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Abstract
With the improvement of electronic circuit production methods, such as reduction of component size and the increase of
component density, the risk of defects is increasing in the production line. Many techniques have been incorporated to check
for failed solder joints, such as X-ray imaging, optical imaging and thermal imaging, among which X-ray imaging can inspect
external and internal defects. However, some advanced algorithms are not accurate enough to meet the requirements of quality
control. A lot of manual inspection is required that increases the specialist workload. In addition, automatic X-ray inspection
could produce incorrect region of interests that deteriorates the defect detection. The high-dimensionality of X-ray images
and changes in image size also pose challenges to detection algorithms. Recently, the latest advances in deep learning provide
inspiration for image-based tasks and are competitive with human level. In this work, deep learning is introduced in the
inspection for quality control. Four joint defect detection models based on artificial intelligence are proposed and compared.
The noisy ROI and the change of image dimension problems are addressed. The effectiveness of the proposed models is
verified by experiments on real-world 3D X-ray dataset, which saves the specialist inspection workload greatly.

Keywords Joint defect detection · Deep learning · Automated X-ray inspection · Quality control

Introduction

With the improvement of electronic circuit production meth-
ods, the production speed of electronic products, such as
mobile phones and notebook computers, is also increasing.
At the same time, in the printed circuit board (PCB) assem-
bly process, due to the reduction of component size and the
increase of component density, the risk of defects is increas-
ing [1]. Therefore, an efficient and accurate quality control
system is essential.
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Structural defects are one of the main types of defects
in assembled circuit boards, which includes insufficient sol-
der, voids, and short circuits [2]. With the help of automatic
detection method, it decreases the manual workload and mit-
igates the errors brought by specialist subjective judgments
and specialist fatigue. Imaging-based automatic inspection
methods such as optical imaging and thermal imaging are
often used in the production line for quality control [3–6].

Compared with optical and thermal imaging, X-ray imag-
ing can better reflect not only external but also internal
defects. To simply put the mechanism, solder uses heavy
materials such as silver, copper and lead, which are eas-
ily imaged under X-ray, while the light materials that form
other components are not easily imaged. The amount of
heavy materials can also be reflected from the X-ray imag-
ing. Therefore, the solder quality can be checked on theX-ray
images, externally and internally. Therefore, automated X-
ray inspection (AXI) has been widely used in electronics
manufacturing tomonitor the quality of printed circuit board.
For example, X-ray image features can be modeled and visu-
alized in 2D space for defect detection. The detection was
based on visualizing the deviation of the defect joint fea-
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tures from the normal joint [7]. The X-ray images can also
be used in 3D space to form a spatial model. By comparing
spatial characteristics such as volume and propagation direc-
tion, defect solder joints can befiltered out [8].However, such
computerized tomography images require high computation
complexity and take time to check one sample.

In recent years, deep convolutional neural networks
(CNNs) have shown competitive performance in many fields
such as image classification and object detection [9–11].
Image based features can be extracted efficiently by CNNs.
Feature extraction is very important for imaging-basedmeth-
ods whether it is optical imaging, thermal imaging or
X-ray imaging. In the field of solder joint inspection, some
researches emphasize on extracting accurate features and
propose innovative extracting methods on optical images,
such as line-based-clustering method proposed by Gao et
al. [4] and the reference-free path-walking method proposed
by Jin et al. [5]. In terms of CNN-based methods, Wu et
al. [12] propose to use mask R-CNN method for defect joint
localization and detection. Cai et al. [13] propose to use
three cascaded levels of CNNs for solder joint defect detec-
tion. As the number of levels increase, the performance gets
better. However, the more complicated levels require more
manual labeling and increase the manual workload. Goto et
al. [14] propose to use adversarial convolutional autoencoder
in combination with traditional anomaly detection method
for defect detection. Their method performs well on an X-
ray datasetwith eight depths of imaging.But some real-world
problems are not addressed such as varying number of slices
and noisy X-ray images. In this paper, we focus on defect
detection problem to reduce manual workload. Real-world
problems are addressed during the detection process. The
specific problem formulation is illustrated in the following
section.

Problem formulation

In the AXI, advanced technologies are used for solder joint
localization and inspection. When defect solder joints are
detected by the machine, they are sent to specialists for a sec-
ond round of inspection. However, sometimes the machine
inspection is not accurate, which sends a large number of nor-
mal solder joints to the specialists that increases the manual
workload. ThemerchandisedAXImachine statistics is rarely
discussed in the researches.We calculated the statistics based
on a real-world dataset we obtained. Among 518,292 through
hole solder images that are labeled by an AXI machine as
defects, only around 15% are truly defects as labeled by spe-
cialist. Around 85% of solder joints are normal, but also sent
to the specialists for further inspection. In this work, themain
problem is to detect true defect solder joints from misclassi-
fied dataset and to reduce the manual workload.

To achieve the target, two problems need to be addressed,
namely noisy region of interest (ROI) and varying number
of slices. Current researches for X-ray imaging-based sol-
der defect detection rarely address the noises in the X-ray
imaging dataset. Some of the ROIs extracted by AXI are
incorrect and fail to enclose the solder joint area, which
deteriorates solder defect detection. In addition, there are
varying numbers of slices. Some depths of the solder are
ignored during data collection, as they may not be necessary
for human inspection. Therefore, the number of slices is not
the same for all solder joints. Although there are some deep
learning-based methods implemented in PCB defect detec-
tion as mentioned, few researches focus on X-ray imaging
and addressing the varying number of slices.

In general, the problems can be summarized as follows:

– AXI false call increases specialist workload.
– Incorrect ROI fromAXI deteriorates solder defect detec-
tion.

– Varying number of slices makes it difficult to model.

In this work, deep learningmethods are incorporated since
they are suitable for high-resolution image-based tasks. We
mitigate the AXI machine inefficiency problem by propos-
ing deep learning-based inspection module in the production
line. There are two ways of viewing the 3D X-ray images,
which decides the way of feature extraction. First one is to
view each slice separately and to straightforwardly extract
features from each slice. Second one is to extract features
from all slices and conduct defect detection-based on the
extracted features.

Two pre-processing methods are proposed. First one is
to straightforwardly stack each slice of a solder joint. Sec-
ond one is to treat all slices of a solder joint together and to
manipulate them in a statistic way. The dedicatedly designed
pre-processing methods can address the varying number of
slices problem and the incorrect ROI problem.

In the deep learning structure design, three deep learn-
ing model structures based on CNN, 3D CNN and long
short time memory (LSTM) are proposed that suit the pre-
processing methods. The combination of pre-processing
methods and deep learning model structures results in four
deep learning-based models. Since few deep learning-based
methods address the varying numbers of slices problem and
the incorrect ROI problem in PCB X-ray imaging, the per-
formance is compared among each other, which can help
with the researches with similar problems. Our features of
the proposed method are summarized as follows:

– An AI-assisted inspection in production line is proposed
that can dramatically reduce specialist workload.

– Varying number of slices problem and the incorrect ROI
problem of X-ray imaging are addressed.
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– Activation feature map is presented for visualizing and
analyzing the pre-processing method.

– Three deep learning structures are proposed that suit the
pre-processing methods.

The proposed methods have good generalization perfor-
mance and its efficacy is verified through experimenting
on a very large real-world 3D X-ray dataset. By incor-
porating the AI-based models, 73.29% normal joints are
filtering out and only 26.71% of normal joints are sent
to the specialists for inspection, which reduces the spe-
cialist workload dramatically. The proposed methods are
introduced in Section “Methodology”. The methods detail
in Sections “Pre-processing Methods” and “Deep Learning
Model structures”. Experiment and performance results are
presented in Section “Experiment and results” and we con-
clude the work in Section “Conclusion”.

Methodology

An electronic production line is shown in Fig. 1. Automated
optical inspection (AOI), automated X-ray inspection (AXI),
in-circuit test and functional test are common tests for qual-
ity control. Our work focuses on AXI, which detects defect
solder joints based on X-ray imaging. Usually, solder joints
that are detected as defect ones by AXI are sent to special-
ist for follow-up inspection as shown in Fig. 1a. However,

(a) Current inspection in production line

(b) Proposed AI-assisted inspection in production line

Fig. 1 A production line with follow-up inspection after AXI

when AXI generates too many false calls, specialists need
to check many normal solder joints that are misclassified as
defect. Our work mitigates the inefficiency problem of AXI
by introducing deep learning-based methods. The new flow
is as shown in Fig. 1b. For the solder joints that are detected
as defect by the AXI, they are sent to our methods first. The
detected defect solder joints by our methods are sent to spe-
cialists, while normal joints are sent for next-step tests.

3D automatic X-ray inspection

To better understand the reasoning of the methods, some
background of the 3D automatic X-ray inspection (AXI) sys-
tem is introduced.

The 3D X-ray system can obtain different imaging depths
of the PCB underneath the X-ray source with synchronized
rotating source and the detector. The component joints on the
focus plane would be sharp, while the ones above or below
the focus plane would be blurred. Therefore, different slices
regarding different depths of the PCB are obtained. These
slices are important for joint defect detection as they show
the hidden features of the joints. An example with four slices
is shown in Fig. 2.Different slices are for different blur levels.
Although the larger slice number does not necessarily mean
deeper depth, the depth and slice numbering are consistent.
There is a maximum number of slices, which means during
data collection, all depths of imaging slices are collected from
the AXI machine. However, for some solder joints, all slices

(a) Slice 00 (b) Slice 01

(c) Slice 02 (d) Slice 03

Fig. 2 An example of 3D X-ray imaging with four slices
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(a) (b)

Fig. 3 An example of AXI with ROIs

are not necessary for specialist inspection. Therefore, fewer
numbers of slices are collected. For example, the maximum
number of six imaging slices could be obtained from the AXI
machine, namely [00, 01, 02, 03, 04, 05]. A collected solder
joint slices only have three of them, namely [00, 01, 02]. In
our case, although some solder joint slices are ignored, the
ignored slices would always be the last slices.

More slices providemore information for one solder joint.
However, the label is given based on solder joint. That is to
say, if one of the slices for the solder joint is defective, all
the slices are labeled as defective. It is impossible to know
which slices are defective. Therefore, all slices for one solder
joint need to be treated together as one input. And different
inputs have different number of slices.

Along with the X-ray images, AXI also provides a bound-
ing box of the inspected solder joint called region of interest
(ROI). The ROI consists of two sets of coordinates of the
upper-left and lower-right corners of the ROI. Ideally, ROIs
not only provide the location of the inspected solder joint,
but also the area of the inspected solder joint. However, some
ROIs are not reliable. For example, ROIs fail to enclose the
whole part of the solder joint due to the small size of ROI in
Fig. 3a. It is supposed to be a square and the short side should
have been the same length as the long side. Or the ROI shifts
horizontally in Fig. 3b. The size of the ROI is correct, but
due to the shift, the ROI could not enclose the whole part of
solder joint. Although one edge of the ROI cuts through the
solder joint, most area of the solder joint is within the ROI.

Proposed framework

There are two phases, namely training phase and implement-
ing phase, in the proposed framework as shown in Fig. 4.

Fig. 4 Proposed framework

During the training phase, raw mega data, such as joint
type, board type, ROI, and X-ray image file path, from the
machine is parsed first and prepared. Also, slice-based image
data are parsed into solder joint-based image data. Then the
image file is pre-processed before model training. To reduce
false normal solders that should have been detected as defect
solders, thresholding is empirically selected.

During the implementing phase, the new incoming parsed
and pre-processed data are sent to the trained model and
compared with the threshold. Detected defects are passed to
the operator for further analysis and decision-making.

Under this framework, four models are proposed. The
proposed models have different pre-processing methods and
different AI model structures as shown in Table 1. Two pre-
processing methods are proposed and dedicated designed,
namely ROI mask pre-processing and channel-wise prepro-
cessing. ROI mask pre-processing method treats all slices of
a solder joint together and to manipulate them in a statistic
way. Channel-wise preprocessing method straightforwardly
stacks each slice of a solder joint. Three deep learning struc-
tures are proposed that fall into the categories of CNN, 3D
CNN and, LSTM. In Model A, the slices are merged during
pre-processing and features are extracted based on the statis-
tics of the slices. ForModelB andModelC, theChannel-wise

Table 1 Model description Model name Pre-processing method Deep learning model structure

Model A ROI mask CNN structure

Model B Channel-wise CNN structure

Model C Channel-wise 3D CNN structure

Model D Channel-wise LSTM-based structure
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pre-processing method contains the original images and fea-
tures of all slices are extracted together by CNN. For Model
D, each slice feature is extracted by one CNN. The extracted
features are combined together using LSTM module. In the
following sections, each pre-processing method and model
structure are illustrated in detail.

Pre-processingmethods

Varying numbers of slices and noised ROIs are the two prob-
lems to handle. Based on the AXI characteristics mentioned
in Section “3DAutomaticX-ray Inspection”, there are differ-
ent numbers of slices for different solder joints, since some
can be detected with deep depth of imaging, while some need
both deep and shallow depths of imaging. The other problem
is that some ROIs are not correct, which cannot surround the
area of the joint of interest. We address the two problems
in different ways and propose two pre-processing methods,
ROI mask pre-processing and Channel-wise pre-processing.

ROI mask pre-processing

During pre-processing step, we propose to do third-
dimension padding, variance feature, ROI mask, and crop-
ping. We pad slices with zero value, add a variance feature
image, add a ROI mask, and crop to generate the three-
channel input.

Since there are varying numbers of slices, to incorporate
all the information from the slices, we propose to pad zero-
slices on the third-dimension to the maximum number of
slices as shown in Fig. 5. The reason for padding zeros is
that it gives all the solder joint a base-line slice, which helps
in the following variance feature pre-processing.

Variance feature is extracted by calculating pixel-wise
variance across the third dimension. The form of variance

Fig. 5 Third-dimension padding

feature is also an image such that each pixel in the corre-
sponding location is the brightness variance for all the slices.
By introducing the variance feature image, the information
from all the slices can be used.

There are mostly more than one solder joint on one image
and ROI is an indicator for the location of the solder joint.
As some ROIs are not reliable and cannot enclose the whole
solder joint, solder joint patches cannot be correctly cropped
using ROI. As a result, we include an ROI mask in the input
to indicate the solder joint location.

Input: Original image dataset
Dimage = {sin; i is slice number , n is solder number},
ROI = {xmin, xmax, ymin, ymax}

Output: Solder joint patch dataset Dpatch , cropping ROI =
{cxmin, cxmax, cymin, cymax}

1 Dpatch ← ∅;
2 for k ← 1 to n do
3 if sik , i ∈ [1,SLICEMAX] not exists then
4 Pad zero-slice to sik ;
5 end
6 channel1 = s1k ;
7 channel2 = Variance(s1k , s

2
k , ..., s

6
k );

8 channel3 = 0;
9 channel3[ymin : ymax, xmin : xmax] = DROI ;

10 centerk(x, y) = ( xmax−xmin
2 +xmin,

ymax−ymin
2 + ymin);

11 cropLength = LCROP;
12 if max (xmax − xmin, ymax − ymin) ≥ TSMALL then
13 cropLength =

α × max (xmax − xmin, ymax − ymin)

14 end

15 (cxmin, cymin) = centerk(x, y) − cropLength
2 ;

16 (cxmax, cymax) = centerk(x, y) + cropLength
2 ;

17 if cxmin < 0 then
18 cxmin = 0;
19 cxmax = cxmax + |cxmin|
20 end
21 if cxmax > LSLICE then
22 cxmax = LSLICE

cxmin = cxmin − |cxmax − LSLICE|
23 end
24 Repeat step 17 − 23 for y axis cropping ROI;
25 patchk = Crop channel1−3 according to cropping

ROI={cxmin, cxmax, cymin, cymax};
26 Resize patchk to Sinput × Sinput ;
27 Add patchk to Dpatch ;
28 end

Algorithm 1: ROI mask pre-processing algorithm

The ROI mask pre-processing method details in Algo-
rithm 1. The slices are first padded zero-slices on the third-
dimension to the maximum number of slices SLICEMAX

ready for variance feature extraction. Then the first slice, the
variance feature, and the ROI mask are assigned to the three
channels, respectively. In channel3, the density of the ROI
mask ROIdensity is set to 10 empirically. Cropping needs to be
conducted on the three channels to obtain small patches. On
the one hand, one image is very big for the joint of interest and
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Fig. 6 ROI mask pre-processing sample

contains some background that will deteriorate the detection
process. On the other hand, adjacent area for the joint of inter-
est can provide information for detection. Therefore, small
patches that contain the joint of interest as well as the adja-
cent area cropping from the image is helpful. The images are
cropped into patches that can contain adjacent solder joints.
For each X-ray image, we obtain in the dataset, the number
of patches is dependent on the number of machine ROI. For
example, in Fig. 3a in Section “3D Automatic X-ray Inspec-
tion”, there are six solder joints of interests. Therefore, six
patches are cut from this image. For the small solder joint of
interest in the area of high solder joint density, the cropped
size L CROP = 340 pixels based on the dataset statistics and
the suggestions from the specialists. The cropped patch may
contain the adjacent solder joint. The way to distinguish the
solder joint of interest and the adjacent solder joint is the
ROI mask, which is channel3 in the pre-processing method.
The ROI mask helps locate the solder joint of interest by
highlighting the original ROI area. For a few large joints of
interest, the image is cropped based on the enlarged length
of ROI with a factor α, which is an empirical factor provided
by the specialist. The cropping strategy is solder joint center-
priority, but the solder joint is not necessarily in the center
of the cropped patch. From step 17–23, the cropping ROIs
are calibrated if they are outside the range of the slice image.
When the cropping area is outside the image, cropping coor-
dinates are moved towards the center so that no padding for
the original image is needed.At last, patchk is cropped based
on the croppingROI={cxmin, cxmax, cymin, cymax}, and
resized to 224× 224, which is an empirical input size of the
CNN model structure.

The output of pre-processing consists of three channels as
shown in Fig. 6. The first channel is the common base slice
that is called “slice 00” mentioned in Section “3DAutomatic
X-ray Inspection”. The second channel is the variance for all
the slices including the padded zero-value slices and the third
channel is the ROI mask.

Channel-wise pre-processing

Different from the ROI mask pre-processing that incorpo-
rates an ROI mask and the variance features, a straightfor-
ward pre-processing method is proposed by concatenating
all the slices in channel-wise direction before sent into the
model.

The channel-wise pre-processing algorithm is shown in
Algorithm2.At first, since there are varying number of slices,
zero-slices are padded to the maximum number SLICEMAX,
which is six in our case. As the dataset not only include
the focused solders, but also the surrounding solders as
well as the background, an ROI-based cropping is imple-
mented during the pre-processing step to reduce the size of
input. The cropping length cropLength is obtained based
on the enlarged length of ROI with a factor α, and in
this case, it is 1.5 based on specialist suggestion. Then the
slices are cropped based on cropping ROI ={cxmin, cxmax,
cymin, cymax} that is calculated by step 6–9.Different from
ROImask pre-processingmethod, if the cropping area is out-
side the slice sik , zeros are padded around the empty area. In
thisway, the solder joint of interest is centered,which is better
for detection since there is no information to indicate solder
joint location. At last, patch patchk is resized into 128×128
that can be efficiently used by the CNN structure proposed
in the following sections.

The output of pre-processing consists of six channels as
shown in Fig. 7. Each channel represents one slice of the

Input: Original image dataset
Dimage = {sin; i is slice number , n is solder number},
ROI = {xmin, xmax, ymin, ymax}

Output: Solder joint patch dataset Dpatch , cropping ROI =
{cxmin, cxmax, cymin, cymax}

1 Dpatch ← ∅;
2 for k ← 1 to n do
3 if sik , i ∈ [1,SLICEMAX] not exists then
4 Pad zero-slice to sik ;
5 end

6 centerk(x, y) = ( xmax−xmin
2 +xmin,

ymax−ymin
2 + ymin);

7 cropLength = α × max (xmax − xmin, ymax − ymin);

8 (cxmin, cymin) = centerk(x, y) − cropLength
2 ;

9 (cxmax, cymax) = centerk(x, y) + cropLength
2 ;

10 patchk = Crop sik according to cropping
ROI={cxmin, cxmax, cymin, cymax},
i ∈ [1,SLICEMAX];

11 if (cxmin or cymin) ≤ 0 or
(cxmax or cymax) ≥ LSLICE then

12 pad zeros on patchk ;
13 end
14 Resize patchk to Sinput × Sinput ;
15 Add patchk to Dpatch ;
16 end
Algorithm 2: Channel-wise pre-processing algorithm
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Fig. 7 Channel-wise pre-processing sample

solder joint. For the slice number that is less than six, zero-
value slices are padded.

Deep learningmodel structures

Three deep learning model structures are proposed in this
work. First one is designed as a regular CNN structure. Sec-
ond one is designed based on 3D convolution and third one
is designed with LSTM module.

CNN structure

For a regular CNN structure, 2D convolution with activa-
tion function is used to extract features from high-dimension
images as shown in Eq. (1), whereC is the input feature chan-
nel size, K is the kernel weight size, b is the bias and σ is the
activation function. The architecture of the neural network is
illustrated inTable 2. It consists of convolutional layers, batch

normalization layers, max pooling layers, and global average
pooling layers. The concrete structure is shown in Fig. 8. 3×3
kernel has few parameter size and is used in the convolutional
layer of the proposed structure. As by stacking 3× 3 convo-
lution, various reception fields can be achieved [15]. As the
structure depth becomes deeper, parameters become more
and training time becomes longer. Batch normalization layer
is used to increase training speed since distribution shifting
problem in each layer is mitigated. It is defined in Eq. (2)
and Eq. (3), where μB and σ 2

B are the mean and variance for
each batch training, and γ and β are trained parameters [16].
The global average pooling layer [17] is introduced. It helps
reduce a large amount of parameters in the following fully
connected layers and helps for visualizing the feature maps
that will be discussed in Section “Results”. The kernel size
of the convolutional layer is 3× 3, which is the smallest size
of capturing all the directions [15]. Its input channel size is
designed as three for ROI mask pre-processing and six for
channel-wise pre-processing.

f2D = σ

⎛
⎝

C∑
n=0

K∑
i=0

K∑
j=0

wi j,cx + b

⎞
⎠ (1)

xi = xi − μB√
σ 2
B + ε

(2)

yi = γ xi + β. (3)

3D CNN Structure

For the channel-wise pre-processingmethod, since the corre-
lation information is not extracted during the pre-processing

Table 2 CNN structure Layer name Output shape Kernel/weight size

Conv2D×2 224 × 224 × 64 3 × 3 × 64

Batch normalization 224 × 224 × 64 –

Max pooling 112 × 112 × 64 –

Conv2D×2 112 × 112 × 128 3 × 3 × 128

Batch normalization 112 × 112 × 128 –

Max pooling 56 × 56 × 128 –

Conv2D×3 56 × 56 × 256 3 × 3 × 256

Batch normalization 56 × 56 × 256 –

Max pooling 28 × 28 × 256 –

Conv2D×3 28 × 28 × 512 3 × 3 × 512

Batch normalization 28 × 28 × 512 –

Conv2D×3 28 × 28 × 512 3 × 3 × 512

Global average pooling 512 –

Fully connected 2048 512 × 2048

Dropout 2048 –

Fully connected 1 2048 × 1
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Fig. 8 CNN structure

Table 3 3D CNN structure Layer name Output shape Kernel/weight size

Input 128 × 128 × 6 × 1 –

Conv3D 126 × 126 × 5 × 8 3 × 3 × 2 × 8

Conv3D 124 × 124 × 4 × 16 3 × 3 × 2 × 16

Max pooling 62 × 62 × 2 × 16 –

Conv3D 60 × 60 × 1 × 32 3 × 3 × 1 × 32

Conv3D 58 × 58 × 1 × 64 3 × 3 × 1 × 64

Max pooling 29 × 29 × 1 × 64 –

Batch normalization 29 × 29 × 1 × 64 –

Dropout 53824 –

Fully connected 1024 53824 × 1024

Dropout 1024 –

Fully connected 2 1024 × 2

phase, it is more reasonable to increase the feature extraction
among channels for the CNN structure. Compared with a 2D
convolution, 3D convolution uses a 3D tensor and is more
flexible for third-dimension feature extraction. A 3D convo-
lution is defined in Eq. (4), where K is the kernel weight
first- and second-dimension size that shares the same mean-
ing with that of the 2D kernel, and Q is the kernel weight
third-dimension size. For a 3D kernel, its first and second
dimensions usually remain the same, which extract the spa-
tial feature, while the third-dimension size is not necessarily
the same. In 3D convolution, kernel wi jq is a 3D tensor that
moves along three axes to extract features of the input. C is
the input feature channel size, and b is the bias and σ is the
activation function.

There are multiple slices for one solder joint, and the
solder joint slices are stacked along the third dimension dur-
ing the pre-processing process. The 3D CNN architecture is
designed to extract features that is fit for the pre-processing. It
is detailed in Table 3. During the first two stacked 3D convo-
lutional layers, the kernel is 3×3 in the spatial dimension and
is 2 in the third dimension. 3×3 kernel is commonly used for
extracting spatial feature and by stacking them, larger recep-
tive field can be achieved. In the third dimension, kernel size
is 2, which means the adjacent slice information is focused.
But the extraction is not limited to adjacent slices, because
the kernel moves along the third dimension and convolves

with each slice as it does in the 2D space. In the following
two stacked 3D convolutional layers, 3×3×1 kernel is used,
because it needs to fit for the output feature from the previ-
ous layer. For example, the output of the first max-pooling
layer is 60× 60 × 1× 32, which is also the input of the fol-
lowing 3D convolutional layer. Its third dimension is 1, and
therefore, the third dimension size of the 3D kernel needs
to be designed as 1. Besides 3D convolutional layer, max-
pooling and batch normalization layers are also introduced.
The 3D CNN structure not only extracts the spatial features
from each slice in our case, but also the relationship among
multiple slices are reserved.

f3D = σ

⎛
⎝

C∑
n=0

Q∑
q=0

K∑
i=0

K∑
j=0

wi jq,cx + b

⎞
⎠ (4)

LSTM-based structure

LSTMneural network is one of the recurrent neural networks
that can model a sequence of inputs. By inserting the LSTM
module with a forget gate, an input gate, and an output gate
that are defined in Eqs. (5), (6) and (7) respectively, the mod-
ule cell can implement discarding, storing, and activating
information from the last timestamp state. The module cell
state is updated according to Eqs. (8), (9) so that it is able to
capture the relationship within the sequential inputs. And the

123



Complex & Intelligent Systems (2022) 8:1525–1537 1533

Fig. 9 LSTM-based structure illustration

Table 4 LSTM-based structure

Layer name Output shape Kernel/Weight size

LSTM 2048 –

Fully connected 512 2048 × 512

Dropout 512 –

Fully connected 2 512 × 2

final output of the LSTM module is defined as Eq. (10). The
gates inside the module help remember not only the adjacent
relationship but also the long term relationship between the
inputs.

ft = Sigmoid
(
W f · [

ht−1, Xt
] + b f

)
(5)

it = Sigmoid
(
Wi · [

ht−1, Xt
] + bi

)
(6)

ot = Sigmoid
(
Wo

[
ht−1, Xt

] + bo
)

(7)

C̃t = tanh
(
WC · [

ht−1, Xt
] + bC

)
(8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ht = ot ∗ tanh (Ct ) . (10)

For our case, slices from 00 to 05 are the sequential inputs.
Since there are six slices, the LSTM module continuously
computing six times until all the slices are processed. Special-
ist compares the solder joint difference among different slices
and the changes can indicate the joint defection. Therefore,
it is expected that LSTM based model structure can capture
the relationship within different slices for defect detection.

Since images are high-dimension inputs, features are
extracted byCNNs fromeach slice before sent into theLSTM
as shown in Fig. 9. The output size of the features extracted
from the CNNs is 2048×6. Each vector consists of the infor-
mation from each slice with dimension 2048. The sequence
length of the LSTM is 6, as six slices compose of the sol-
der joint and share one label. The output The LSTM module
is followed a classifier composed with two fully connected
layers, which are used for classification as shown in Table 4.
The output size of the LSTM is designed empirically as 2048,

which squeezes the information from six successive slices.
The classifier is composed of two fully connected layers.
Dropout is introduced to increase the generalization perfor-
mance.

Experiment and results

We implement the method using Python Keras and Tensor-
Flow, and the parameter settings are summarized in Table 5.
Adam is used as our optimization method. The weights are
initialized using Glorot uniform distribution to get a faster
convergence, where the upper and lower limits of the uniform
distribution are based on the number of input and output unit
amount of the current layer [18]. The activation function is
the rectified linear function (ReLU) [9]. The learning rate for
Model A andModel B in Table 1 is set 1e−4. And the learn-
ing rate forModel C andModel D in Table 1 is set 1e−5with
decay 1e−6. After several trials reducing from 1e−2 [9], the
learning rate is set based on the each model’s performance.
The trainable parameters of the models are summarized in
Table 6.

Dataset andmetrics

The dataset is in two forms, which are image dataset and the
mega dataset. In the image dataset, each image is a grayscale
X-ray image of a part of PCB as shown in Fig. 2. Each image
is uniquely identified by the image path. In the mega dataset,
it consists of information, such as image path, board number,
slice number, joint type,machine defect, ROI, label, etc. Each
solder joint can be uniquely identified by the image path
together with the ROI. Each sample is a solder joint that is

Table 5 Training setting

Model Weight
initialization

Activation
function

Optimizer Learning
rate

Model A Glorot uniform
distribution

ReLU Adam 1e − 4

Model B 1e − 4

Model C 1e − 5

Model D 1e − 5

Table 6 Trainable parameters

Model # Trainable parameters

Model A 15, 769, 281

Model B 15, 771, 009

Model C 55, 149, 194

Model D 34, 612, 738
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Table 7 Dataset slice distribution

Pin through hole solder

Slice distribution 1 slice: 763

2 slices: 1694

3 slices: 7576

4 slices: 466029

5 slices: 41345

6 slices: 945

Normal-defect ratio 1:0.18

Table 8 Dataset statistics Dataset Benign:Defect

Training 37579:37948

Testing 206800:33177

Validation 2000:2000

cropped according to the proposed pre-processing algorithm.
It is noted that the specialist labels all slices of one solder joint
as either defective or not. There is no granularity whether or
not the individual slices are defective or not.

There are two problems to be solved in our work. First one
is that the number of slices vary for different solder joints.
In this dataset, different slices represent different blur levels.
The slice numbering is not necessarily in any order like top
down. But the depth and slice numbering are consistent. The
maximum number of slices is six. There are varying num-
bers of slices for some solder joints, and the ignored slices
are always the last ones. The second problem is that ROI pro-
vided by the machine is noisy. Some ROIs are rectangular.
One side of the ROI cuts through the solder joint. Some ROIs
shift from the center of the solder joints, which also results
in failing to enclose the whole solder joint. The noisy ROIs
usually happen in small solder joints with incorrect ROI less
than around 100 pixels.

The dataset slice distribution and normal–defect ratio
shown in Table 7, and the dataset statistics is summarized
in Table 8. Training dataset, validation dataset and testing
dataset are divided based on board types for testing gen-
eralization performance. That is to say the board types in
the testing phase are not seen during training the models to
mimic the real-world case. Since validation dataset is dif-
ferent from testing dataset, if the model performance on
validation dataset is similar to that on testing dataset, its
generalization performance is better. In the real-world sce-
nario, benign solder joints are far more than defect solder
joints. Training on the imbalanced dataset leads to poor per-
formance as there would be a bias towards the majority class,
which makes it difficult to detect the minority class [19,20].
To deal with data imbalanced problem, we down-sample the
benign data to get a balanced training dataset. As the abso-

lute amount of the defect training data is very large and there
are some repeated patterns in the dataset, down-sampling is
implemented. In the future work, dedicated designed data
augmentation method could be further explored for better
performance.

Accuracy is one of the commonly used metrics. However,
under the condition of imbalanced problem, as the test data
include large amount of benign data and small amount of
anomaly data, accuracy is not fair for performance checking.
For example, one method can classify all the solder joints
as benign, which will give a very high accuracy rate. But it
cannot detect any defect solder joint. Instead, Recall, false
positive rate (FPR), and area under the receiver operating
characteristic (AUROC) are commonly used.

For a binary classifier labeled as either positive and nega-
tive, there are four outcomes given an instance: true positive
(TP); false positive (FP); false negative (FN); true negative
(TN). The true positive rate (TPR) is defined as correct posi-
tive results that happen in all positive samples, which is also
called Recall. FPR is defined as incorrect positive results
that happen in all negative samples. In our case, defect sol-
der joint is defined as positive sample and normal solder
joint is defined as negative one. There is a tradeoff between
Recall and FPR.At a givenRecall, the smaller FPR the better.
Recall and FPR are calculated based on fixed discrimination
threshold. Therefore, it cannot reflect the dynamic relation-
ship between each other.

The receiver operating characteristic (ROC) curve is a
commonly used tool to analyze and visualize the perfor-
mance of a binary classifier as its discrimination threshold
is varied, which results in a tradeoff between TPR and FPR.
ROC curve takes FPR as its horizontal axis and takes TPR
as its vertical axis. The points in the graph depict the rela-
tionship between TPR and FPR. Classifier with upper left
conner points has better overall performance. The area under
the ROC is AUROC that measures the general performance
regardless of the thresholds.

Compared with metric of accuracy, which measures the
proportion between the sum of TP and TN and the total num-
ber of instances, Recall, FPR, and AUROC are more precise
as they take imbalance classes of data into consideration.

Results

Results of fourmodels shown inTable 9. From the table, there
is a tradeoff betweenRecall andFPR.As threshold decreases,
the model can achieve higher Recall and FPR increases,
respectively. For different models, the threshold has different
impacts. For example, for Model A, when threshold is 0.1,
on validation dataset, its Recall = 0.9376, while for Model
D, Recall = 0.9826.

As the model generalizes from validation dataset to the
testing dataset, there is around 2–5% drop for Recall for
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Table 9 Model performance

Threshold Metrics Model A Model B Model C Model D

Validation Testing Validation Testing Validation Testing Validation Testing

0.1 Recall 0.9376 0.9027 0.9877 0.9293 0.9795 0.9200 0.9826 0.9556

FPR 0.2900 0.3247 0.4575 0.4799 0.4204 0.4240 0.4745 0.5568

0.2 Recall 0.9020 0.8713 0.9677 0.9124 0.9457 0.8884 0.9535 0.9134

FPR 0.2155 0.2415 0.3365 0.3370 0.3018 0.2798 0.3597 0.3574

0.3 Recall 0.8742 0.8525 0.9456 0.8990 0.9149 0.8654 0.9213 0.8754

FPR 0.1772 0.2003 0.2547 0.2611 0.2248 0.2058 0.2564 0.2433

0.4 Recall 0.8499 0.8369 0.9222 0.8867 0.8797 0.8402 0.8830 0.8508

FPR 0.1521 0.1729 0.2003 0.2127 0.1729 0.1582 0.1849 0.1800

0.5 Recall 0.8251 0.8198 0.8969 0.8719 0.8445 0.8146 0.8480 0.8261

FPR 0.1316 0.1492 0.1609 0.1740 0.1365 0.1255 0.1378 0.1362

Table 10 Threshold comparison

Threshold (val) Model Recall FPR

0.20 Model A 0.8713 0.2415

0.48 Model B 0.8749 0.1809

0.34 Model C 0.8556 0.1849

0.28 Model D 0.8836 0.2908

Bold value indicates best result in the comparison

all the models. As for FPR, Model A and Model B have
around 1–3% increase, while Model C and Model D have
both increase and decrease statistics when generating from
validation dataset to the testing dataset. The empirical thresh-
old can be picked based on the validation dataset. In Table 10,
given the threshold that makes the validation dataset Recall
= 0.90, the highest Recall = 0.8836 for testing dataset is
achieved by Model D with a drop of ∼ 2%. Among the four
models, when the validation Recall = 0.90, Model D has the
best detection generalization performance.

The overall performance of the proposed models can be
seen in Fig. 10. Regardless of thresholds, all the models per-
form similarly with AUROC ranging from 0.8916 to 0.9056.
However, there are some fine-grained differences among the
fourmodels. AsRecall increases to 1.00,ModelA andModel
D outperform the other two models with lower FPR. And as
Recall decreases, Model B and Model C perform better with
lower FPR.

For the deep learning model structure comparison, since
Model B, Model C, and Model D share the same pre-
processing method (channel-wise preprocessing method),
the comparison among the three models indicates the per-
formance comparison among CNN structure, 3D CNN
structure, and LSTM-based structure. From Fig. 10, we can
see that Model B performs the best with lower Recall, and
Model D performs the best with higher Recall among Model

Fig. 10 ROI mask model overall performance

B, Model C and Model D. Therefore, CNN structure has
the best performance when Recall is lower and LSTM-based
structure has the best performance as Recall becomes higher.

For the pre-processing method comparison, since Model
A and Model B share the same deep learning model struc-
ture (CNN structure), comparison between Model A and
Model B indicates the performance comparison between
ROI mask pre-processing method and channel-wise pre-
processing. From Fig. 10, since Model B has lower FPR
when Recall is low, channel-wise pre-processing is better for
lower Recall. When Recall becomes higher, since Model A
has lower FPR, ROI mask pre-processing method has better
performance.

In reality, some industrial requirement is expected such as
Recall ≥ 0.90 and Recall ≥ 0.95.

For requirement of Recall ≥ 0.90, comparing among the
four models, Model B achieves the lowest FPR = 0.2671 as
shown in Table 11. That is to say, in the production line, com-
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Table 11 Performance comparison

Model AUROC FPR@90% Recall FPR@95% Recall

Model A 0.9023 0.3247 0.5464

Model B 0.9056 0.2671 0.7073

Model C 0.9005 0.3349 0.6040

Model D 0.8916 0.3637 0.5872

Bold values indicate best result in the comparison

(a) (b) (c) (d)

Fig. 11 Activation feature map samples

(a) (b) (c) (d)

Fig. 12 Activation feature map samples

pared with sending all the normal solder joints that detected
as defects by the AXI machine to the specialist for manual
inspection, only 26.71% of normal joints are sent to the spe-
cialists and 73.29% of normal joints are filtering out, which
reduces the specialist workload dramatically. For require-
ment of Recall≥ 0.95,Model A has the lowest FPR= 0.5464
among all themodels that almost reduces the specialist work-
load by 50%.

For the ROI mask pre-processing method, some pre-
processed input patches include ROI mask that is incorrect
and some patches include multiple solder joints besides the
joint of interest.We visualize theCNNactivation featuremap
before the final classification of the CNN to see which areas
contribute to the CNN classification decision.

Although some ROI masks are rectangular that cannot
include the whole part of the circular joint of interest, the
activation feature map of CNN can include the areas outside
the incorrect ROI mask. For example, Fig. 11a–c are the base
slice channel, variance channel, and the ROI mask channel
of the input patch. Fig. 11d is the activation feature map of
the joint. Although the ROI mask in Fig. 11c cannot include
the whole joint, the activation feature still covers the most
area of the joint.

The patches achieved from the ROI mask pre-processing
method include not only the joint of interest, but they can
also include the adjacent joints that are outside of the ROI
mask. In Fig. 12, there are many joints in one input patch,

the joint of interest is indicated by the ROI mask in Fig. 12c.
From the activation feature in Fig. 12d, we can see that not
only the joint of interest is activated, but also the adjacent
joints are activated, which mimics the specialist inspection
that compares the joint of interest with joints in other images
as well as the adjacent joints within one image.

Conclusion

In this work, four models are proposed for follow-up defect
inspection. Two different pre-processing methods are pro-
posed to address the varying numbers of slices problem and
the incorrect ROI problem, and three deep learning model
structures are proposed that suit the pre-processing meth-
ods. Channel-wise pre-processing method used in Model B,
Model C, and Model D is better for lower Recall, while
ROI mask pre-processing method used in Model A is better
for higher Recall requirement. CNN model structure used
in Model A and Model B is the best for for lower Recall,
and LSTM-based structure used in Model D is the best for
higher Recall requirement among the three deep learning
model structures. The proposed four models have similar
general performances in terms of AUROC. For requirement
of Recall ≥ 0.90, the best model is achieved by Model B.
And for requirement of Recall ≥ 0.95, the best model is
Model A. By introducingAI into the production line, special-
ist workload can be dramatically reduced. The performance
can be the reference for future researches on the X-ray imag-
ing defect detection problems. In the future,model fusion can
be implemented on the four models to increase the general
performance.
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