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ABSTRACT
The field of artificial intelligence based image enhancement has been rapidly evolving over the last few years and is able to
produce impressive results on non-astronomical images. In this work we present the first application of Machine Learning based
super-resolution (SR) and de-noising (DN) to enhance X-ray images from the European Space Agency’s XMM-Newton telescope.
Using XMM-Newton images in band [0.5,2] keV from the European Photon Imaging Camera pn detector (EPIC-pn), we develop
XMM-SuperRes and XMM-DeNoise — deep learning-based models that can generate enhanced SR and DN images from real
observations. The models are trained on realistic XMM-Newton simulations such that XMM-SuperRes will output images with
two times smaller point-spread function and with improved noise characteristics. The XMM-DeNoisemodel is trained to produce
images with 2.5× the input exposure time from 20 to 50 ks. When tested on real images, DN improves the image quality by
8.2%, as quantified by the global peak-signal-to-noise ratio. These enhanced images allow identification of features that are
otherwise hard or impossible to perceive in the original or in filtered/smoothed images with traditional methods. We demonstrate
the feasibility of using our deep learning models to enhance XMM-Newton X-ray images to increase their scientific value in a
way that could benefit the legacy of the XMM-Newton archive.

Key words: techniques: image processing – techniques: high angular resolution – X-rays: general

1 INTRODUCTION

Over the last two decades, the European SpaceAgencyXMM-Newton
(Jansen et al. 2001) X-ray space observatory has been continuously
advancing our understanding of the cosmos through detailed obser-
vations of black holes, the formation of galaxies and many other
phenomena in our X-ray sky (Santos-Lleo et al. 2009; Wilkins et al.
2021). The 3 X-ray telescopes on-board are equipped with a set of
imaging CCD detectors: European Photon Imaging Cameras (EPIC),
with two MOS-CCD arrays Turner et al. (2001) and one pn-CCD
Strüder et al. (2001). EPIC-pn has an effective area on average ∼2-
3 times that of MOS, depending on the energy band. Concerning
the characteristics of the cameras for imaging, they have compara-
ble point-spread function (PSF) with Full Width at Half Maximum
(FWHM) of ∼5-6′′ on axis (and half-energy width HEW of ∼14-
15′′), comparable field of view of ∼14-15′ radius, and MOS detec-
tors have pixel physical size of 1.1′′, compared to 4.1′′ for pn (see
e.g. the XMM-NewtonUser Handbook). The NASA’s ChandraX-ray
telescope (Weisskopf et al. 2000) has a spatial resolution far superior
to XMM-Newton , with PSF HEW of the ACIS detector of ∼ 0.5′′,
limited by the physical pixel size, with a drawback of having much
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smaller effective area. It is desirable to have both good sensitivity
and spatial resolutions: longer exposures allow collecting more pho-
tons and hence pick up fainter sources. However, the noise will also
increase, thus there is a need for better sensitivity in order to detect
extended emission.

Most observations need to achieve a certain signal-to-noise (SNR)
for the targets under study, in order to be able to draw scientific con-
clusions. This threshold dictates the exposure time that the observers
request to the time allocation committees, and for observatories with
high over-subscription rate asking too much time has its drawbacks,
i.e. less chances for approval. Therefore, methods to enhance the
SNR for a given observing time can be used to increase the science
quality of the data. Image enhancement through noise level reduction
is a popular way to improve the SNR (e.g. Vojtekova et al. 2020).

In X-ray observations, photon counts are subject to a Poissonian
noise that is dependent on the count rate itself. Therefore, the SNR is
smaller in low count rate areas, limiting the detection of faint sources.
Binning of X-ray photons is one way to increase the total SNR, albeit
at the cost of reducing spatial resolution. Sanders & Fabian (2001)
use an adaptive binning method on Chandra observations of the
Perseus cluster to reveal structure in the central region. Bourdin et al.
(2001) introduced a multi-scale wavelet transform approach to de-
noiseMOS1 andMOS2 images and were able to successfully recover
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the total flux and signal shape of toy-model sources, demonstrating
that de-noising methods like these can be used to provide more
accurate brightness mapping.
In addition to the noise, the PSF can lead to blending and sources

confusion, when sources closer than a certain fraction of the PSF’s
FWHM can no longer be separated. Resolving and deblending such
sources can be achieved with super-resolution.
Super-resolution (SR) describes a class ofmethods that can upscale

video or images from lower resolutions to higher ones. Such methods
have been successfully demonstrated on astronomical imaging, e.g.
(Starck et al. 2002; Puschmann & Kneer 2005; Li et al. 2018). Many
methods for SR exist (see e.g. Zhou et al. 2012; Siu & Hung 2012).
Alternatively, edge-detection methods (see e.g. Sanders et al. 2016)
are being used for enhancing features and identifications of structures,
although in general they do not increase the spatial resolution.
Traditionally, interpolation methods such as bilinear and near-

est neighbour interpolation are used for upscaling. However, these
methods often introduce side effects such as noise amplification and
blurring. Furthermore, super-resolution on X-ray images imposes
additional challenges since X-ray images are typically sparse, and
the data are poisson distributed. Nevertheless, Feng et al. (2003)
demonstrate using a direct demodulation (DD) method, the spatial
resolution of XMM-NewtonEPIC images can be improved by a factor
of 5 whilst adhering to the requirements for spectral studies.
Super-resolution and de-noising is fundamentally an ill-posed

problem since given a noisy/low-resolution input image, there are
an infinite number of possible enhanced (high resolution) images
that it could correspond to. The noisy, low resolution, input image
inherently does not contain all the information of an enhanced im-
age. However, in recent years significant progress has been made in
the field of de-noising and super-resolution using machine learning
methods (Yang et al. 2019; Zhang et al. 2019; Wang et al. 2020,
2018; Chen et al. 2018; Lugmayr et al. 2020; Dong et al. 2014; Jain
& Seung 2008). In these learning-based approaches, a network is
trained with data to learn the mapping between an image and an
enhanced image, where the enhanced image in our case is a higher
SNR image and/or a higher resolution image.
These models primarily make use of Fully Convolutional Net-

works (FCN), trained using a relevant quantitative metric used as a
loss function. Similar to traditional convolutional neural networks
(CNNs, LeCun et al. 1989, 1998), FCNs comprise of convolutional,
pooling and layers, however they do not have dense layers (see e.g.
Su et al. 2020, for an in depth introduction to these components)
and their output size are typically the same or larger than the input.
For this reason, FCNs are often used for computer vision tasks such
as semantic segmentation, de-noising and super-resolution (Jain &
Seung 2008; Dong et al. 2014; Chen et al. 2018). Images generated
this way tend to lack clarity as they often minimise a simple loss
function such as the mean absolute error (L1), that favors predicting
the average over all plausible enhanced images. This leads to fewer
finer details in the generated images. To address this, more recent ap-
proaches make use of more complex loss functions. The perceptual
loss function (Johnson et al. 2016; Zhang et al. 2019) incorporates
style transfer through pre-training on a target dataset with a particular
style or content. Generative Adversarial Networks (GANs) use two
competing models - a generator to produce enhanced images from
a given input image and a discriminator to differentiate between the
real and generated images. Such networks make use of an adversarial
loss (Wang et al. 2018) to obtain photorealistic images. In astronomy,
these methods have been used to improve observations. Schawinski
et al. (2017) showed that using a GAN, they were able to recover fea-
tures from artificially degraded optical observations. Vojtekova et al.

(2020) used a FCN and perceptual loss to de-noise Hubble Space
Telescope images, improving the signal-to-noise ratio by a factor
of 1.3-1.5, and Lauritsen et al. (2021) use an auto-encoder to ob-
tain super-resolution of Herschel observations in the sub-millimetre
wavelength range.
This paper aims to apply these ideas and develop deep learning-

based methods for super-resolution and de-noising of images
from XMM-Newton to increase their scientific value. The XMM-
NewtonScience Archive contains observations spanning over 20
years and therefore there is ample data to satiate the training of a
machine learning model. Improving the quality of this existing data
is of great interest to the astronomical community and the lasting
legacy of XMM-Newton. In Section 2 we introduce the real and
simulated data that are used to train and validate our method, we
describe the different components in the simulated data sets and the
pre-processing techniques. In Section 3 we define the models and the
model architecture and we detail the loss functions and the evalua-
tion metrics. The optimisation process of the models is presented in
Section 4 and the results on simulated and real observations are given
in Section 5. We discuss the results and put forward some caveats
and limitations in Section 6 and we summarise with our conclusions
in Section 7. More technical details on particular aspects of the work
are separated in the Appendices.

2 DATA

To train and validate our models we created a dataset consisting of
real XMM-Newton observations (section 2.1) and a separate dataset
of simulated XMM-Newton observations (section 2.2).

2.1 Real XMM-Newton Dataset

XMM-Newton observations are in the form of eventlists that record
the time photons of a certain energy hit a specific CCDpixel.We need
to transform these event lists into images, so in order to limit the scope
of this research we focus on the EPIC-pn detector in the (extended)
full-frame mode and build images using events with energy in band
[0.5,2.0] keV.
We use the entire XMM-NewtonScience Archive (XSA), filtering

out observations with less than 20 ks exposure times, bad time in-
tervals and events. We split the event lists in 10ks intervals for each
observation, i.e. for a 40 ks observation, we generate 4x10 ks images,
2x20 ks images, 1x30 ks and 1x40 ks image. The images with multi-
ple exposure times enables us to train super-resolution and de-noising
models using the same exposure-time for different observations. It
also enables us to train a de-noising model with pairs of low and high
exposure images. The exact implementation details of generating the
real XMM-Newton dataset are described in Appendix A.
The final dataset contains 5554 unique EPIC pn exposures giving

rise to the same number of full exposure images and almost 24000
sub-images after splitting the eventfiles into sub-images with mul-
tiples of 10ks exposure times. We only use 20ks, 50ks and 100ks
sub-images in our final datasets (Table 1).

2.2 Simulated XMM-Newton Dataset

The real XMM-Newton dataset cannot be used to train a super-
resolution model. To train a super-resolution model we need a data
set consisting of low resolution input images and their high resolution
counterparts as our targets.

MNRAS 000, 1–15 (2022)
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Table 1. The distribution of all the sub-images extracted from the total 5554
EPIC pn exposures as a function of their exposure time and their correspond-
ing train, validate and test splits.

Exposure time (ks) Number of images Train Validate Test

20 5022 3489 775 758

50 834 583 123 128

100 109 81 9 19

The creation of such a dataset, consisting of high and low resolu-
tion pairs, is often achieved digitally, through down-sampling high
resolution images (e.g. Wang et al. 2018; Lugmayr et al. 2020; Ledig
et al. 2017; Chen et al. 2022) or optically, through aligning images
taken with different optical zoom scales (e.g. Ledig et al. 2017; Chen
et al. 2022; Zhang et al. 2019). In this study we want to achieve
higher than XMM-Newton resolution images both spatially (smaller
pixel size) and with smaller PSF size. Thus, the down-sampling ap-
proach is not an option as it would only decrease the pixel size and
not the PSF.
Zooming is also not an option, since the XMM-Newton telescope

(a glancing reflector) cannot zoom. It would be possible to combine
low resolution XMM-Newton images with higher spatial resolution
images takenwith anotherX-ray telescope such asChandra, however,
we would be limited by the number of fields that have been observed
by both XMM-Newton and Chandra and therefore there would not be
enough data to train the model. Additionally, we note that most X-
ray sources are variable, hence ideally we would need simultaneous
observations, making the available data even more limited, and the
different telescopes have different properties that need to be taken
into consideration.
An appropriate training dataset can be achieved through the use of

simulations, where we can artificially increase the resolution (both
the angular resolution and the sensor resolution) whilst maintaining
the required observational properties of real XMM-Newton images.

2.2.1 Simulating XMM-Newton Images

For our simulations we use the SIXTE X-Ray simulation software
package (Dauser et al. 2019). This is a X-ray simulation software
package provided by ECAP/Remeis observatory1. We create custom
configuration files to resemble the XMM-Newton EPIC-pn detector
and individual events in the [0.5,2] keV energy band. This con-
figuration provides realistic images with all important instrumental
properties: vignetting, position-dependent PSF, background noise.
We use a recent calibration file to replicate the vignetting properties
of the XMM-Newton 2. For a detailed description of the simulation
configuration see appendix B.
We create two sets of simulated images: one with the actual XMM-

Newton PSF and another one with a rescaled PSF with twice the
resolution (i.e. FWHM and HEW are two times smaller). As this
study is a proof of concept we chose to be somewhat conservative
and only increase the resolution twice. We keep the pixel size of the
images in the second set at half the size of the original (i.e. keeping
the PSF sampling the same), hence they contain 4 times more pixels
for the same field-of-view.

1 https://github.com/thdauser/sixte
2 https://xmmweb.esac.esa.int/docs/documents/
CAL-SRN-0321-1-2.pdf

We focus on simulated observations of complex fields, like ob-
servations of galaxies or clusters of galaxies which provide images
with three main components: the extended emission from the galaxy
or the cluster, “contaminant” point sources which are mainly Active
Galactic Nuclei (AGN) and the background Figure 1). We will simu-
late these three components separately and describe them in the next
sub-sections.

2.2.2 Extended Source Component

To simulate extended sources, we use the IllustrisTNG3 suite of a
large scale, cosmological magnetohydrodynamical simulations of
galaxy formation. The three simulations we are using are Illus-
trisTNG 50-1 (Nelson et al. 2019; Pillepich et al. 2019), IllustrisTNG
100-1 and IllustrisTNG 300-1 (Springel et al. 2018; Marinacci et al.
2018; Nelson et al. 2018; Naiman et al. 2018; Pillepich et al. 2018)
at a redshift of 0.01. These are simulated at different scales (cubic
volumes of ∼ 50, 100, and 300 Mpc side lengths) and mass resolu-
tions that enable the study of different types of sources - supernova
remnants at the smaller scale and galaxy clusters at the larger scale.
The simulations include full baryonic physics. In each simulation, we
select the top 400 subhalos based on the 𝑀𝑔𝑎𝑠 . We then project the
subhalo from the x,y, and z axes on two different scales. We project at
two different scales for a close-up of the source and a projection that
is four times further away (tng50-1: 100 kpc and 400 kpc, tng100-1:
400 kpc and 1.6 Mpc, tng300-1: 1 Mpc and 4 Mpc) in order to cap-
ture different spatial information from the same source. From these
projections, we calculate the X-ray photon intensity in the [0.5,2]
keV energy range at redshift 0.01. X-ray dim subhalos are manually
removed from our dataset. This results in:

• TNG50-1: 1632 images
• TNG100-1: 2165 images
• TNG300-1: 2374 images

To convert the intensity maps from the TNG simulations to pho-
ton flux maps in [0.5, 2.0] keV, we need to assume a spectral model.
Galaxy clusters exhibit thermal spectrum, however, the subhalos from
different TNG scales are not necessarily galaxy clusters. Therefore,
for simplicity, we decided to use an absorbed power law. We use
XSPEC (Arnaud 1996) to do this, assuming 𝑁𝐻 = 0.04 × 1022
cm−2, and photon index Γ = 2. The flux of the extended sources
are further modified to reflect real extended sources that XMM-
Newton observed: we set the central part of the source (a box at
5% of the image width/height at the center of the image) to have a
flux value randomly sampled uniformly to be between 5 and 50 times
the standard deviation of background noise (𝜎𝐵) at the boresight.
Additionally, to increase our training sample size, we artificially

augment the data by apply a random zoom of scale [1, 2], and a
random x, y perturbation offset using a standard distribution with a
standard deviation of 5% of the image height/width.
After the various augmentations are applied we are left with a

total of 30855 augmented inputs that are used as the extended source
component of the simulated XMM-Newton observations.

2.2.3 Point-Source Component

The point source component of the observations are mostly AGNs.
Based on measurements of AGN number counts 𝑁 (< 𝑆) as function
of flux 𝑆 (Gilli et al. 2007), we compute the expected number of

3 https://www.tng-project.org/
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AGNs in each observation corrected for the XMM-NewtonFOV 4.
Gilli et al. (2007) do not publish their uncertainties, therefore we
include an additional Poisson uncertainty ±

√
𝑁AGN.

We simulate AGN absorption at different Galactic latitudes by
shifting the log(𝑁)/log(𝑆) distribution down by a certain factor, i.e.
dividing the flux 𝑆. We set the absorption factor to 100 at the Galactic
plane (𝑏 = 0 deg) and to 1 at the Galactic poles |𝑏 | = 90 deg. We
draw random absorption factors from log distribution from 1 to 100,
such that we favour more extragalactic fields. For example, a field
with absorption factor of 20 will have much less AGNs than a field
with no absorption (absorption factor of 1).

2.2.4 Background Component

The background of the EPIC data has different components. The first
component is due to the astrophysical sky background, from thermal
low energy emission, unresolved cosmological sources and solar
wind charge exchange. There is also particle induced background and
finally electronic noise. The sky background is position dependent,
while the quiescent particle background (QPB) is time-variable and
correlates with the solar cycle. In general, in the [0.5, 2] keV energy
band, the sky background level is ∼ 2 times higher than the QPB.
We decided not to simulate the individual background components

but use the available Blank Sky event files5 pn_t_ff_g (Carter
& Read 2007) which contain all components as they are produced
using real XMM-Newton observations. The background component
is simulated using the spectrum extracted from these Blank Sky event
files.

2.2.5 Co-Added Images

Simulating the extended, point source and background components
separately enables us to create many combinations of images. For
example, if we look at uniquely simulated sources at 100ks, we have
30855 simulations of extended sources, 25000 simulations of point
sources and 25000 simulations of background noise. This amounts
to 30855 × 25000 × 25000 ≈ 2 × 1013 possible unique simulated pn
images. We generate noisy images to use as inputs to both of our net-
works, paired with noiseless counterpart images as our DN network
targets, and high-resolution, noiseless counterpart images as our SR
network targets. Although many of these will be visually similar,
the different combinations help reduce overfitting of the model. This
compensates for the lack of traditional image augmentations such as
spatial and colour transforms that would change the properties of the
observation.

2.3 Data Pre-Processing

To help accelerate the optimization of the model and more efficient
convergence, the data need to be pre-processed.
We transform the data from counts to counts/s by dividing the

image by the exposure time. This enables us to use training data with
different exposure times whilst maintaining the input pixel intensity
distribution.
Bright sources can have large pixel values that are orders of mag-

nitudes higher than other pixels in a particular observation. This big

4 The expected number of AGNs was determined using the following tool:
http://www.bo.astro.it/~gilli/counts.html
5 https://xmm-tools.cosmos.esa.int/external/xmm_
calibration/background/bs_repository/blanksky_all.html

Table 2. The train, validation and test splits of the simulated sub-components.

Component Train Validation Test

Extended Sources 24678 3090 3087

AGNs 20000 2500 2500

Background 20000 2500 2500

difference canmake training a deep learningmodel very unstable and
therefore we clip pixel values to 200 times the mean background rate
`𝐵 = 1.1168×10−5 counts/s for the denoising data set and 50`𝐵 for
the (2x) super resolution dataset6. This can lead to the loss of detail
in bright regions, however, the majority of the extended features have
X-ray counts below 200 times the mean background.
The image is then normalized to [0, 1]. Even on normalised im-

ages, fainter features would not be visible to the human eye when
visualizing them without a suitable data scaling (or stretch). Many
interesting structures have pixel counts a few times above the back-
ground noise (𝜎𝑏), while bright parts of the image, such as centres
of point-like sources, can have pixel counts in the hundreds of 𝜎𝑏 .
The pixel intensity distribution can also affect the training of the

model. For example, an L1 loss, would put more weight on features
with higher pixel values and bias the results. Our main focus is to
enhance the visual clarity of faint details, and for this reason we
explore several different data scaling functions. We compare linear,
square root (sqrt), logarithmic (log) and hyperbolic arcsine (asinh)
stretch functions. Each of these highlights different levels of the
normalised pixel values, as shown in Figure 2, with asinh lying
between the sqrt and log stretch.

2.4 Train, Validation and Test split

The final images are split into train, validation and test sets where
only the training dataset is used to update the weights of the network,
the validation data is used to monitor the performance of the network
and the test data is reserved for final evaluation of network and is not
seen by the network during training.
For the simulated dataset, the splits are made in a way that all the

spatial augmentations done during the simulations are always in the
same set. Note that a specific source can appear multiple times across
the sets but with different projections and distances. The choice to
not split based on the sub-halos themselves was made because rare
source structures could then be over-represented in one of the splits.
Since different projections and distances of the same source look
very different, this should not be an issue.
For each component (extended sources, point sources, back-

ground) of the simulated dataset, we split the distribution to have
80%, 10% and 10%, train, validation and test subsets respectively.
The number of sub-components in each subset is shown in Table 2.
Since the real dataset has a smaller number of images we need

a larger percentage of the images to validate and test the results in
comparison to the simulated dataset. The train, val, test split distri-
bution chosen for real XMM-Newton images is thus 70%, 15% and
15% respectively.

6 The clipping value for 2x is four times smaller because the pixel density
is four times larger, meaning that the pixel counts on one pixel on the 1x
resolution scale will be distributed over four pixels in the 4x resolution scale.
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Figure 1. Different components that make up a simulated XMM-Newton observation. The simulated extended source, AGNs and background are added together
and then multiplied by the detector mask to create a simulated XMM-Newton observation. The images are logarithmic scaled for visualisation.

Figure 2. Examples of the different scaling applied to galaxy M101 (obs id:
0824450501). From left to right: linear, sqrt, asinh and log.

3 METHOD

3.1 De-Noising and Super-Resolution Model

For the de-noising model, the input image is at the default XMM-
Newton resolution with 20ks exposure time and the target image
is similarly at the default XMM-Newton resolution but with 50ks
exposure time. We choose this combination of exposure times to
replicate more realistic observations and to ensure our results are
trustworthy. Having an exposure time of for example 100ks would
force the model to make more uncertain predictions based on the
input image. At 50ks exposure we also have more real world data to
train and validate on.
The input to the SR model is the simulated XMM-Newton image at

the normal resolution with an exposure time of 20ks and background
noise. For the target image we use the simulation image with 2x
resolution, an exposure time of 100ks and without background noise.
Omitting the background noise from the label image allows themodel
to concentrate on the source.
Originally, for our super-resolution problem, we took an approach

based on a GAN architecture (Goodfellow et al. 2014). GANs use
a generator network to generate realistic images and a discriminator
network to ensure that the generated images are visually indistin-
guishable from the high-resolution target images. We initially chose
the ESR-GAN model (Wang et al. 2018) for its proven success as a
super-resolution model. It consists of a stacked Residual-in-Residual
Dense Block (RRDB, see subsection 3.2) generator and a deep CNN
discriminator. However, like all GAN based algorithms, ESR-GAN
suffers from hallucinations of non-existent features in the model out-
put. These hallucinations are caused by the discriminatory network
that forces the generator output to be visually similar to the images in
the training dataset. However, when for example, a part of the input
image does not have sufficient information to generate a high res-
olution counterpart the model starts to hallucinate detailed features
in order to generate a visually similar output image. This can have
catastrophic consequences in astronomy.
For more robust reconstructions, and at the expense of generating

images that are less visually similar to the target, we choose to omit
the adversarial component. Our main model is therefore based on
only the RRDB generator used in ESR-GAN. As we only use a gen-
erator model, our architecture is no longer a GAN. This architecture
generates more reliable outputs, however is only able to generate
sharp reconstructions in areas where the model learned to gener-
ate the features with high confidence, such as high signal-to-noise
point sources. Note that the model does not output the confidence
level of the generated features. Aspects of low confidence such as
the background noise will result in blurry reconstructions and the
output image is unlikely to visually resemble the target. The areas of
low and high confidence are different for each image since they are
dependent on the features present in the input image.

3.2 Model Architectures

The main feature of our architectures is the use of the RRDB block
(Figure 3). This block is inspired by the DenseNet architecture (Ian-
dola et al. 2014) and connects all layers within the residual block
with each other. The RRDB block consists out of three Dense Blocks,
within which contain 4 consecutive convolution layers each followed
by Leaky ReLU activations and an additional convolutional layer.
The concatenated output of every previous layer is fed into the next
convolution layer. Thus the number of input channels in every con-
secutive convolution layer increases linearly:

𝑁𝑖+1 = 𝑁𝑖 + 𝑁0 (1)

Where 𝑁𝑖+1 is the number of input channels in the next layer, 𝑁𝑖 is
the number input channels in the current layer and 𝑁0 is the number
of input channels in the first layer.
For our task of super-resolution, we base our architecture on the

original ESR-GAN generator (Figure 4), however we replace the
nearest-neighbour interpolation upsampling layer with pixel shuffle
upsampling Shi et al. (2016). Pixel shuffle has more connections
and does not interpolate the upsampled image. This should improve
quantitative details on smaller scales.
For the denoising model, we use the same architecture however

we remove the upsampling layer and the last convolutional layer
(Figure 5). Additionally more skip connections are introduced as
inspired by Zhang et al. (2020a). This helps to learn smaller features
in the image and improves training speed since the model does not
have to process all the small features. Instead, it only learns the
features to suppress to create the de-noised output image.

MNRAS 000, 1–15 (2022)



6 S.F. Sweere et al.

 
 +

Dense Block

x0
.2

+

Dense Block

x0
.2

+

Dense Block

x0
.2

x0.2 + C
on

v
LR

eL
U

C
on

v
LR

eL
U

C
on

v
LR

eL
U

C
on

v
LR

eL
U

C
on

v
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Figure 4. RRDB Super-Resolution Model Architecture. The network takes a low resolution image and undergoes a convolutional layer followed by a series
of RRDB blocks, another convolutional layer with skip connections, an upsampling layer, and finally 2 more convolutional layers to return a higher resolution
mapping.
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Figure 5. RRDB de-noise model architecture. The network takes a noisy low exposure image and undergoes a convolutional layer followed by a series of RRDB
blocks, another 2 convolutional layer, with skip connections to output a higher SNR mapping.

3.2.1 Weight Initialisation

Since our output images have values between 0.0 and 1.0, we need
to ensure that the first pass through the model results in values in this
interval. If this does not happen, when for example the values are
all negative, everything will be clipped to 0. This will result in no
usable gradients for back-propagation, i.e. the model will not train.
Therefore we skew the initial weights in the last convolution layer to
be slightly more positive.
In general, the weights are initialized using a random normal dis-

tribution where the standard deviation is based on the size of the
convolution layer:

𝑠𝑡𝑑 =
1√︁

layer size
(2)

In order to prevent the initial forward passes from being outside the
image range, we initialize the weights in the last convolution layer to
be uniformly distributed from [−𝑠𝑡𝑑, 𝑠𝑡𝑑 + 0.01 × 𝑠𝑡𝑑], this ensures
the weights are slightly more positive. An alternative solution would
be to explore different final activation layers but this is beyond the
scope of this work.

3.3 Loss Functions

The loss function determines how good a prediction of the model
is with respect to the reference image. In preliminary testing, we
observe a substantial difference in the visual appearance of the gen-
erated images and the target images. However, we require a more
quantitative measurement of the reconstruction than a simple visual
comparison. Different loss functions optimise the model for different
attributes of the output. We consider L1, Poisson, Peak Signal to
Noise Ratio (PSNR), Structural Similarity Index (SSIM, ZhouWang
et al. 2004), and Multi-scale Structural Similarity Index (MS-SSIM,
Wang et al. 2003) loss functions.
The L1 loss minimizes the mean absolute difference between pixel

values of the generated and target images. This is the simplest loss
function. We do not include the mean square error loss (L2) as it
is sensitive to outliers and extreme values which can lead to bad
performance on e.g. observations of AGNs. We include the Poisson
loss, which measures the likelihood of the generated pixel values as-
suming that the target comes from a Poisson distribution conditioned
on the input. It’s relevant here because our data is count data and
follows a Poisson distribution. The PSNR is a measure of the ratio
between the maximum signal and the distorting noise. It is one of
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Figure 6. A model trained at linear data scale (top row) and a model trained
at the sqrt data scale (bottom row). The display data scales from left to right:
linear, sqrt, asinh, and log. At the asinh and log data scale, the blobs generated
by the linear trained model are not present with the sqrt trained model.

the basic metrics in denoising models. A higher PSNR value equates
to better denoising. Lastly SSIM and MS-SSIM are perceptual met-
rics that incorporate the idea that spatially close pixels have strong
inter-dependencies. These losses therefore measure the similarity of
structure in images on a single scale and a combination of different
scales respectively. The SSIM and MS-SSIM have parameters that
needed to be fine-tuned for our problem. For SSIM we empirically
found the following parameters to work well: 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 13,
𝜎 = 2.5, 𝐾1 = 0.01 and 𝐾2 = 0.05. For MS-SSIM we used the
same parameters as for SSIM with the weight for each scale being
[0.0448, 0.2856, 0.3001, 0.2363, 0.1333].
To meaningfully combine loss functions, we need to normalize

them since the values of different loss functions can differ by orders
of magnitude. We normalize the loss based on trial runs of the model
trained with Poisson loss with the various data scaling functions and
an untrained model. A model trained with a loss function different
from the Poisson loss will generate different output images. These
will have different loss values. However, the difference between a
trained and untrained model with any of our loss functions will be
huge. Therefore, the final loss metrics should be approximately on
the same scale.
We aim to have the normalized loss value of the untrained model

at 1 and the trained model at 0. We calculated the normalization with
the following formula:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝛼 𝐿𝑢𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 𝛽 (3)

With:

𝛼 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

(4)

𝛽 = 𝑦1 − 𝑎 𝑥1 (5)

Where 𝑦1 is the target loss value for the untrained model (in our case
𝑦1 = 1), 𝑦2 is the target loss value for the trained model (in our case
𝑦2 = 0), 𝑥1 is the measured loss of the untrained model and 𝑥2 is the
measured loss of the trained model. We can now combine different
loss functions by adding the normalized loss functions together since
the loss functions are now on the same scale.

3.4 Evaluation Metrics

To evaluate our models, in addition to the loss metrics discussed in
subsection 3.3, we make use of the Feature Similarity Index (FSIM,
Zhang et al. 2011) and the Haar wavelet-based Perceptual Similarity
Index (HaarPSI, Reisenhofer et al. 2018) metrics.
In a similar fashion to SSIM and MS-SSIM, FSIM is a metric that

Table 3. Final model hyper-parameters.

Hyper-parameter Value

RRDB convolutional filters 32

RRDB blocks 4

Batch size 1

Learning rate 0.0001

Data scaling square root

Loss function PSNR and MS_SSIM

aims to mimic human vision. The human visual system perceives
images through salient low-level features, and FSIM uses 2 kinds
of these features to determine image quality - the phase congruency
(PC) and the gradient magnitude (GM). Rather than the areas with
sharp changes in contrast, PC highlights features as areas where
the order in the phase component of the Fourier transform is high.
Thus PC is an illumination and contrast invariant measure of feature
significance. However since contrast is also an important aspect of
human vision, FSIM also incorporates gradient magnitude to encode
contrast information.
HaarPSI uses coefficients obtained from a discrete wavelet trans-

form to construct local similarity maps between two images. The
Haar wavelet is used, being the simplest and most efficient to com-
pute. Next an non-linearity is applied in the form of a logistic function
to highlight the relative importance of those areas.

4 MODEL OPTIMISATION

Hyper-parameters influence the training of a model and its perfor-
mance. To tune for the optimal configuration we perform a param-
eters search where we trained many models with different hyper-
parameters to gain insight into the influence of each hyper-parameter
on the model performance. There are two categories of hyper-
parameters: themodel hyper-parameters (subsection 4.1) and the data
hyper-parameters (subsection 4.2). The model hyper-parameters are
tuned first and fixed before the data hyper-parameters are tuned.
We use a grid-search approach to hyper parameter tuning, which

can be computationally expensive and therefore we only train on a
25% subset of the simulated dataset where the inputs are further
cropped to 128x128 pixels around the boresight. We train the mod-
els for 50 epochs on this reduced dataset. Although this is slightly
different from the final model training, we argue that it gives enough
insight into the model performance to make informed choices on the
hyper-parameters used in the final model.

4.1 Model Hyper-Parameter Tuning

The model hyper-parameter-search aims to optimise parameters
based on the model’s learning ability. For this sweep, we use a Pois-
son loss with square root data-scaling since this resulted in desirable
results in initial testing. We train models with a range of combina-
tion of hyper-parameters (180 models) and monitor the loss of the
validation data. For exact details see Appendix C. The final model
hyper-parameters are shown in Table 3.
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Metric Input Simulated Data Real Data Fine-Tuned
(XMM-DeNoise)

L1 0.006528 0.005202 0.004628 0.004408

PSNR 39.349 41.728 42.227 42.693

Poisson 0.07616 0.04782 0.04856 0.04778

SSIM 0.9484 0.9359 0.9512 0.9567

MS_SSIM 0.9922 0.9910 0.9930 0.9939

FSIM 0.9688 0.9577 0.9745 0.9783

HaarPsi 0.8879 0.9006 0.9139 0.9253

Table 4. Various de-noising models to test the influence of the training data used when applied on the real test set. The input column refers to the direct
comparison between the real input data and target image. We show the results for models trained on simulated data, real data and simulated then fine-tuned to
real data compared to the target. The rows correspond to the different metric scores when applied to the real data test set.

4.2 Data Hyper-Parameter Tuning

Having determined the model hyper-parameters we tune the hyper-
parameters that influence the visual properties of the generated im-
ages: the loss function and data scaling. Here, we fix the model
hyper-parameters to the optimal values determined in subsection 4.1
however the batch size used is set to 4 to increase the training speed.
We train a model for all possible combination of loss functions (sub-
section 3.3) and data scalings (subsection 2.3, 128 models).
To determine the optimal data hyper-parameters we visually com-

pare the generated images and their image quality metrics. Since
we cannot consistently inspect the thousands of generated images,
we first select the best performing models based on the evaluation
metrics and before deciding the final data hyper-parameters based on
both a quantitative and qualitative visual inspection. For the exact
details of this process see Appendix D.
We correlate each hyper-parameterwith the combinedmetric score

and find that the sqrt data scaling performs the best. Fixing the image
scaling to sqrt, we then determine the optimal loss function.
Based the models performance on the image quality metrics and

visual inspections of the generated images we chose to train the final
model with the PSNR combined withMS_SSIM loss function. Since
the PSNR (𝐿psnr) and MS_SSIM (𝐿ms_ssim) losses are at different
scaleswe needed to normalize them in order tomeaningfully combine
them, as described in subsection 3.3. The final normalized combined
loss (𝐿𝑐) is defined as:

𝐿𝑐 = 5.43 − 0.0609 𝐿psnr − 1.51 𝐿ms_ssim
The final SRmodel was trained on the full simulated training dataset.
For the DN models we trained on the full simulated training dataset,
the full real training dataset and a combination of the two using
transfer learning. We selected the best preforming model out of these
three as our final DN model. We train the final models for 50 epochs
using an Adam optimiser (Kingma & Ba 2014). After the training
is complete we select the model from the epoch which achieved the
best validation loss as our final model.

4.3 Transfer Learning

For the de-noising model we have access to real data. Whilst the
simulated dataset contains more images, the real data encodes the
domain that we are interested in. With the smaller dataset of real
images, the performance of training a model on real data alone could
be limited. Instead we make use of transfer learning (Tan et al. 2018)

by taking the model trained on the larger simulated dataset and fine-
tuning theweights to optimise for the real data. Fine-tuning is done by
further training the model using the real data for another 50 epochs.
We again select the model from the epoch which performed best on
the validation loss as our final model.

5 RESULTS

5.1 XMM-Denoise

In Table 4 we quantify the performance of the best de-noising models
trained either on simulated data, real data or simulated and later fine-
tuned to real data when applied on a real data based test sample. The
models trained on the real dataset generally score better than those
trained on the simulated data. This is expected as the test set was
based on real data and certain features present in the real data will
not be present in the simulated data. The model that performed the
best overall is the model that was first trained on simulated data and
then fine-tuned on real data. We, therefore, select this as our final DN
model, named XMM-DeNoise.

5.1.1 Wavelet Comparison

We qualitatively compare our XMM-Denoise model to the non ma-
chine learning based wavelet transform. The use of wavelet based
de-noising methods has been shown to optimize the detection of
AGNs, galaxy clusters and other features in X-ray images of different
telescopes (e.g. Valtchanov et al. 2001; Faccioli et al. 2018; Xu et al.
2018; Zhang et al. 2020b. Our implementation is based on Faccioli
et al. (2018).
In Figure 7 de-noised examples generated by XMM-DeNoise are
shown compared to wavelet transformed image and the target image.
The images are cropped to highlight the details. We can see that
our de-noised images are, compared to the more smoothed wavelet
transformed images, visually much closer to the target images. Note
that for the wavelet technique the goal is not to mimic the higher
exposure time image but to de-noise the images substantially. Certain
features, such at the shock waves in W49B (top row) are better
defined because of this. However, this also comes at the risk of
having more artifacts or filtering out too much information — the
wavelet transform will filter out regions with constant gradient, e.g.
flat background. For example, in theM51 images (bottom row)we can
see that the wavelet transformations filtered out the extended features
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2

2

Figure 7. De-noised and wavelet transformed examples, W49B (top) and M51 (bottom), from the real XMM-Newton dataset. Cropped to the central source
and scaled with the square root function. From left to right: Input image at 1x resolution with 20ks exposure, generated de-noised image for 50ks, wavelet
transformed image and the target image at 50ks.

of the source in the center left of the image. And using radially
symmetric wavelet function will predominantly produce spherical
morphologies.

5.2 XMM-SuperRes

Figure 8 shows a select few examples of generated super-resolution
images. The generated images tend to contain more defined struc-
tures and more AGN. The performance of the XMM-SuperResmodel
based on the simulated test set are shown in Table 5. The metrics are
calculated compared to the target image using the unscaled (linear)
data. To be able to do a comparison between the input and the target
images, we need to match their resolutions. We use a naive method,
namely nearest-neighbour upsampling. Our model improved the in-
put image on all metrics.

5.2.1 Brightness Analysis

To analyze the performance SR models in detail, we take vertical
segments through the boresight of the input and generated images
(Figure 9) and plot the pixel value distribution summed along the
minor axis (Figure 10). The generated images are smoother than the
input and target images; therefore, we smooth the input and target
images using 1d convolution with a Gaussian kernel of size 5 and
𝜎 = 1.0 for a fairer comparison. Since the input image is at 20ks and
the target image is at 100ks, the input imagewill have lower counts per
region. The sudden drop in count values corresponds with the chip-
gaps where the count is zero. The predicted XMM-SuperRes image
(red) bares better resemblance to the target brightness in comparison
to the input image.

Metric Input Predicted
(XMM-SuperRes)

L1 0.01096 0.006508

PSNR 33.525 38.034

Poisson 0.08285 0.04997

SSIM 0.8248 0.907

MS_SSIM 0.9499 0.9846

FSIM 0.8657 0.8688

HaarPsi 0.5312 0.697

Table 5. Super Resolution model metrics based on the simulated data test-set.
The input column refers to the direct comparison between the simulated input
and target image. The rows correspond to the different metric scores when
applied to the simulated data test set compared to the target.

5.2.2 Chandra Comparison

For the super-resolution model, it is not possible to learn the domain
mapping for real XMM-Newton observations. However, we can probe
its performance with real data by comparing SR-generated images
with their Chandra counterparts.
As a qualitative measure of our results we compare our SR XMM-

Newton generated images with Chandra observations of the same
source. The Chandra images have a higher resolution of 0.5 arcsec
HEW compared to the 17 arcsec of the XMM-NewtonEPIC-pn. We
use the full exposure time of the Chandra images. We do however
stress that the properties of the two telescopes are not equivalent. The
PSF of the two instruments are not the same and XMM-Newton is
more sensitive than Chandra, so these images can not be considered
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2

2

2

Figure 8. Super-resolution examples from the simulated XMM-Newton dataset. Cropped to the central source and scaled with the square root function. Each row
from top to bottom: TNG50 Subhalo 382215, TNG100 Subhalo 41583 and TNG300 Subhalo 296363. From left to right: Input image at 1x resolution with 20ks
exposure, generated super-resolution image for 100ks and the label image at 100ks without background noise.

5

Figure 9. Strip plot regions TNG50 Subhalo 382215, scaled with a logaritmic
funtion. From left to right: input image at 1x resolution at 20ks, XMM-
SuperRes generated image with 2x resolution at 100ks and the target image
with 2x resolution at 100ks without background noise. The green regions
indicate the regions that we will analyse on brightness.

as ground-truth. Nonetheless we present a few examples to cover a
variety of fields and source morpholigies.
Our first case study is the Bullet cluster (Figure 11) a well know

system of two interacting galaxy clusters. The cavity between the
two X-ray components is enhanced in both the Chandra and the
generated SR image in comparison to the input XMM-Newton image.
Looking at the real XMM-Newton image and the SR-generated one,
with white contours from Chandra overlayed, we can see that the
cavity between the two clusters is much better defined in the SR

160 180 200 220 240 260 280 300
Pixel

100
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Co
un

ts

Input
Predicted XMM-SuperRes
Target

Figure 10. Count plots of the input image, XMM-SuperRes generated image
and the target image of TNG50 Subhalo 382215 corresponding to the vertical
cutout regions in Figure 9.

and DN image compared to the original XMM-Newton image, the
Chandra image also clearly contains this feature.
Our next case is supernova remnant W49B (Figure 12). Here,

again, we see more pronounced features in the SR image in compar-
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ison to the input. The extended features on the top of the image seen
in the Chandra contour lines are better defined in the generated SR
image compared with the real XMM-Newton image.
Messier 51 (M5̇1) is an interacting spiral galaxy with an active

galactic nuclei, and it is another useful case study to see how the
network performs (Figure 13). In this example we see that the gener-
ated image has point sources that are better defined compared to the
real XMM-Newton image. For example, the faint source at the bot-
tom left of the centre is clearly visible in the SR and Chandra image
but are barely in the real XMM-Newton image. Looking at the real
XMM-Newton image and generated SR XMM-Newtonwith in white
the contours of Chandra overlayed. We can also see that in the top
left of the SR image an extended feature is visible that matches with
the contours of Chandra, this extended feature is harder to be seen
in the real XMM-Newton image. However, the SR image also does
sometimes mis-predict features, for example on the right side the is
a circular blob visible in the Chandra contours. In the real XMM-
Newton image it is hard to tell if there is anything present. However,
the SR model predicted almost no counts in that area.

6 DISCUSSION

6.1 Detector Coordinates

Our models use the XMM-Newton images in detector coordinates
instead of sky coordinates. This was done to make it easier for the
models to learn the image imperfections such as the chip-gaps and
bad pixels, which in detector coordinates are always at the same
location. The exact pipeline we used for processing real observations
is described in Appendix A.

6.2 Reliability

We have shown that our model is able to generate images with en-
hanced features that correspond well to features in the higher spatial
resolutionChandra observations. However, due to the nature of deep-
learning-based SR and DN, our reconstructed images are suscepti-
ble to "hallucinated" features. Multiple images can be consistent as
the SR/DN counterpart to a given low-resolution/noisy image, how-
ever our model only predicts one possibility. Other approaches such
as flow based models (Kobyzev et al. 2020) allow us to actively
tune the generated image to coincide with different characteristics.
We explored the use of the flow based super resolution model SR-
Flow (Lugmayr et al. 2020) for SR/DN of XMM-Newton images,
with promising initial results. With this approach we could tune the
model to minimize artifacts, albeit with more blurry output images,
or create perceptually realistic images with the compromise of an in-
creased number of artefacts. To limit the scope of this paper, we did
not continue further with this model, although it could be interesting
for future research.
The goal of the metrics in Table 4 and Table 5 is to compare

the models to each other and the input. We did not calculate the
error on the metrics, e.g. by retraining with different initial random
weights, since it would not add any constraints on the reliability of
the individually generated outputs, because of the diversity of their
contents. In addition, during the hyper-parameter tuning we observed
similar performance of similar models within narrow margins of
the validation loss (Figure C1) and therefore we expect that XMM-
SuperRes and XMM-DeNoise will have similar performance after
retraining.

6.3 AGN Deblending

Our research primarily focused on extended sources and less on
AGNs. However, the models perform well at enhancing faint AGNs
and deblending them. Deblending allows us to resolve two sources
when the spatially separation is smaller than the telescope resolution.
Future research could focus on using the XMM-SuperRes model for
this purpose or even training a new SR and DN model specifically
for deblending.

6.4 Limitations

6.4.1 Clipping

We clip extreme pixel values of the data used in this work to improve
the training stability of our models, however this destroys informa-
tion associated with bright sources. Since our main objective is to
improve the resolution and de-noise to enhance the visibility of ex-
tended structures, losing detail in bright sources is an acceptable
compromise. Some sources (not within our data sample) will have
interesting features above our chosen clipping limit, and any user
should take precaution when applying our model to sources of in-
terest with count rates above our threshold. Whilst it is possible to
retrain our models with a higher clipping threshold, we note that such
action will affect other variables such as the data scaling function and
loss.

6.4.2 Data Sample

The currentmodels are limited to the energy range [0.5, 2] keVwhich
corresponds to the energy range of the majority of extended source
emission. We would advise against applying our model to images in
different energy bands as whilst the PSF is onlymarginally dependent
on the energy range, the vignetting and noise properties on the other
hand are known to be energy-dependent. Also, our model inputs are
20 ks exposure time observations from the XMM-NewtonEPIC-pn
sensor since it has the largest effective area and, therefore, good
spectral and spatial resolutions. We argue that the domain chosen
for this research is sufficient to show the effectiveness of our proof-
of-concept method. A future extension to this work could look into
expanding the energy range, incorporating the MOS detectors, in-
corporating spectral information and increasing the flexibility of the
input image exposure time.

6.4.3 Simulations

Our simulations do not contain telescope properties such as out-of-
time events. These phenomena tend to be caused by extremely bright
sources. These are not the sources that we are interested in this
research and therefore it is more efficient for us to negate out-of-time
events in our simulator.

7 CONCLUSIONS

We have developed deep-learning-based super-resolution (SR) and
denoising (DN) models to enhance XMM-Newton X-ray EPIC im-
ages. As a proof of concept, we only considered the EPIC-pn detector
and images with photon events with energies in [0.5,2] keV. We in-
crease the resolution of the observations and de-noise to improve
the SNR and enhance features that are challenging to locate in the
original images.
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Figure 11. Images of the two colliding clusters of galaxies Bullet Cluster (1E 0657-56) with contours highlighted in white. Cropped to a frame size of 4.2‘.
From left to right: Chandra at 88ks exposure, XMM-Newton at 20ks exposure, generated XMM-NewtonSR, XMM-Newton at 20ks exposure overlayed with the
Chandra contours and generated XMM-NewtonSR overlayed with the Chandra contours.

Figure 12. Images of the supernova remnant W49B (SNR G043.3-00.2), with contours highlighted in white. Cropped to a frame size of 5‘. From left to right:
Chandra at 158ks exposure, XMM-Newton at 20ks exposure, generated XMM-NewtonSR, XMM-Newton at 20ks exposure overlayed with the Chandra contours
and generated XMM-NewtonSR overlayed with the Chandra contours.

Figure 13. Images of the group of galaxies M51 with with contours highlighted in white. Cropped to a frame size of 6.7‘. From left to right: Chandra at 190ks
exposure, XMM-Newton at 20ks exposure, generated XMM-NewtonSR, XMM-Newton at 20ks exposure overlayed with the Chandra contours and generated
XMM-NewtonSR overlayed with the Chandra contours.

To train the SR and DN models, we simulated EPIC-pn images
with twice the nominal spatial resolution and images with larger
exposure times. We explored the influence of the model architecture
parameters, data pre-processing, and loss functions on the model’s
performance. To enhance the image quality, we proposed using a
combined loss function consisting of both PSRN and MS_SSIM.
To address the problem of the high dynamical range of pixel values
present in X-ray images, we implemented data-scaling with different
stretch functions. We showed that using suitable data-scaling, our
models generated fewer artifacts in low surface brightness areas in
extended sources while preserving the details we are interested in.

Our SR and DN model (XMM-SuperRes) generates enhanced SR
and DN images with twice the spatial resolution and an improved im-
age qualitymetrics as quantified by the PSNR. The network-produced
images have the desired properties, such as a smaller PSF, and all
the tested image quality metrics were improved when the model was
applied on the test dataset. Specifically, with the simulated datasets, it
improved the PSNR by 21.5% and reduced the L1 by 40.3%.We have
validated the performance of the model by applying it on real data

and visually comparing with observations taken by NASA’sChandra
telescope, which has much higher spatial resolution.
We find that the model produce images that are able to enhance

featureswith obvious counterparts in theChandra observations. Nev-
ertheless, due to the nature of the reconstruction, some of the gener-
ated SR features may be spurious; hence whilst this model may be
able to find and uncover interesting details, further detailed analysis
and ideally follow-up observations at higher spatial resolution will
be needed for their confirmation.
Our denoising model (XMM-DeNoise) based on XMM-SuperRes,

generates images with 2.5 times higher exposure without increasing
the resolution. This enabled us to train and validate the model with
realXMM-Newton observations.We found that training the denoising
model on simulated data first and fine-tuning it on real data resulted
in the best results for most image quality metrics. XMM-DeNoise
similarly improves the quality of real XMM-Newton images on all
measured global quality metrics. Specifically, it improved the PSNR
by 8.15% and reduced the L1 by 38.4%.
In conclusion, we have demonstrated the feasibility of using deep-

learning models to improve the spatial resolution and denoising of
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XMM-NewtonEPIC-pn X-ray astronomy images to increase their
scientific value. The XMM-SuperRes and XMM-DeNoisemodels de-
veloped in this paper could be used as a proof-of-concept to create
more elaborated methods. Such as creating a model that can output a
range of possible SR and DN images emphasising on different char-
acteristics (e.g. shock fronts in supernova remnants or deblending
of point sources) to more directly tackle the ill-posed nature of the
problem. The next steps for future work after this pilot study are ob-
vious: training the models with the other XMM-Newton instruments,
incorporating a set of different energy ranges and exposure times and
also extend it to other current and future X-ray telescopes.
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DATA AVAILABILITY

More detail about our data generation process is provided in Ap-
pendix A and Appendix B. Data will be available on request. Our
code is publicly available. The EPIC-pn simulator and dataset gen-
eration code is available on https://github.com/SamSweere/
xmm-epicpn-simulator and the code to train and run inference
on the SR and DN models is available on https://github.com/
SamSweere/xmm-superres-denoise, as well as more implemen-
tation details in the SFS’s Master’s thesis which is included in the
GitHub folder.
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APPENDIX A: REAL XMM-NEWTON DATASET
GENERATION

The real XMM-Newton dataset was created using standard workflow.

• We start off with the full XMM-Newton archive, containing all
the historical observations.

• First, we select all observations of at least 20𝑘𝑠 observation time
using either full-frame or extended full-frame mode. These modes
use all the 12 EPIC-pn CCDs.

• We use the XMM-Newton pipeline produced products (PPS) for
calibrated eventlists. Sometimes, an observation is split into different
exposures and we select the one with the longest on-time.

• Wefilter the eventlist by removing intervals of high background.
We use the PPS-generated light-curve and the PPS-derived threshold
and we apply the following filtering expression to produce cleaned
event lists:
PI > 300 && RAWY > 12 && PATTERN <= 4 &&

((FLAG == 0) || ((FLAG & 0x10000) != 0))
We keep the out of field-of-view events (flagged with 0x10000)

in the corners to control the instrumental background and compare
with SIXTE simulations.

• We convert this eventlist into smaller eventlists of different ex-
posure times with increments of 10 ks. The biggest exposure time
depends on the exposure time of the cleaned eventlist. I.e. if we have
a clean exposure of 40 ks, we will generate 4x10 ks images, 2x20 ks
images, 1x30 ks, and 1x40 ks images. The images with multiple ex-
posure times make the dataset more flexible to use. It also enables us
to train a de-noising model with low and high exposure image pairs.

• Finally, using the cleaned event lists we create images in detector
coordinates.We use the default binsize of 80 (4"/pix). The final image
is saved in the FITS format Wells & Greisen (1979).

APPENDIX B: SIMULATION SETUP DETAILS

B1 EPIC-pn Image Simulation

The EPIC-pn sensor consists of 12 CCDs. Initially, we simulated
all these separately based on the physical properties, including out-
of-time events. However, this significantly increased the computation
time of the simulator by a factor of 12 since thewhole telescope has to
be simulated separately for each sensor. A single observation would
require 12 separate simulations. The benefits of simulating every

sensor separately are that specific properties such as out-of-time
events are simulated as well. However, the sources we are interested
in are usually not extremely bright, which is the main cause of out-
of-time events. The impact of not having these properties is minimal
on the final image.
Therefore we simulate all 12 sensors as one big sensor, without

out-of-time events. Since we now do not have any chip gaps in-
between the CCDs, we multiply the final image with the XMM-
Newton detector mask. The detector mask filters out all the areas
in the image where no recording of events is possible, including the
chip gaps, known bad pixels, and areas outside the field of view.
Additionally we filter out over-exposed images that can result in
undesirable effects. These are typically associated solar flares.We use
the exposure map as a detector mask. The resolution of this exposure
map matches the resolution of the observed/simulated images at 1x
scale. The detector mask can therefore be used both on the real image
and the simulated one. For the higher resolution we increase the
resolution of the detector mask without interpolation (by repeating
every pixel).

B2 Boresight Determination

Note that the optical axis (also called boresight) is not exactly in the
middle of the image but is slightly offset, in order to avoid a chip gap.
The boresight position also changed over time. We used the informa-
tion from the latest calibration file: XMM_MISCDATA_0022.CCF
to determine the position of the optical axis for the simulations. This
is important for the vignetting and the PSF, since these depend on
the off-axis angle.

B3 PSF

The PSF (point spread function) of the XMM-Newton is not con-
stant, this also needed to be simulated. In SIXTE, there are two PSF
implementations: Using a single PSF for the whole image or set-
ting separate PSFs for certain sections. These sections are radially
distributed, centering around the boresight using a polar coordinate
system. For every X-ray photon of specific energy entering the sim-
ulated telescope, SIXTE will then use the closest given PSF for that
specific energy and location. The PSF distributions that SIXTE uses
need to be provided as images. During development, this created a
problem since providing many PSF images, which make the simu-
lation more realistic, resulted in very high memory use, limiting the
number of simulations we could run in parallel.
We decided to use three different energy levels: 0.5, 1.0 and 2.0

KeV to optimize this. Use a 𝜙 degree interval of 4 degrees, and
\ = 0, 210, 420, 600, 720, 900, 1200 arcsec. Resulting in 630 unique
PSF images for every energy level. The PSF image resolution was
set to 120x120; this is just big enough to cover the most stretched
PSF at the edge of the sensor. The PSF images were created using the
psfgen program, which is part of the official XMM-NewtonScience
Analysis System (XMM-SAS). To increase the simulation’s spatial
resolution, we have to decrease the PSF size. However, we do want
to keep the same PSF distortion shape. Therefore, we decreased the
size of the original PSF images by the resolution multiplier.

APPENDIX C: MODEL HYPER-PARAMETER TUNING

To determine the model hyper-parameters we run a hyper-parameter-
search. Where we fix the loss to Poisson and use square root data-
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scaling since this resulted in desirable results in initial testing. The
model hyper-parameters we try and their ranges are:

• Number of RRDB convolutional filters: [8, 16, 32]
• Number of RRDB blocks: [2, 4, 8]
• Learning rate: [10−3, 5× 10−3, 10−4, 5× 10−4, 10−5, 5× 10−5]
• Batch size: [2, 4, 8]

We train models for every possible combination of these hyper-
parameters (180 models) and monitor the loss of the validation data.
Several runs fail to converge. Some of these runs result in a validation
loss greater or equal than 1.0, and only generate blank images.
Filtering out failed and poorly performing runs (val/loss ≥ 0.434)

still leaves us with a huge number of viable model hyper-parameter
combinations. We therefore look at the correlation of the parameters
with the loss.
The batch size has the largest positive correlation with the fi-

nal loss. This positive correlation indicates that the bigger the
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, the worse the performance. After discarding runs that
use a batch size of 8, we find that the next biggest correlation comes
from the learning rate. It was clear that many of the failed runs were
a result of high learning rates that make the training unstable but
it’s also known that small learning rates risk getting stuck at local
minima. We therefore discard the extreme learning rates 𝑙𝑟 > 0.0001
and 𝑙𝑟 < 0.00005.
Figure C1 shows the remaining runs after filtering, all of which

result in very similar validation loss values. Since these models are
trained on a cropped image and reduced dataset size, we can assume
that there is more to learn from the data and that a larger model would
be more suitable for the real run. However, bigger models also take
longer to train and use more GPU memory, which is a limiting factor
when processing full-size images. For the final model (both SR and
DN), we opt for 32 RRDB convolutional filters and 4 RRDB blocks
to leave room to learn more complex data without hitting our GPU
memory limitation. We opt for a batch size of 1 to similarly reduce
the computational strain on the GPU and a learning rate of 0.0001.

APPENDIX D: DATA HYPER-PARAMETER TUNING

To tune the data hyper-parameters, the loss function and data scaling,
we fix the model hyper-parameters to the values determined in sub-
section 4.1 but with a batch size of 4 to increase the training speed.
Next, we train a model with every possible combination of loss func-
tions (subsection 3.3) and data scalings (subsection 2.3), this results
in 128 models.
The data hyper-parameters directly influence the visual properties

of the generated images. Therefore, to determine their optimal values,
we select the best-performing models based on the image quality
metrics first and then do a qualitative visual inspection.
Each image quality metric emphasizes different visual elements

in the generated image so we define our quantitative measure as
a metric score that combines all the metrics into a single value.
Some metrics are ascending, and others are descending so we invert
ascending metrics such that all metrics are descending. Additionally,
since the metrics map to different numerical scales, we apply a min-
max normalization to their values before they are summed to create
the combined metric score. Here, a lower combined metric score
is better. Since images with different data scalings have different
properties, the metrics’ value is also differs.
We correlate each hyper-parameterwith the combinedmetric score

(Figure D1) and find that the logarithmic scale correlates heavily with
bad performance on all metrics. The asinh scale also under-performs

with respect to the sqrt and linear scale. The sup-par performance
of asinh and log is likely due to the noise level getting pushed close
to the structure level, making it difficult to distinguish between the
unpredictable background noise and any real features. The linear and
sqrt data scalings perform the best.
Visual inspection of the linear data-scaling models show the ten-

dency of generating patchy images that are not present in the ground
truth image. These artefacts are barely visible on linear scales, but
they become problematicwhen the image is stretched.Models trained
with a sqrt data scaling suffer less from this problem, see Figure 6,
which motivates our choice of sqrt data scaling for our final model.
Fixing the image scaling to sqrt, we then determine the optimal

loss function. Again we correlate the loss function with respect to
the combined metric score (Figure D2), and find that L1 loss only
performs well with respect to the L1 evaluation metric and performs
poorly with respect to all other metrics. As one might expect, the best
correlations occur where the chosen loss function is also used as the
evaluation metric.
When visually inspecting the generated images we observed that

models trained with the SSIM loss tend to contain overly defined
structures andAGNs in comparison to the target image.Whilemodels
trained with Poisson, PSNR and MS_SSIM where visually closer to
the target images. Models trained with L1 loss seem to suffer from a
quantization problem, where there are distinct regions visible in what
should be continuous distributed area. Based on these observations
and the models performance on the image quality metrics we chose
to train the final model with the PSNR combined with MS_SSIM
loss function.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure C1. Results model sweep. With 𝑣𝑎𝑙/𝑙𝑜𝑠𝑠 >= 0.434, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 <= 4 and 0.0001 >= 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 >= 0.00005.
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Figure D1. Correlation matrix data scaling with respect to image quality
metrics. Lower correlation indicates better performance.
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