: −23.1% to −11.7%) with 95% limits of agree-
ment [−80.8%, 46.0%] (95% CIs: −90.5% to −71.2% and 36.4% to 55.6% for the lower and
upper limits, respectively). Figure 9(b) shows a Bland–Altman plot of the relative differences in
the segmented tumor area by the 2018 Method and the observer-segmented tumor area on Test
Set 2. The mean relative difference in the segmented tumor area between the 2018 Method and
the observer-segmented area on this test set was 11.8% (95% CI: 3.3%–20.2%) with 95% limits
of agreement [−83.1%, 106.6%] (95% CIs: −97.5% to −68.7% and 92.2% to 121.0% for the
lower and upper limits, respectively).

Figure 10 shows the preprocessed CT sections, reference tumor segmentations, and predicted
tumor segmentations of the present method for three example CT sections selected at random
from the lowest 10th percentile, the interquartile range, and the top 10th percentile of the DSC
values found when comparing predicted tumor segmentations of the present method with refer-
ence segmentations on Test Set 2 of this study.

Fig. 9 Bland–Altman plots showing relative differences between the segmented tumor area of the

present method and of the 2018 Method and the observer-segmented tumor area on Test Set 2.

Means of relative differences and 95% limits of agreement are shown as dashed lines. (a) Relative

differences in tumor area between the present method and the observer on Test Set 2. (b) Relative

differences in tumor area between the 2018 Method and the observer on Test Set 2.

Fig. 8 Boxplots showing segmentation performance of the present method and the 2018 Method

when comparing predicted tumor segmentations with radiologist-acquired reference tumor seg-

mentations on Test Set 2. Horizontal lines inside boxes indicate the median value of each dis-

tribution; crosses indicate the mean value of each distribution. (a) DSC values on Test Set 2.

(b) AHD values on Test Set 2.
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3.4 Interobserver Agreement for CT Sections that Exhibit Tumor and
Effusion

Out of the 69 CT sections in the set of images used for the assessment of interobserver agree-
ment, one or more of the five observers excluded pleural effusion from tumor contours on 26
sections (38%); the mean of the average interobserver DSC values on these 26 sections was
0.712 (median 0.743; range 0.512–0.853). The mean of the average interobserver DSC value
on the 43 CT sections of this set for which none of the five observers excluded pleural effusion
from tumor contours was 0.757 (median 0.779; range 0.517–0.915). The difference in the DSC
distributions for these two subsets did not reach statistical significance using the two-sided
Wilcoxon rank-sum test (p ¼ 0.07).

4 Discussion

Mesothelioma patients commonly present with pleural effusion on imaging examinations;
a majority of patients with this disease present with effusion at initial diagnosis.3,4 The robust,
automated volumetric segmentation of mesothelioma tumor thus requires the proper differen-
tiation of fluid from the adjacent tumor so that fluid is excluded from the segmented tumor
volume. Our previous study on the deep learning-based segmentation of mesothelioma
(“2018 Method”) showed a significantly improved segmentation performance when compared
with a prior stepwise mesothelioma segmentation method; however, this deep learning-based
method did not adequately exclude pleural effusion from tumor contours.22,23 Compared with

Fig. 10 Preprocessed CT sections (top), observer reference tumor segmentations (middle; black

outlines), and predicted tumor segmentations by the present method (bottom; black outlines), for

three sections from different CT scans of Test Set 2. Sections were selected at random from (a) the

bottom 10th percentile (DSC ¼ 0.374, AHD ¼ 5.4 mm), (b) the interquartile range (DSC ¼ 0.709,

AHD ¼ 13.0 mm), and (c) the top 10th percentile (DSC ¼ 0.877, AHD ¼ 0.8 mm) of the DSC val-

ues obtained when comparing predicted tumor segmentations of the present method and observer

reference segmentations.
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the 2018 Method, the present deep CNN-based mesothelioma segmentation method showed
significantly greater overlap with radiologist-provided reference tumor contours on a test set
of 94 CT sections (i.e., the “Tumor and Effusion Test Set”) that all exhibited both tumor and
pleural effusion. The agreement between deep CNN-predicted tumor contours and observer-
provided reference tumor contours on this test set, as evaluated using the AHD metric, was
found to be significantly higher for the present method when compared with the 2018
Method. Bland–Altman plots comparing the segmented tumor area by the two deep learn-
ing-based methods with the observer-segmented tumor area on the Tumor and Effusion Test
Set showed (1) a reduction in bias for the present method when compared with the 2018
Method and (2) a 95% CI for the mean relative bias of the present method that included 0.
These results show a significant improvement in the performance of the present segmentation
method when compared with the 2018 Method for the task of segmenting mesothelioma tumor
on CT scans that exhibit pleural fluid.

The presence of pleural effusion on the CT scans of mesothelioma patients may increase
observer variability in the task of mesothelioma segmentation due to the potentially unclear
boundaries of tumor and fluid and the overlap in HU values between tumor and pleural fluid.
A limitation of the present study was the inability to obtain interobserver comparisons on the
Tumor and Effusion Test Set. To estimate the effect of pleural effusion on mesothelioma tumor
contour variability among radiologists, the mean interobserver DSC value between pairwise
combinations of five radiologists on a set of 69 axial CT sections was compared between (1) sec-
tions for which at least one radiologist excluded an area of pleural effusion from tumor contours
and (2) sections for which none of the five radiologists excluded an area of pleural effusion from
tumor contours. These sections were used in a previously published study on observer variability
in mesothelioma tumor area measurements.38 The difference in the DSC distributions for these
two subsets did not reach statistical significance (p ¼ 0.07); however, the lower mean interob-
server DSC value for sections containing pleural effusion suggests that the concurrent presence
of pleural fluid and mesothelioma tumor results in lower radiologist agreement in the task of
mesothelioma tumor segmentation on CT scans.

Test Set 2 of this study included 130 CT sections from the two test sets that were used to
evaluate segmentation performance in our previous study of the 2018 Method and provided a
more general set of mesothelioma tumor presentations; 30% of the sections of Test Set 2 included
pleural effusion. The present method did not show a significantly higher overlap with the set of
observer-provided reference tumor contours on this test set when compared with the 2018
Method; however, the present method did achieve a significantly lower median AHD when com-
pared with the 2018 Method on this test set. Bland–Altman analysis of the predicted tumor area
by the two computerized methods on Test Set 2 showed a negative mean bias in predicted tumor
area for the present method; however, the 95% limits of agreement for the relative difference in
computerized tumor area and observer-segmented tumor area were narrower for the present
method when compared with the 2018 Method. The improved agreement of the present method
with radiologist-provided tumor contours on Test Set 2 shows that, despite the principal aim of
the present method being the improvement of mesothelioma tumor segmentation on scans
that exhibit both tumor and pleural effusion, the segmentation performance of the present
method remains adequate across a test set for which the majority of cases do not exhibit pleural
effusion.

Previous studies have found high interobserver variability in radiologist measurement of
mesothelioma tumor.38,42 The median DSC value for radiologist interobserver comparisons was
found to range from 0.65 to 0.81 across the two test sets of our previous study on the deep
learning-based segmentation of mesothelioma.23 Across both test sets of the present study, the
overlap of deep learning-predicted tumor segmentations with radiologist tumor contours
remained on par with radiologist interobserver overlap achieved on the two test sets of our pre-
vious study. Despite these encouraging results, the present method remains to be clinically vali-
dated through an observer study, whereby the segmentation performance of the method would be
assessed by radiologists experienced in the measurement and assessment of mesothelioma
tumor.

The present study trained deep CNNs separately for the segmentation of disease in the left
and right hemithoraces. Across the 94 axial CT sections of the Tumor and Effusion Test Set,
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there were no pixels erroneously predicted as tumor in the contralateral hemithorax. For the 130
sections of Test Set 2, there were three sections on which pixels of the contralateral hemithorax
were erroneously included in the predicted segmentation by the present method. In one of these
cases, 211 pixels (corresponding to a volume of 32 mm3) of the descending aorta and hilar
vessels of the contralateral thorax were identified as tumor on a noncontrast-enhanced scan;
in the other two cases, parts of a contralateral pleural effusion on two sections of the same
CT scan were erroneously identified as tumor (71 and 833 pixels, corresponding to a volume
of 24 and 282 mm3, respectively).

The method presented in this study did not incorporate three-dimensional (3D) context for
the automated segmentation of mesothelioma tumor; the improvement in the segmentation per-
formance when compared with the 2018 Method was achieved through the use of pretrained
convolutional filters, an extensive validation methodology, and a more varied set of training
sections that exhibited tumor with pleural effusion. Results on the validation sets of this study
indicated that axial context could aid in the deep learning-based segmentation of mesothelioma
on sections where the tumor was located adjacent to soft-tissue structures (e.g., medial tumor).
The training of 3D CNNs requires higher-memory GPUs due to the larger image volumes that
are processed during training and the increase in the number of parameters associated with 3D
convolutional filters. Other deep CNN-based segmentation studies have employed image sub-
sampling and/or downsampling to reduce the size of the image volumes used for training and
testing.43,44 The variability in slice thickness across CT scans, combined with the anatomic extent
and variability in appearance of mesothelioma tumor, precluded the development of a simple
method for the subsampling of image volumes for this study. The use of downsampled lower-
resolution CT volumes for training 3D CNNs was not pursued in this study due to the lack of
fast, high-memory GPUs available for the training of the networks; furthermore, it is unclear to
what extent gains in the segmentation performance achieved with increased axial context would
overcome presumed reduction in the segmentation performance due to the lower resolution of
the predicted tumor segmentations. An alternative to the full 3D approach is a more memory-
efficient “2.5D” approach, which could allow for axial context to be incorporated in future stud-
ies for the full in-plane resolution segmentation of mesothelioma. For this approach, to provide
additional 3D context, the network architecture would be modified to accept as input sections
axially adjacent to the section for which tumor segmentation will be predicted; this technique has
been applied to the task of liver segmentation.45

5 Conclusions

This study implemented a deep learning-based method for the automated segmentation of meso-
thelioma tumor on CT scans, with the principal aim of improving the segmentation performance
on scans of patients who presented with pleural effusion. Improvement in segmentation perfor-
mance, when compared with our previously published study on deep learning-based segmen-
tation of mesothelioma, was achieved through pretrained convolutional filters, an extensive
validation methodology, and a more varied set of training sections that exhibited both tumor
and pleural effusion. Significantly higher agreement with observer-provided tumor contours,
in terms of segmentation overlap and the average distance between computerized and manual
tumor contours, was found when compared with our previously published deep learning-based
method on a test set of CT sections that exhibited both tumor and pleural fluid.
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