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ABSTRACT With a growing number of connected devices relying on the Industrial, Scientific, and Medical
radio bands for communication, spectrum scarcity is one of themost important challenges currently and in the
future. The existing collision avoidance techniques either apply a random back-off when spectrum collision
is detected or assume that the knowledge about other nodes’ spectrum occupation is known. While these
solutions have shown to perform reasonably well in intra-Radio Access Technology environments, they can
fail if they are deployed in dense multi-technology environments as they are unable to address the inter-Radio
Access Technology interference. In this paper, we present Spectrum Prediction Collision Avoidance (SPCA):
an algorithm that can predict the behavior of other surrounding networks, by using supervised deep learning;
and adapt its behavior to increase the overall throughput of both its ownMultiple Frequencies Time Division
Multiple Access network as well as that of the other surrounding networks. We use Convolutional Neural
Network (CNN) that predicts the spectrum usage of the other neighboring networks. Through extensive
simulations, we show that the SPCA is able to reduce the number of collisions from 50% to 11%, which
is 4.5 times lower than the regular Multiple Frequencies Time Division Multiple Access (MF-TDMA)
approach. In comparison with an Exponentially Weighted Moving Average (EWMA) scheduler,
SPCA reduces the number of collisions from 29% to 11%, which is a factor 2.5 lower.

INDEX TERMS Collaborative wireless networks, deep learning, machine learning, wireless MAC.

I. INTRODUCTION

Spectrum scarcity is a phenomenon that is getting increas-
ingly serious with the growing use of the unlicensed Indus-
trial, Scientific andMedical (ISM) radio bands. Cisco expects
that the number of mobile devices will grow from 8 billion
devices in 2016 to 11.5 billion devices in 2021. In this time
frame, data traffic to and from these devices is expected
to increase from 7.2 to 49.0 exabytes per month. Half of
this data is exchanged via Wi-Fi [1]. At the same time,
the number of technologies that use these ISM bands is also
growing. This indicates that cross-technology interference
(e.g. Wi-Fi conflicting with Bluetooth) is a major and
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growing issue. Similarly, also in the unlicensed band, new
Long Term Evolution (LTE) versions (e.g., Long Term
Evolution-Unlicensed (LTE-U)) are making use of the spec-
trum in these bands as well.

Most network technologies in the ISM radio bands opti-
mize their own network performance without considering
that access to the spectrum is shared with other technolo-
gies. Several Medium Access Control (MAC) protocols with
different collision avoidance techniques have been proposed
and are being used in different wireless technologies. We can
divide the collision avoidance techniques in three different
classes [2]. (i) Random Access protocols: Nodes can access
the spectrum at any time to transmit packets. Most of the
time these protocols use a Carrier Sensing Multiple Access
(CSMA) collision avoiding technique to reduce collisions.
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(ii) Time-slotted protocols: The spectrum is divided in fixed
slots, and nodes can only use the spectrum during slots
defined by a scheduling algorithm. (iii) Hybrid protocols:
Some protocols use a partially slotted transmission. Control
signaling can make use of synchronized time slots, while data
transmission may use random access protocols without time
synchronization. All these techniques focus on optimizing
their own performance. To the best of our knowledge, there is
no protocol that is able to react on cross-technology behavior
to avoid cross-technology interference.
As existing MAC protocols, described above, are sim-

ple inter-Radio Access Technology (RAT) collision avoiding
techniques or do no inter-RAT collision avoiding at all, these
algorithms are not able to perform well in multi-technology
environments. The problem of optimizing inter-RAT spec-
trum is complex because of the diversity of technologies,
the wide variety of different applications, and the mobility
of the nodes. This makes the environment very dynamic and
the problem hard to solve with naive approaches. Complex
patterns could still be detected and used to avoid collisions
and optimize throughput, but need a more advanced solution.
To find a technique to optimize the spectrum usage, and

increase the overall throughput, we need a strategy combining
the advantages of aMultiple Frequencies Time DivisionMul-
tiple Access (MF-TDMA) network and a CSMA network.
The former achieves good coordination within the network
while the latter senses the spectrum to avoid collisions even
with unknown sources. In this paper, we present Spectrum
Prediction Collision Avoidance (SPCA), an approach to pre-
dict the behavior of the surrounding networks and envi-
ronment by using deep learning. Based on this prediction,
an MF-TDMA scheduler can select slots that will avoid col-
lisions in a smart way and optimize its own traffic and the
traffic of other networks. This will lead to fewer collisions on
all networks, increase the overall throughput, and optimize
the usage of the scarce spectrum. The key component of
our approach is an intelligent spectrum sharing mechanism
that first predicts the behavior of the surrounding spectrum
in the near future and then uses that prediction to avoid
collisions. By using a deep learning approach, it is possible
to detect complex patterns and use these patterns to opti-
mize the spectrum usage. The deep learning approach makes
the algorithm technology agnostic, which makes it an ideal
approach to work in multi-technology environments where
there is no a priori knowledge about the used technologies
in the neighborhood. With SPCA it is also possible to tune
the aggressiveness and assertiveness of the protocol. This
gives the opportunity to configure the network differently for
specific use cases or users.
By using a deep learning module, we are able to train

our algorithm on real data captured from different unknown
sources with different network technologies. By creating this
dataset, we are able to train our approach offline and evalu-
ate the algorithm in a more realistic simulated environment.
This paper focuses on the prediction of the environment
and other network technologies by using a pre-trained

Convolutional Neural Network (CNN). The CNN learns to
produce a probability matrix describing the probability that a
slot (channel-time pair) in the next frame will be used. This
probability matrix can then be used in a centralized or dis-
tributedMF-TDMAscheduler. There are threemain contribu-
tions in this work. 1) The architecture of the approach, where
we are using a CNN to predict the upcoming spectrum usage.
2) We used supervised learning to train our proposed models
in a supervised offline way. 3) We are able to train our pro-
posed models on real case data captured during the Defense
Advanced Research Projects Agency (DARPA) Spectrum
Collaboration Challenge (SC2) [3]. All the captured data is
generated in the spectrum by other teams in the competition.
Other teams are using different kind of radio technologies
and have their own strategy and footprint on the spectrum
which is unknown for our network. While the objective of the
manuscript is to reduce the number of collisions when sharing
the same portion of the spectrum and therefore, to increase the
overall throughputs of all the networks.

The remainder of this paper is structured as follows:
section II discusses related works on collision avoidance
techniques, MF-TDMA networks, Cognitive Radio (CR) and
Machine Learning (ML) for wireless network management.
In section III, we give a formal description of the problem,
while in section IV the architecture and operation of SPCA
is described. In section V, we show how the simulations
are executed. The results of these simulations are presented
in section VI. Finally, section VII concludes the paper and
summarizes the key findings and future work.

II. RELATED WORK

In this section, the state of the art with regard to col-
lision avoidance techniques, MF-TDMA networks, and
ML techniques for wireless network management is dis-
cussed. Table 1 summarizes the most important related work
described in this section. The work presented in this paper
builds on top of the proof-of-concept Neural-Network-based
MF-TDMA MAC Scheduler for Collaborative Wireless Net-

works presented in our previous work [4]. While our previous
work was focused on using ML to optimize the own network,
this work optimizes on collaboration of our system to use
the spectrum in a smarter way, providing higher throughput
while providing more opportunities to other technologies to
enhance their own performance. Additionally, this work is
evaluated with realistic neighboring networks. While, in [4]
only a jammer with programmed jamming distributions was
used.

A. COLLISION AVOIDING TECHNIQUES

As described previously, there are three main groups to
describe collision avoiding techniques. (i) Random Access
protocols: One of the major known and used collision avoid-
ance techniques is CSMA. CSMA techniques try to verify
the absence of other traffic before using the spectrum. Most
of the time this is done by starting to listen to the medium
upfront. Only if the medium is free from the transmitter
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TABLE 1. Collision avoiding algorithms summary.

point of view, transmission starts. This mechanism is known
as Listen-Before-Talk (LBT). It will send the packet at a
random time, starting from the moment it does not notice
any activity on the medium. This can be extended with a
RTS/CTS (Request To Send/Clear To Send) flow control
mechanism. This method tries to avoid collisions by creating
a coordinated access to the medium using control signals
between nodes. RTS/CTS communication cannot be used
over different networks or across network technologies, while
carrier sensing strategies will also listen to other network
technologies. It is known that some CSMA networks (such as
Wi-Fi) can block in a listening state if there are other network
technologies using the same spectrum [10]. (ii) Time-slotted
protocols: Another way of using the spectrum is by defining
fixed time slots. This is also called Time Division Multiple
Access (TDMA), or MF-TDMA if we also split the available
bandwidth into different channels. These MAC protocols
need work-wide synchronization so that every node can start
listening and receiving exactly at the correct time, as defined
in the MF-TDMA schedule. Over the last years, we have
seen more and more technologies using TDMA schemes,
especially in sensor networks [11] and Vehicular Ad hoc Net-
works (VANETs) (such as STDMA, SOFTMAC, TC-MAC,
ect) [12]. Also, MF-TDMA MAC protocols are used more
frequently in newer technologies such as 6TiSCH (6 Time
Synchronized Channel Hopping) [13]. (iii) Hybrid protocols:
Some protocols use a partially slotted transmission. Control
signaling can make use of synchronized time slots, while data
transmission may use random access protocols without time
synchronization. The objective of all techniques described
above, is optimizing the own network. In this work, we extend
and use these principles to optimize the overall throughput
of all networks. In a lot of modern situations were different
network technologies are deployed at the same location and
used at all the same time, it is important to use the spectrum
as efficient as possible and avoid collisions between different
neighboring networks.

B. MF-TDMA NETWORKS

MF-TDMA networks and scheduling inWireless Sensor Net-
works (WSNs) are well-studied topics in literature. We can
divide the TDMA and MF-TDMA schedulers into two big
groups: centralized and decentralized schedulers.
Centralized schedulers are deployed on a centralized

(master) node in the wireless network. All other nodes use
control frames to send their knowledge about topology,

routing, queue lengths and application-specific parameters to
the unique master node. This master node runs the scheduling
algorithm and broadcasts the schedule to all the nodes in the
network [14]. It is clear that this approach will result in an
in-network collision free schedule as nodes cannot decide
on their own when to send, and the centralized scheduler is
‘‘omniscient’’. The major downside of this approach is the
overhead in control communication to setup and maintain the
MF-TDMA schedule and the latency.

Decentralized algorithms, on the other hand, are more flex-
ible. There is a lower communication overhead at the cost of
potential collisions scheduled inside the network itself. One
of the first proposals for a decentralized 6TiSCH scheduler in
WSNswasmade by Tinka et al. [15]. Even though thework of
Tinka et al. was never implemented, it was the inspiration of a
variety for other decentralized MF-TDMA schedulers. Some
schedulers use a Resource Reservation Protocol (RSVP)-like
approach [16]. In this flow-based approach, each flow will
reserve messages in the MF-TDMA schedule on the route
of the flow. This will create a chain of reserve messages
from source to destination before transmission can start. This
approach is powerful if the main data is flow-based, but pro-
duces a lot of overhead if the main data is send in bursts or if
routes change often. The DeBras algorithm [17] can handle
bursty data more efficiently. In this algorithm, a node decides
on its own to allocate a slot to one of its neighbors. Routes are
allocated dynamically. This means that every node needs to
have additional knowledge about routing. A node can use the
On-the-Fly bandwidth reservation algorithm [18] to define
how many slots it needs to transfer its traffic dynamically
based on the current queue length.

In this paper, we do not focus on the scheduler. Our
approach will provide additional data that can be used in any
kind of scheduler so it will have more information about the
environment and other networks in the neighborhood of the
nodes. In the remainder of the paper, we use a centralized
scheduler in our own network because this guarantee us that
there will be no collisions scheduled inside the own network.
This lead to a cleaner observation and evaluation.

C. COGNITIVE RADIO NETWORKS

Another approach to solving the spectrum scarcity problem
is to allow users to use other frequency bands as long as
they are free. This approach is called Cognitive Radio (CR)
networks [19]. In the known CR network, there typically exist
two types of users. (i) The Primary Users (PU) are the actual
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users of the frequency band, while (ii) the Secondary Users
(SUs) are allowed to use the frequency band only if they will
not interact with the PUs. In this approach, all the SUs need
to be able to know if a PU is using the channel and if they will
introduce collisions should they start sending.
While some different techniques, such as Spectrum Deci-

sion, Spectrum Sharing and Spectrum Mobility, have been
proposed, most algorithms start with Spectrum Sensing. Gen-
erally, Spectrum Sensing techniques can be classified into
three groups: primary transmitter detection, primary receiver
detection, and interference temperature management. The
basic idea of all these spectrum sensing techniques is that a
SU senses the spectrum and decides if the spectrum was free
and could be used for its own traffic.
The main difference between the CR and our approach is

the fact that there is no PU, nor SU in our approach. Every
network can be equally important. Instead of using unused
spectrum, as is the goal of CR, the goal of this paper is to
optimize the already used spectrum.

D. MACHINE LEARNING FOR WIRELESS NETWORK

MANAGEMENT

ML is a term used to describe several algorithms to opti-
mize decision-making tasks. In the last years, this field made
a huge progress in the domain of computer vision [20],
natural language processing [21] and strategies tasks [22].
By extending this principle, researchers were able to play
vintage Atari games better than a human where an artifi-
cial agent learns the game by using deep Reinforcement
Learning (RL) [23]. In the context of collision avoiding
ML strategies, a few algorithms are already proposed and
make use of RL. In this context, the nodes act in the
environment and receive a reward or penalty based on the
outcome of the action/transaction. This reward is used to
update values that represent a policy. Chu et al. [5] proposed
ALOHA-QIR, an algorithm that uses Q-Learning to improve
Slotted ALOHA where they achieve twice the maximum
throughput of Slotted ALOHA while being more energy
efficient. In the ALOHA-QIR algorithm, every node creates
a frame that contains N slots. Each slot in the grid rep-
resents a score in the Q-Table. Based on the Q-Learning
algorithm, the reward used in the Q-Learning algorithm is
based on whether the transmission was successful or resulted
in a collision. The advantage of this approach is the low
complexity of both ALOHA and the Q-Learning algorithm.
This combination makes the ALOHA-QIR light-weight and a
fitting protocol forWSNs. However, one of the disadvantages
of this approach is scalability. As the number of nodes and the
amount of data grows, the ALOHA-QIR algorithm does not
scale because it can only use a single channel. Phung et al. [7]
proposed another strategy for an MF-TDMA network. In this
approach, each node stay in the configuration that is active at
the moment, as long communication is successful. However,
once a packet was not successfully delivered, the node will
pick a random slot until again reaching a stable situation.
It turns out that a network can find a stable situation, but it

FIGURE 1. MF-TDMA frame of the own network.

is clear that if another network is also using the spectrum
simultaneously, trying to find a stable configuration by ran-
domly selecting slots, is not very efficient and could lead to
a cascade of failures. The authors in [8] used an Universal
Software Radio Peripheral (USRP) and GNU radio units to
implement Q-learning in amulti-hop cognitive radio network.
This approach was successful and have an implementation
in CRs. Unfortunately, this approach used RL, which makes
the algorithm slower to adapt during the bootstrapping phase,
additionally the work focused on completely avoiding PUs,
while in this workwe focus on collaborative spectrum sharing
where we want to optimize the overall network throughput.
Wang et al. proposed to use Deep RL to select a free chan-
nel [9]. The difference with our approach is that we predict
the spectrum on every node, and this could scale easily which
is not the case in the approach of Wang et al. because of the
multi-agent nature of the problem. Because the number of
actions in anMF-TDMAnetwork can be huge and as it is hard
to evaluate actions in wireless networks, we choose to use
function approximation with Neural Networks (NNs) instead
of an RL technique. This allowed pre-training a NN, in our
case a deep CNN, on smaller devices that are not able to keep
training the model itself. The system avoid the learning phase
that is typical for a RL framework. UsingML techniques only
for prediction allows us to train the NN on measurable data.

III. FORMAL PROBLEM STATEMENT

In this section, we state the problem in a formal and math-
ematical way. Used symbols are described in Table 2 and
defined later in this section.
In this work, we assume that the network consists of N

MF-TDMA nodes called the own network, and a second
(unknown) set of networks later called the Interfering Net-
works Cluster (INC), which may also include noise from
other sources (e.g. microwaves). As we focus on the unli-
censed bands, we assume that both networks will have equal
priority and rights to use the spectrum. Because the INC is
unknown, the own network has no knowledge about used
technologies, traffic type and so on.
All N nodes in the own MF-TDMA network can com-

municate with each other on C channels. Each channel is
divided into time slots. For each frame in the MF-TDMA
schedule, there are S time slots and C channels available,
as illustrated in Figure 1. We assume that all nodes in the own
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TABLE 2. Overview of used symbols.

network will be synchronized and have the same notion of
time. This is a general property of everyMF-TDMA network.
Based on this property, we can state that all nodes in the own
network execute the same slot s at exactly the same time
for all frames f ∈ F . Every node n will execute an action
A
f ,n
s,c ∈ {Idle, TX ,RX} at time (f , s) for every channel c.

Furthermore, we denote TX f ,ns,c and RX f ,ns,c as:

TX f ,ns,c =

{

1 if Af ,ns,c = TX

0 otherwise
(1)

RX f ,ns,c =

{

1 if Af ,ns,c = RX

0 otherwise
(2)

As a constraint, a node can only execute at most one action
6= Idle at each time:

∀n ∈ N , ∀(f , s) ∈ F × [1, S] :
∑

c∈[1,C]

TX f ,ns,c + RX
f ,n
s,c ≤ 1

(3)

In this model we assume there will be an unknown number
of nodes in the INC. We will only know if one of the nodes
used the channel at a given time in the past. We assume
that Pfs,c = 1 if and only if the INC used channel c at
time (f , s). Note that for the INC there is no constraint on
the number of transmissions for a single timestamp. This is

because the number of interfering networks inside the INC
and the number of nodes they each contain, along with any
characteristics of applied protocols are all unknown.
As described before, the goal of this work is not to design

the scheduling algorithm itself but rather to improve the
available information as ameans to create a better and smarter
schedule. Because of this, we use a simple centralized sched-
uler based on the work of Palattella et al. [24]. We assume
that before every frame, all N nodes of the own network have
exchanged all predicted information about the next frame
with the master node. Based on this information, it constructs
a schedule for the next frame. The next frame will only start
once all the nodes received the new schedule.
Communication between two different nodes is success-

ful if and only if at a given time (f , s) a node n is in an
RX state and only received a message from exactly one other
node on a given channel c. Because we use a centralized
scheduler, we assume that the own network cannot schedule
two TX actions for two different nodes at the same time using
the same channel. We also assume that the INC is powerful
enough that its transmissions can collide with transmissions
of our own node. Based on these assumptions, we can define
that communication of the own network at time (f , s) on
channel c is successful if and only if one own node is trans-
mitting at the time in that channel and no interfering node
is transmitting. We use γ

f
s,c to determine if an own packet

could be successfully delivered or not. Note that there is
always a chance that communication will fail because of the
environment (e.g. reflection, fading, etc.).

γ fs,c =

{

1 if
∑

n∈N TX
f ,n
s,c = 1 ∧ Pfs,c = 0

0 otherwise
(4)

Because there is no way for our own nodes to know
if a transmission interferes with a packet of the INC,
we can assume that communication in the INC is successful
if γ
′f
s,c = 1, where:

γ ′fs,c =

{

1 if
∑

n∈N TX
f ,n
s,c = 0 ∧ Pfs,c = 1

0 otherwise
(5)

We define ωs,c to be 1 if there is a collision. Note that this
ω
f
s,c will denote collisions between the own and the INC,

because we assume that the own network will be
collision-free.

ωf
s,c =

{

0 if
∑

n∈N TX
f ,n
s,c + P

f
s,c ≤ 1

1 otherwise
(6)

The maximum overall throughput of our own network for
each frame f , Ŵ̂f , depends on the number of RX/TX slots for
each node and the number of collisions among the network.
In that way, we can define the throughput Ŵ̂f as the maximal
number of successful packets in frame f for the own network:

Ŵ̂f =
∑

s∈[0,S)

∑

c∈[0,C)

γ fs,c (7)
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In the same way, we define the maximal throughput Ŵ̂′f for
each frame f in the INC:

Ŵ̂′f =
∑

s∈[0,S)

∑

c∈[0,C)

γ ′fs,c (8)

We define Ŵf and Ŵ′f as the actual relative throughput for
the own network and INC respectively. This means that Ŵf is
the number of arrived packets divided by the number of used
slots in frame f .
The goal of this algorithm is to maximize the throughput

of all networks by choosing the actions A as optimally as
possible for all channel-time pairs for all the nodes n in
the own network. We will define the objective function as
follows:

maximize ̥f (α)=αŴf +(1−α)Ŵ′f with α ∈ [0, 1] (9)

Note that to increase throughput Ŵf and Ŵ′f , we can either
(i) increase the number of TX/RX cells, (ii) generate more
data, or (iii) decrease the number of collisions. Because we
can only control our own network and we assumed that we
have no control over the data generation, we can only increase
the throughput for all networks by decreasing the number of
collisions. This means that we can maximize both Ŵf and Ŵ′f

by reducing the number of collisions �f where:

�f =
∑

s∈[0,S)

∑

c∈[0,C)

ωf
s,c (10)

We assume that every node n can measure energy on all
C channels. This is a fair assumption as new radio hardware
technologies (such as Software Defined Radios (SDRs)) sup-
port simultaneous energy measurement over a broad band-
width. We define Of ,ns,c ∈ [0, 1] as the observation made at
time (f , s) on channel c by node n, where Of ,ns,c = 1 if and
only if all the bandwidth of the slot was used during the entire
duration of the slot by the INC and Of ,ns,c = 0 if and only if
the slot is not used at all.

IV. SPECTRUM PREDICTION COLLISION AVOIDANCE

A. ARCHITECTURE

As illustrated in Figure 2, the proposed approach consists
of 5 main components: the spectrum monitor, prepossessing
unit, predictor unit, probability matrix on each node and the
overall (centralized or decentralized) scheduler. In general,
each node captures the energy on the overall spectrum. These
energy measurements are forwarded to the preprocessing unit
on the node. The preprocessing unit of node n will create
the correct observation values Of ,ns,c for each slot. Once the
prepossessing step is done for the entire frame, we can use
a predictor unit. The predictor unit produces a probability
matrix that describes the predicted usage of a slot in the next
upcoming frame. The probability matrices from all nodes are
used in the scheduler to select slots that are expected to be
free during the next frame(s). Note that the scheduler could
be centralized or decentralized. As long the scheduler itself
uses the probabilitymatrix to choose ’free’ slots. In this paper,

FIGURE 2. Overall algorithm architecture for the own network of three
nodes.

we will focus on the predictor unit and use a centralized
scheduler. In this way, we can ignore collisions because of
bad scheduling due to the decentralization. By using a decen-
tralized scheduler, this architecture scale easily, as there is no
additional message exchange.

In Algorithm 1 the overall working of the SPCA algorithm
is expressed. If a reschedule of the slots need to be executed
each node will execute the function Reschedule as illustrated
in Algorithm 1. Four steps will be executed. 1) Each node
will construct an observation based on monitored history of
h superframes. 2) A preprocessor will make sure that the
observation is used by the predictor unit. In practice this
implies normalizing the data and reshaping it in the correct
way. 3) Pass the preprocessed data to the predictor unit (used
in the current setup) at each node. Based on the internal work-
ing of the predictor unit (could be CNN, Neural Weighted
Moving Average (NWMA) or something else) a prediction is
computed. 4) These prediction are forwarded to the scheduler
(centralized or decentralized) so it will select slots where the
receiving node predicted that the slot will be free.

B. PREDICTOR UNITS

As mentioned above, a key component of our approach is
the predictor unit. This unit predicts how the spectrum will
be in the upcoming frame(s) by using historic data of the
spectrum and a (trained) model. The output of the predictor
unit is a frame with probabilities of a slot being used by
another network. With this approach, it is possible to build a
model which can detect concepts such as RTS/CTS in Wi-Fi
by training the model on examples of this behavior. Without
having any notion of the RTS/CTS concept, the model will
learn that after two short packets there is a high probability
that there will be a large packet on that channel in the near
future. We define pf ,ns,c ∈ [0, 1] as the outcome of a predictor
for frame f on slot s in channel c at node n.

In this paper, we introduce two predictor units. (i) The
CNN predictor unit, and (ii) a shallow NN called NWMA.
We discuss both approaches in the remainder of this section.

The CNNs predictor unit can be used to find small patterns
across different locations in an image in different layers of
the network. In our case it finds patterns (e.g. RTS/CTS) in
different convolutional layers. It will search for these patterns
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Algorithm 1 Pseudo Code Of the SPCA Algorithm
function Reschedule ⊲ Executed on each node

O← getObservation(h) ⊲ Get the observation of the last h super frames
O← doPreprocessing(O) ⊲ Do preprocessing on observation (if necessary)
P← Predict(O) ⊲ Execute the predictor unit used at the node based on the observation
return ForwardPredictionToScheduler(P) ⊲ Send probability matrix to scheduler and return new schedule

end function

FIGURE 3. CNN architecture with 5 hidden layers: 4 convolutional layers followed by a fully connected layer. Using
spectrum observation as input and outputs a probability matrix.

across the complete spectrum diagram, which can be repre-
sented as an image. Because each observation frame can be
interpreted as a gray-scale image over time, CNNs are a more
appropriate choice than traditional fully connected Deep
Neural Network (DNN). In the CNN approach, we create a
CNN with five hidden layers as illustrated in Figure 3. The
CNN network consists of four convolution layers with kernel
sizes of [4, 1], [4, 1], [4, 1] and [8, 2] respectively, followed
by a fully connected layer. We use a ReLu activation function
for all convolution layers. After the last fully connected layer
a sigmoid activation function is applied. The input of the CNN
is a 3D tensor that contains h observed superframes. The third
dimension are the h different frames and will be used as filters
in the first hidden convolution layer.

For the second predictor unit we used an NN with one hid-
den layer whichwe call NWMA. In this approach, we take the
average over the last h frames, but the weights of each layer
are learned during an off-line training phase. This approach
is easier to deploy on constrained devices, as the number of
weights to store is almost 1000 times smaller. In the simu-
lations, NWMA contained only 50 weights, while the CNN
we used had 48944 weights to store. But also the amount
of operations is a factor 1 million smaller for the NWMA,
making it a lot easier to use on a constrained embedded
device.

The two introduced predictor units are interchangeable
and can be used in the described architecture illustrated in
Figure 2. Both predictor units use the preprocessed monitor
information (On) of h history frames as an input and will
return a probability matrix (pn) which will be used by the
scheduler.

We used a training set to train both the NWMA and
the CNN network. For both networks, we used an Adam
Optimization function [25] with a Learning Rate (LR) of

initially 10−3 together with a linear learning rate decay,
reducing the LR to 10−7 after 2000 steps. The mean squared
error is used as a cost function. We trained our NNs , both the
CNN and NWMA, for 5000 episodes. No online training was
executed during the simulations. Note that this will implies
that the evaluation and training distribution of the NN should
be similar. As a consequence the system cannot react on
unknown behavior of the INC networks. Similar behavior (in
the sense of similar state distributions) should be used for
training as for execution of the system.

V. SIMULATION SETUP

To evaluate the predictor units, we used an
MF-TDMA discrete event simulator written in Python based
on the 6 Time Synchronized Channel Hopping (6TiSCH)
simulator of Palatella et al. [18]. We changed the simulator
to make it possible to have two separate networks where
one of them does not use the MF-TDMA schedule, but only
informs the simulator about its spectrum usage. In that way,
we could implement both the INC and the own network into
the simulator. The used topology is illustrated in Figure 4,
where the gray nodes are the interfering nodes. The node in
the middle sends packets to the node outside the ring.

To evaluate our approach and to train some of the predictor
units, we captured and stored monitoring data during the first
Preliminary Event (PE) of the SC2 competition organized by
the DARPA [3]. In this competition, 19 different teams play
different games against each other with the goal of optimizing
both their own and the global throughput. Different games
had different scenarios and topologies, which were unknown
during the game. It is important to note that all teams created
their own network stack from scratch and used different
approaches. This makes the environment of the game highly
realistic.
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FIGURE 4. Topology and routing of the simulated test network with one
unknown network (gray) and an surrounding MF-TDMA ring
network (blue).

FIGURE 5. Topology of the simulated AP topology with two infrastructure
networks and one ‘‘jamming’’ INC in the middle.

We divided all the captured games of all different scenarios
in a training set (90%) and an evaluation set (10%).We reused
the Pister-hack propagation model of the simulator to decide
whether or not a packet of the INC will arrive correctly in the
evaluation phase.
In this work, two realistic topologies are used as a simula-

tion setup. The first topology is used for the majority of the
simulations. In this topology, ten of our own nodes are located
in a ring centered around a single interfering node. Our own
nodes generate traffic with a random probability and always
send their traffic to the next node in the ring, as illustratedwith
the blue arrows in Figure 4. Each node in the own network
captures the energy generated by the INC and runs a predictor
unit. The interfering receiver is located outside of the circle,
at a distance 1 (relative to the circle’s radius) away from the
interfering sender. The second topology is used to illustrate
that the algorithm can also be used in other kind of topolo-
gies. As illustrated in Figure 5, two networks are operating
in infrastructure mode. Both networks have a centralized
Access Point (AP). All nodes will only communicate with
the AP. We suppose that both networks can transmit data on
every channel at every timeslot. The networks itself are not
interfering with each other but APs interfere with the INC.
In this work, In this paper, we used a centralized scheduler

that can reschedule the next frame after the execution of the
last slot of the last frame. The main advantage of such a
centralized scheduler is the fact that we can avoid collisions
in our own network. In that way we could use the collision as
a metric to evaluate our approach. Unfortunately, this cannot

be guaranteed by using a distributed scheduler. The used
centralized scheduler assigns slots and selects the best slot
for each node in the own network in a round-robin way. This
is a valid assumption because this can easily be done by a
centralized scheduler. We introduce an additional threshold
t ∈ (0, 1], and only if the probability value of a predicted slot
p
f ,n
s,c is greater than t a slot can be selected by the scheduler.
For example: if t = 0.5, theMF-TDMA scheduler only select
slots if the chance that a slot will be free is larger than 50%.
The used prediction unit can easily be replaced by different

methods, which we describe in subsection IV-B. This is pos-
sible because a predictor unit is actually a function that maps
an observation matrix Of ,n to a probability matrix pf ,n.

VI. RESULTS DESCRIPTION

A. METRICS

For each combination of parameters, we ran the simulation
25 times with different random seeds and data generator.
We calculate the objective function ̥

f (α) of each frame f .
Because we are especially interested in the overall network
performance, we will redefine our objective function to̥(α)
as defined in Equation 11.

̥(α) =

∑

f ∈F ̥
f (α)

|F |
(11)

We can consider̥(α) to be the weighted average through-
put of all networks, where α defines the weight between our
own throughput and the throughput of the others. If α is close
to zero, we focus on the throughput of the interfering net-
works, while if α is close to one, we focus on the throughput
of our own network.

Because we want to optimize the spectrum usage, we intro-
duce two other metrics. (i) Collision Rate is the relative
number of collisions between our own and the interfering
networks. (ii) Missed Opportunities is the average number of
free slots that could have been used for transmission by at
least one node in our own MF-TDMA network. This means
that there was a slot that was not used by the interfering
network, and a transmit node and receiver node of the own
MF-TDMA network that executed the Idle action while the
transmitter had data available.

B. BASELINE PREDICTORS

To evaluate the predictor units described in subsection IV-B,
we compared the simulations with two other state of the art
techniques and with an approach where our own network
does not send anything at all. This represents the base line of
the interfering network, called as Keep Silent approach. The
two other techniques are: (i) A regular MF-TDMA sched-
uler, called Regular. After every frame, a regular centralized
scheduler can be applied. It will try to optimize the schedule
of our own network without looking to the interfering net-
work at all. (ii) An Exponentially Weighted Moving Average
(EWMA) approach where the slot quality is measured by an
EWMA over the most recent frames as shown in Equation 12.
This is a typical extension to include slot quality to an

VOLUME 7, 2019 45825



R. Mennes et al.: Deep Learning-Based SPCA for Hybrid Wireless Environments

FIGURE 6. ̥(α) function for the simulations with all the different
predictor units. For 1 = 1.55 and t = 0.5.

IEEE 802.15 network [26]. An offline evaluation phase
showed that, for the EWMA approach a = 0.05 gives the
best results.

pf ,ns,c =

∑

i∈[1,h](1− a)
i−1O

f−i,n
s,c

∑

i∈[1,h](1− a)
i−1

(12)

C. GENERAL RESULTS

In Figure 6, we show the weighted average throughput func-
tion ̥(α) for the different predictor units. First of all, we see
that with a Keep Silent strategy the overall throughput ̥ will
decrease if α grows as our own MF-TDMA network does
not use any slot. On the other hand with a Regular strategy,
the overall throughput ̥ increased if α grows, although the
regular scheduler produces more collisions with higher α,
it also uses more free slots. It is clear that using any kind
of quality measuring strategy (EWMA, NWMA, CNN) can
increase our objective function from themoment we are inter-
ested in the throughput of more than one network. The results
clearly show that if α is bigger than 0.1 and equal or smaller
than 0.7, the CNN predictor unit performs even better than the
most extreme approaches such, as not sending at all or using
the complete spectrum in the regular approach. A it has the
largest range where the weighted average throughput is
the highest, the deep CNN is the best approach. The
CNN approach is always outperforms the EWMA and the
NWMA strategy, and only if we care about the throughput of
only our network or only the interfering network, it is more
appropriate to use a naive Regular or Keep Silent approach.
Figure 7 shows the relative number of collisions for all

different strategies in comparison with the total number of
used slots of the interfering network. The collision ratio of
the CNN approach is the lowest of all (sending) approaches.
We can reduce the number of collisions with 75% in compari-
son to the collisions in the Regular scenario which represents
the current state of the art. In Figure 8 the number of missed

FIGURE 7. Average number of collision for the different predictor units.
For 1 = 1.55 and t = 0.5.

FIGURE 8. Missed opportunities for the different predictor units. For
1 = 1.55 and t = 0.5.

opportunities is visualized for all strategies. We see that the
number of missed opportunities is very low for the CNN
approach. Only the Regular approach does slightly better on
average, which make is unsurprising as it will try to use as
many slots as possible. For all strategies the nodes could save
at most h = 50 frames in their memory.

D. IMPACT OF PARAMETERS

Figure 9 illustrates the ̥(α) function if we vary the thresh-
old t from 0 to 1 in steps of 0.1. If we only want to optimize
either the interfering or the own network it makes sense to
keep t very low or high respectively, as shown in Figure. 9b
and Figure. 9c. However, if we want to optimize the through-
put of both networks we can see that a threshold value t
around 0.5 will give us the most optimal solution. Here the
scheduler is at least 50% certain a slot will be free and will
leave the slots he is (almost) certain will be used by the
interfering network untouched. This makes the own network
less aggressive. It is important to note that it could be the case
that not enough slots will be selected. It could be useful to
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FIGURE 9. ̥(α) for the simulations with all the different predictor units
over various thresholds t . With 1 = 1.55. (a) α = 0.4. (b) α = 0. (c) α = 1.

have a backup mechanism to overcome starvation of the own
network.

In Figure 10, we showed the impact of the relative distance
of the interfering receiver 1 on the objective function ̥(α).
If the interfering receiver is located further away there will
be more influence of the nodes in the own network. Note that
the influence of the interfering network will be the highest if
the receiver is close to the own node, (i.e. with 1 between
0.5 and 1). If 1 < 0.5, the interfering receiver is close to the
sender, so it is easier to hear the sender. Otherwise, as1 frows
larger that 1, fewer nodes can be heard by the interfering
receiver, but the interfering sender’s transmissions can also

FIGURE 10. ̥(α) for the simulations with all the different predictor units
over various interfering receiver distance 1, with t = 0.5. (a) α = 0.4.
(b) α = 0. (c) α = 1.

fade out. We show in Figure. 10a that if we want to optimize
the overall throughput (α = 0.4) our CNN approach will out-
performs all the other approaches. We observe the expected
behavior: the throughput (̥) decreases if the distance in the
interfering network (1) will increase.
If we increase the gain of the interfering network, the influ-

ence of the own network on the interfering network is mini-
mal because the messages of the own network will always be
‘‘softer’’ and the interfering sender will over shout the own
transmissions. This is visible in Figure 11, where we show
the success ratio for α = 0 and α = 0.4 for different 1.
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FIGURE 11. ̥(α) for the simulations with all the different predictor units
over various interfering receiver distance d . With t = 0.5. Where
interfering network use higher gain. (a) α = 0.0. (b) α = 0.4.

Figure 11a shows that the CNN approach is very close to
the optimal if we want to optimize the throughput of the
interfering network (α = 0), even when our own network
is also sending. On the other hand, if we want to optimize
the overall throughput (with α = 0.4) we can see that the
CNN approach again outperforms the other approaches and
can even provide 2.5 times more overall throughput than the
constant sending approach, as is currently often deployed.

E. INFRASTRUCTURE MODE

As described in section V, we included a topology in infras-
tructure mode as well. Two different networks are interfered
by a common INC as shown in Figure 5.
In Figure 12 we show the weighted average throughput

function̥(α) for the different predictor units in the AP simu-
lation setup. At a first glance it is clear to see that the results of
the AP simulation is similar to the previous described results
in subsection VI-C. Because in this simulation setup it was

FIGURE 12. ̥(α) for the AP simulation with all the different predictor
units.

FIGURE 13. Average number of collisions for the different predictor units
in the AP simulation setup.

FIGURE 14. Average number of missed opportunities for the different
predictor units in the AP simulation setup.

harder for the INC to transfer a packet successfully, we could
see that the overall throughput with the CNN predictor unit
and the NWMA predictor unit is almost equal. But, as shown
in Figure 13 and Figure 15 we could see that less transmit
opportunities are used which results in a higher success ratio
and less collisions.
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FIGURE 15. Average success ratio of the AP networks for the different
predictor units.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented SPCA, an approach to improve
the cross-technology wireless spectrum usage by reducing
the number of collisions between different networks where
we can only control one MF-TDMA network. The goal is
to optimize the throughput of all networks instead of only
the own throughput. In the own MF-TDMA network, all
nodes can measure the spectrum and use a predictor unit to
predict the next frame based on captured history. We showed,
by using a discrete event simulator, that a CNN predictor unit
can be used to help the MF-TDMA scheduler to increase the
combined throughput of our network and the INC. We also
showed that by using the pre-trained CNN predictor unit it
was possible to decrease the number of collisionswith a factor
4.5, from 50% to 11%, in comparison to a regularMF-TDMA
approach and decrease the number of collisions with a factor
2.6, from 29% to 11%, in comparison to a typical EWMA
strategy. We showed that it is important to leave slots open
by introducing the threshold parameter t . The scheduler will
not use slots if the predictor unit predicts with high certainty
that slots will be used in the surrounding networks.

Future research is necessary to fine-tune the predictor unit.
In this paper we first observed the environment to train
our model but in real case scenarios it would be useful to
tweak or retrain the model based on the environment while
simultaneously acting in the environment. Future work is
also necessary to predict more frames in advance so that a
scheduler can design a schedule that can hold for a longer
period of time.
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