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Abstract 

Identifying optimal photobioreactor configurations and process operating conditions is 

critical to industrialize microalgae-derived biorenewables. Traditionally, this was addressed 

by testing numerous design scenarios from integrated physical models coupling 

computational fluid dynamics and kinetic modelling. However, this approach presents 

computational intractability and numerical instabilities when simulating large-scale systems, 

causing time-intensive computing efforts and infeasibility in mathematical optimization.  

Therefore, we propose an innovative data-driven surrogate modelling framework which 

considerably reduces computing time from months to days by exploiting state-of-the-art deep 

learning technology. The framework built upon a few simulated results from the physical 

model to learn the sophisticated hydrodynamic and biochemical kinetic mechanisms; then 

adopts a hybrid stochastic optimization algorithm to explore untested processes and find 

optimal solutions. Through verification, this framework was demonstrated to have 

comparable accuracy to the physical model. Moreover, multi-objective optimization was 

incorporated to generate a Pareto-frontier for decision-making, advancing its applications in 

complex biosystems modelling and optimization. 

 

Keywords: surrogate modelling, convolutional neural network, hybrid stochastic 

optimization, excreted biofuel, photobioreactor design 

  

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



3 

 

Introduction 

For a number of decades, microalgae have attracted significant interest as feedstocks for the 

production of renewable bioenergy and sustainable high-value bioproducts 
1,2

. One of their 

main advantages is their ability to directly utilize solar energy to convert atmospheric CO2 

into biorenewable products, ranging from biofuels (e.g. biodiesel, biohydrogen) 
3,4

 to 

valuable food additives and pharmaceutical ingredients (e.g. astaxanthin, lutein) 
5,6

. Moreover, 

recent development of genetically engineered algal strains, which are able to excrete 

bioproducts directly into the medium, show great potential to further reduce the downstream 

biorenewables’ separation cost 
7,8

. 

 

To facilitate the industrialisation of microalgal bioprocesses, extensive research has been 

conducted on the identification of optimal operating conditions including light intensity, 

temperature, and nutrient supply, in order to achieve maximum biomass growth and 

bioproduct synthesis 
9–11

. A major challenge to commercialization is light attenuation 

(decrease of local light intensity along the light transmission direction) caused by algal cell 

absorption and bubble scattering, critically limiting the potential for high density biomass 

cultivation 
12

. Consequently, a range of different types of photobioreactors (PBRs) have been 

designed to improve the light distribution for large scale operation 
13

. 

 

Meanwhile, the rapid development of computer-aided technology has resulted in extensive 

simulation research on microalgae bioprocess modelling and optimization. For instance, both 

kinetic models and machine learning based models have been proposed for the simulation of 

biorenewables’ production 
14,15

. In addition, computational fluid dynamics (CFD) have been 

implemented to assist the design of low cost and high efficiency PBRs 
16

. These studies 

indicated that microalgal biomass cultivation is predominantly affected by two fluid dynamic 
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factors; shear stress and liquid mixing 
17,18

. While rapid mixing of liquid cultures along the 

direction of light transmission can improve the overall light utilization, thereby enhancing 

photosynthetic efficiencies 
19

, it also induces intense shear stresses which can severely 

damage algal cells resulting in biomass death 
18,20

.  

 

Therefore, in order to transition microalgae based bioprocesses from laboratory to industrial 

scale, it is essential to identify suitable PBR configurations together with optimized operating 

conditions to enable large scale microalgae cultivation and biorenewable production. Due to 

the high costs associated with experimental investigations, it is commonly accepted that 

accurate simulations are required to support this transition. However, the complexity of the 

interactive hydrodynamics and kinetic mechanisms makes it challenging to construct a multi-

scale physical model which is capable of simulating cell growth and product synthesis 

accurately in large scale PBRs. Although a few studies have attempted to couple kinetic 

models and CFD models 
21,22

, these have been restricted to the analysis of open ponds instead 

of PBRs. Moreover, the execution of mathematical optimization on multi-scale physical 

models is infeasible in most cases due to the high nonlinearity and stiffness of the models; 

while using the integrated models for the sampling of large numbers of different 

combinations of reactor configurations and operating conditions is also impractical due to the 

substantial computational costs of running each design scenario. As a result, little 

improvement has been achieved in this domain to date. 

 

The current study proposes an efficient surrogate modelling framework to resolve the 

aforementioned challenges and simultaneously optimize the operating conditions and PBR 

configuration of a pilot scale microalgal biofuel production unit. In particular, this framework 

consists of a convolutional neuron network (CNN)-based surrogate model that can learn from 
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an existing physical model to predict unknown process behaviours accurately. This modelling 

strategy is coupled with a hybrid stochastic optimization algorithm that can efficiently 

explore optimal solutions using the current data-driven model. The advantage of this 

framework is that it can reduce substantially the computing time required for optimal solution 

estimation (e.g. from months to days) compared to the conventional physical modelling 

approach and meanwhile guarantees the high quality of its identified solution. In the 

following sections the detailed modelling framework procedure and optimization results are 

presented together with their associated advantages.  

 

Methodology 

Introduction of modelling framework 

The modelling framework proposed in the current study includes 6 steps:  

1. Construct a CFD model and a kinetic model to simulate PBR hydrodynamics and 

bioprocess kinetic behaviours, respectively; 

2. Assemble an integrated physical model by combining the kinetic model and the CFD 

model to simulate biomass growth and bioproduct synthesis under a few design scenarios 

(i.e. different operating conditions and PBR configurations); 

3. Use the integrated model’s simulation results (training data sets) to train a convolutional 

neural network (CNN); 

4. Identify the desirable structure of the CNN to substitute the integrated physical model and 

predict system performance under new design conditions;  

5. Determine the optimal PBR configurations and cultivation conditions for biomass growth 

and bioproduct synthesis through the hybrid stochastic optimization algorithm. 

6. Validate the surrogate model predicted optimal solution via the integrated physical model. 

If this is unsatisfactory, return to Step 3. 
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In order to illustrate the above procedure and demonstrate the efficiency and accuracy of the 

modelling framework, a case study is provided with the aim to investigate simultaneously the 

optimal configurations of a 120 L flat-plate PBR (i.e. number and diameter of holes on the 

sparger) and the optimal batch operating conditions (i.e. incident light intensity and gas 

recycling rate) for the production of bisabolene, a novel sustainable biofuel synthesized from 

green microalga Chlamydomonas reinhardtii 
8,23

. 

 

CFD modelling of a 120 L PBR 

The 120 L pilot scale flat-plate PBR (Figure 1a) used in this study was purchased from 

Photon Systems Instruments (PSI). For the model, the system was divided into two separate 

compartments: the cuboidal growth chamber (1700 mm in length, 67 mm in width, 900 mm 

in depth) to hold liquid culture and microalgae biomass, and a sparger (20 mm in diameter, 

1600 mm in length) located at the bottom of the cuboidal compartment through which 

recycling gas is pumped into the reactor providing essential mixing and carbon dioxide. As 

the configuration of the sparger has a critical influence on the liquid hydrodynamic behaviour 

of the flat-plate PBR, balancing the advantages of rapid liquid mixing with the potential risk 

of introducing high shear stress, in the current study both the number and diameter of holes 

on the sparger and the gas recycling rate are chosen as design variables to optimize the 

culture fluid dynamics.    

 

Due to the small differences in liquid phase and algae biomass density, algal cell movement 

is approximated to be the bulk movement of the liquid culture. Hence, a gas-liquid 

multiphase computational fluid dynamic (CFD) simulation was carried out in the commercial 

software COMSOL Multiphysics 5.3
®
. The turbulent bubbly flow model was selected to 
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simulate the microalgal biomass cultivation compartment, and the single-phase flow model 

was used for the sparger 
24

. Due to the significant scale difference of the cuboidal 

compartment (120 L) and the sparger holes (gas inlet, 1 mm to 5 mm), a customized 

tetrahedral meshing method was designed to generate 205,396 domain elements, 21,910 

boundary elements, and 878 edge elements to guarantee the accuracy of the simulation. 

 

The continuity equations and momentum balance equations for the gas-liquid multiphase 

model are shown in Eq. 1 and Eq. 2, respectively. Turbulent viscosity was solved using the 

standard k-ε model due to its widely successful application in the open literature 
21,16

. For the 

single-phase sparger model, α is reduced to 1 and ϕ is reduced to 0 in the continuity equation, 

and the effective viscosity is replaced by gas viscosity in the momentum balance equation. 

The detailed CFD simulation procedure as well as the selection of boundary conditions can 

be found in our previous publication 
24

. The current constructed 120 L PBR CFD model is 

shown in Fig. 1(b). The upper and lower bound of the three design variables (number and 

diameter of holes and gas inflow rate) are listed in Table 1. In this work, a 2
3
 full factorial 

design was executed to generate 8 CFD models to simulate the fluid dynamics of the PBR 

under different sparger configuration and gas inflow rate. 

  (   )   (  )                                                                                                                        ( ) 

                                                                                                                                                   ( )                                                                                                                                                   ( )  (  )     (   )                                                                                                      ( ) 

    (    (   )     (   ))                                                                                             ( ) 

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



8 

 

where ϕi is the interfacial mass transfer rate, ρ is the pseudo-continuous phase density, α is 

the volume fraction of phase, u is the velocity vector, i refers to different phases (g: gas 

phase, and l: liquid phase), g is the gravity acceleration vector, p is the pressure,   is the stress 

tensor and μe is the effective viscosity (including molecular viscosity and turbulent viscosity). 

 

Kinetic modeling of algal biomass growth and bisabolene production 

A kinetic model presented in Eq. 3 was developed in our recent work to simulate the effects 

of light intensity and cultivation temperature on algal biomass growth and bisabolene 

production under nutrient-sufficient conditions 
23

. Equation 3a represents biomass growth 

rate, and its specific growth rate ( ) is a function of local light intensity and temperature 

formulated as Eq. 3b– Eq. 3d. To account  for light attenuation 
11

, the modified Lambert-Beer 

law presented in Eq. 3e was adopted to calculate local light intensity. The kinetic model for 

parameter estimation was simplified to reduce its complexity (i.e. the model dimension) by 

replacing Eq. 3c with Eq. 3f to estimate an average value for  ( ) over the light transmission 

direction. Finally, Eq. 3g was constructed to simulate bisabolene production by modifying the 

Luedeking–Piret model 
25

. The detailed explanation of this model and its parameter 

estimation method can be found in our recent work 
23

.                                                                                                                                          ( ) 

      ( )   ( )                                                                                                                            ( ) 

 ( )   ( ) ( )      ( )                                                                                                                      ( ) 

 ( )     [ (          )]     [ (          )]                                                                 ( ) 

 ( )     exp[ (      )   ]                                                                                                     ( ) 

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



9 

 

 ( )      ∑ (  
                    

                                  
                    )  

  
                  ( ) 

     (            )  (  (   [ (          )]     [ (          )]))               ( ) 
where   is biomass concentration,   is biomass specific growth rate,    is biomass specific 

decay rate,    is maximum specific growth rate,  ( ) and    are local light intensity and 

incident light intensity, respectively,    and    are the photosaturation and photoinhibition 

term, respectively,    and    are the algae activation energy and deactivation energy, 

respectively,   is the culture temperature,   and    are reference temperatures,   is the gas 

constant (8.315 J mol
-1

 K
-1

),   is the algal cell absorption coefficient,    is the bubble 

scattering coefficient,   is the distance from light source,   is the width of the PBR,    is the 

local light intensity at a distance of         from the PBR exposure surface,   is bisabolene 

production,    and    are biomass growth-associated and growth-independent bisabolene 

yield coefficient, respectively, and   is a temperature related dimensionless parameter.  

 

Although both light intensity and temperature affect biomass growth and bioproduct 

synthesis, it is known that algal cell growth can be highly sensitive to small changes in 

culture temperature, particularly when operated beyond the optimal value 
10

. This means that 

in practice, temperatures should be kept constant to maintain the activity of microalgae 

biomass for bioproduct synthesis, considering only light intensity as the design variable for 

biomass cultivation and process optimization in this study.  

 

Integration of kinetic and CFD modelling 
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During the construction of the kinetic model, two simplifications were made to reduce the 

influence of hydrodynamics. Firstly, the culture was assumed to be perfectly mixed, and 

secondly, the local  ( ) (i.e. Eq. 3c was substituted with an averaged  ( ) value i.e. Eq. 3f). 

To integrate the kinetic model into the CFD models, both algal cells movement and local 

light distribution have to be included. Meanwhile, as temperature was fixed to 30 °C (suitable 

for biomass growth),  ( ) in Eq. 3d is reduced to a constant,   . Therefore, Eq. 4a and Eq. 

4b were derived to replace Eq. 3a and Eq. 3g, respectively, and Eq. 3c was used directly to 

calculate local biomass growth (instead of Eq. 3f). While for lab scale PBRs, the effect of 

bubble scattering on light transmission was found to be negligible 
6
, it has been found to be 

an important factor on the local light distribution in large scale systems 
26

. Thus, Eq. 3e was 

modified to Eq. 4c to ensure its applicability for the current 120 L PBR. The average bubble 

diameter was measured as 8 mm using video imaging.                  (  )                                                                                                       ( )      (   (         )      )  (    )    (  )                                                      ( ) 

 ( )     exp [ (         )   ]                                                                                                 ( ) 

 

Upon completion of the integrated models, they were applied to a batch operation, as this 

currently represents the most common operation mode for large scale biomass cultivation and 

biorenewables’ production. The integrated models were performed until biomass 

concentration reached the stationary phase (maximum biomass concentration). They were 

then used to generate local values of biomass concentration, bisabolene production, and shear 

stress at different reactor locations. For the convenience of comparison, shear stress was 

converted to friction velocity using Eq. 5. In order to generate a wide range of samples for the 

surrogate model construction, incident light intensity was changed 5 times from 60 µE m
-2

 s
-1
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to 300 µE m
-2

 s
-1

 (60 µE m
-2

 s
-1

, 120 µE m
-2

 s
-1

, 180 µE m
-2

 s
-1

, 240 µE m
-2

 s
-1

, 300 µE m
-2

 s
-1

) 

in each configuration of the PBR to summarize cell growth and bisabolene production under 

different conditions. Table 1 lists the lower and upper bounds of incident light intensity.  

   √                                                                                                                                                    ( ) 

where   is shear stress,    is liquid density, and    is friction velocity. 

 

Consequently, a total of 40 scenarios were simulated under different process operating 

conditions (light intensity and recycling gas inflow rate) and photobioreactor configurations 

(number and diameter of holes on the sparger). For each scenario, approximately 9,000 data 

points (each point consists of biomass concentration, bisabolene production, and friction 

velocity at a specific location) were generated, resulting in 360,000 data points for the 

surrogate model construction.  

 

Construction of surrogate model 

Convolutional Neural Networks (CNNs) are a variant of Artificial Neural Networks (ANNs) 

of the multi-layer Perceptron type. The following is a highly simplified explanation, and 

interested readers should be pointed out to highly informative reviews 27,28. CNNs have 

different types of layers compared to ANNs. In a CNN, an input first meets one or more 

convolutional layers, where a number of “Filters” or “Kernels” steps over the input tensor. 

These detect features, as an example they might detect vertical or horizontal line in an image, 

with filters in deeper layers detecting progressively more complex features. For instance, a 

filter in a deep network might have learned to look for a window or mailbox, if the network 

was trained to detect houses. The output then passes first through a function such as RELU or 

sigmoid, then a pooling layer, which reduces the size of the output while preserving 

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



12 

 

information. This is completed by extracting the strongest activations, and doing so also 

means that the network is less susceptible to small changes and overfitting. Convolutional 

and pooling operations are sometimes considered a single layer. At the end of the CNN there 

is one or more fully connected layers of linked neurons producing readable predictions, 

similar to traditional ANNs. 

 

As pointed out in 28, CNNs possess highly useful properties. Parameter sharing is the first, 

meaning that a filter used for a convolution is used all over the input, unlike weights in a 

traditional ANN which are each used only on a fraction of the input variables. Another 

connected property is that of sparse weights, meaning that filters only require very few 

elements of their tensors to be non-zero. Both of these properties reduce the memory 

requirements for CNNs and the amount of fine-tuning necessary to find a working solution. 

The property of equivariance means that the result of a convolution on a slightly altered 

output is the same as if the alteration was executed on the original output, guaranteeing 

consistency in the output. This relatively light-weight structure and capacity to discriminate 

make them highly useful in pattern-spotting tasks. Furthermore, the ability to use “transfer 

learning” means that networks can be pre-trained to learn on similar tasks, expanding the 

amount of available data 29. 

 

Therefore, in this study, a three-layer deep CNN model was constructed with 2 hidden layers 

consisting of convolutional blocks and a fully connected linear activation function output 

layer. A CNN was chosen deemed particularly suitable for the problem at hand. The first 

reason is that its pattern detection capabilities tolerate noise and uncertainty, allowing to 

understand general trends and to simulate robustly the system gradient landscape for the next 

step in the framework. The second is that this system is relatively slow changing, with many 
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readings being close to each other except for instrumentation noise. This might cause 

overfitting in another type of machine learning tool, but CNNs are resistant in this sense. The 

number of neurons (inputs) was 7 in the input layer (corresponding to incident light intensity, 

number of holes, diameter of holes, recycling gas flow rate, and cardinal coordinates x, y and 

z for each sample), 21 in each hidden layer and 3 in the output layer (corresponding to 

biomass concentration, friction velocity and bisabolene production). The number of neurons 

in the hidden layer was chosen as a simple multiple of existing inputs and outputs. Through 

early tuning, it was found that increasing the number of neurons did not significantly increase 

the accuracy of the model, while increasing the computational load. 

 

For each layer in the network, the parameters inside each neuron were initialized using a 

truncated normal distribution multiplied by the square root of the inverse of the number of 

inputs that feature in the neuron. The network was trained for 100 iterations using a mini-

batch size of 1024, a size that was found to be a good compromise between computational 

performance and training quality. A learning rate was given with an exponential decay of 0.98 

applied every 7 iterations, starting from a value of 0.01. The generated data set was separated 

into two splits, one comprising 70% used for the network training and the other containing 

30% used for network cross validation (test), a common split ratio employed in this type of 

work. The test points were chosen randomly by a Sobol sequence from the original data set. 

The implementation of the CNN based surrogate model construction was executed in a 

Python 3.6 programming environment using TensorFlow (Dean and Monga, 2015) and the 

Adam optimization algorithm (Kingma and Ba, 2015) on an Intel Core i7 2.40 GHz 16GB 

RAM Alienware laptop computer. 

 

Stochastic optimization of the surrogate model 
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Once the surrogate model was constructed, an optimization was conducted to find the optimal 

reactor configurations and operating conditions with respect to a specific objective. Given 

that the CNN structure is highly nonlinear, multimodal and coupled with a mixed-integer 

nonlinear programming (MINLP) problem, gradient based optimization approaches might not 

be effective to find the optimal solutions. Hence, a hybrid stochastic search optimization 

algorithm is implemented in this work.  

 

This hybrid algorithm uses a number N of particles with coordinates (the four design 

variables) as its agent and searches the solution space for the optimal result of a specific 

index through a combined form as: a) Random Search (RS), b) Particle Swarm Optimization 

(PSO) and c) Simulated Annealing (SA). Furthermore, when the algorithm detects that there 

are no good solutions outside a specific domain, the search space is reduced to focus on the 

regions which are more likely to contain a high-quality solution. To measure the quality of 

the different agents (design variables), three different performance indices (objective 

functions) were defined during the optimization process, which are biomass concentration, 

bisabolene production, and a combination of both. The definition of these performance 

indices are explained as follows. 

 

COMSOL Multiphysics 5.3
®
 outputs a grid of solution points as simulation results. This grid 

is the state values (biomass concentration, bisabolene production and friction velocity) at 

different locations of the 3-dimensional space inside the reactor. Henceforth, the CNN also 

outputs predictions on the state values at these locations. Given that the performance index 

should measure biomass concentration and bisabolene production inside of the reactor, the 

objective function with respect to the state S (biomass concentration or bisabolene production) 

is defined as: 
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         ∑    
                                                                                                                                   ( ) 

where NP is the number of points computed by COMSOL, and    is the value for the i
th

 point 

computed by the CNN for state S. In this way, the average bioproduct 

concentration/production is approximated by the sum of punctual concentrations/productions 

inside the reactor, divided by the number of points. For the current implementation NP was 

set to 280 equally distributed points in the 3D reactor space, as the addition of further points 

had a minimal impact on the states’ average. 

 

In addition to Eq. 6, the maximum friction velocity at every computed point was restricted to 

be lower than 0.5 cm s
-1

; otherwise the solution was discarded. This corresponds to the 

previous study in which friction velocity higher than 0.5 cm s
-1

 was found to damage the cell 

activities of C. reinhardtii cells 
18

. The optimization was conducted using a 5-step 

optimization algorithm proposed in our earlier work 
30

  and consisting of the following steps: 

 

Algorithm 1: hybrid stochastic optimization algorithm   

I. Initialization: In this phase, N particles are randomly placed in the solution space of the 

optimization problem. 

II. Evaluation and Classification: In this phase, the performance criteria of each particle are 

evaluated and classified into three groups. The group that they are assigned to will 

determine the search strategy they will follow in subsequent steps of the algorithm. 

i. A number NSA of particles with the highest evaluated performance index will 

follow a SA search strategy for the following n iterations. 

ii. A number NRS of particles with the lowest evaluated function will follow a RS 

search strategy for the following n iterations. 
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iii. The remaining NPSO particles will follow a PSO search strategy for the following n 

iterations. 

III. Space Exploration: The above classification works in such a way that the position of each 

particle is better exploited depending on the information that it can supply to the swarm. 

i. The NSA particles should be a small number of particles which are assumed to be 

near high-quality solutions. Thus, their neighbourhood will be intensively 

explored.  

ii. A similar reason is applied to the NPSO particles. In the solution space, these 

particles are positioned such that they might not be close to high-quality solutions. 

However, by using the knowledge of other particles in the swarm they can search 

for better solution areas which have not yet been found by other particles.  

iii. Finally, the NRS particles are those assumed to be relatively far away from any 

high-quality solutions. Hence, exploring the neighbourhood around them would 

not bring benefit to the swarm. Then, particles classified as NRS are reinitialised 

randomly. 

IV. Repeat: After n iterations the algorithm either returns to the Evaluation and Classification 

phase or terminates. 

V. Space reduction: During the algorithm, the best position of each particle in the current 

cycle is recorded. After Ncycle iterations, the search space is reduced to the smallest 

hypercube that contains the best position of all particles in the current cycle, this 

terminates the cycle. Subsequently, the algorithm returns to the Initialization phase. 

 

In this way, given that RS, PSO, and SA are in ascending order of exploration and in 

descending order of exploitation a balance in the exploration-exploitation paradigm can be 
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achieved 
30

. Furthermore, the space reduction allows the algorithm to focus efforts in the 

areas that are most likely to have a high quality (or possibly the global) optimum.  

 

Using the above optimization algorithm, optimal solutions for biomass cultivation and 

bisabolene production were sought. After observing that the optimal solutions for the two 

indices were distinct from each other, a multi-objective optimization framework was 

implemented. The objective indices for biomass concentration and biofuel production were 

scaled with respect to their optimum values, and a new performance index was created by 

merging both previous objective functions. Subsequently, using the Weighted Sum Method a 

Pareto frontier was obtained to determine the compromise point 
31

.  The objective function 

used in this case was Eq. 7: 

         ( ∑          
    (   )∑             

   )                                                      ( ) 

where   is a parameter running from 1 to 0 computing different values for the trade-off 

between biomass concentration and bisabolene production inside the reactor. 

 

The compromise point was defined to be the closest point in the Pareto front to the utopia 

point, given the Euclidean distance. The implementation was performed in a Python 3.6 

programming environment using the numpy library for fast vectorized implementations on an 

Intel Core i7 2.40 GHz 16GB RAM Alienware laptop computer. 

 

Results and Discussion 

Results of the surrogate model 

In the current study, 70% of data points generated from the 40 scenarios were used to 

construct the CNN based surrogate model, meaning that 252,000 data points were selected to 
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train the convolutional CNN. The training time course was around 2 hours, negligible 

compared to the time spent on converging a CFD model (average 144 hours). To test the 

accuracy of the surrogate model, the remaining 108,000 data points were used for CNN 

cross-validation, and the results are presented in Table 2. From the table, it is seen that the 

surrogate model can well represent the complex fluid dynamics and process kinetics 

simulated by the integrated kinetic-CFD model. Therefore, it was used to replace the rigorous 

physical model given its superior efficiency in numerical calculations and mathematical 

optimization, and was applied to predict untested behaviours of the system throughout a large 

solution space of design variables to seek the optimal solution for further PBR design and 

batch operation. To verify its predictive capability, the identified optimal PBR configuration 

and operating conditions were passed to the physical model to generate the “authentic” result 

for final comparison.  

 

Single-objective optimization for biomass growth and bisabolene production 

The optimized sparger configurations and operating conditions obtained by the surrogate 

model for biomass cultivation and bisabolene production are listed in Table 3. The baseline 

results listed in Table 3 refer to the highest values (1.027 g L
-1

 biomass concentration and 

50.77 µg L
-1

 bisabolene production) found in the 40 scenarios used for training data 

generation. From the table, it can be seen that through optimization, the current study can 

result in an increase up to 15% for different objective indices. Comparison between the CNN 

prediction result and the integrated model verification result is presented in Table 4. From 

Table 4, it is seen that the surrogate model possesses great predictive capabilities for both 

biomass concentration and biofuel production, with a mean error below 1% in both cases. 

Although the friction velocity is  underestimated by the CNN, the real value (calculated by 
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the integrated model) for both cases remains significantly below the limiting velocity of 0.5 

cm s
-1

, and is therefore to have no adverse effect on the viability of C. reinhardtii cells 
18

.  

 

The optimization results (Table 3) show that despite the similarity in gas inflow rate and 

number of holes in the sparger, the incident light intensity for optimized bisabolene 

production is less than half that for optimized biomass growth, and the hole diameter drops 

from 5 mm (upper bound) to 1 mm (lower bound). These differences can be attributed to the 

different kinetic mechanisms of biomass growth and bisabolene production and the already 

mentioned decreasing light intensity along the light transmission direction within the PBR. 

Based on the available photons that can be absorbed by cells, the culture can be divided into 

two zones, a light zone, where cells receive sufficient energy of photons to conduct 

photosynthesis, and a dark zone, where photosynthesis is no longer supported and cells 

consume their intracellular storage compounds to maintain their metabolic activities resulting 

in cell decay 
26

.  

 

To maximize biomass concentration, liquid mixing needs to be intense enough for cells to 

frequently enter the light zone to enable growth and maintenance. Increasing the diameter of 

holes on a sparger was previously found to rearrange the distribution of local bubble volume 

fractions, effectively enhancing liquid movement 
24

. Therefore, the optimal hole diameter for 

maximum biomass growth was predicted at the upper bound value of 5 mm. Meanwhile, 

increasing the incident light intensity also increases the local light intensities within the 120 L 

PBR, maximizing the volume of the light zone. Thus, the optimal incident light intensity is 

found to be 300 µE m
-2

 s
-1

 for the biomass production scenario.  
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In contrast, bisabolene synthesis is not primarily determined by biomass growth, but occurs 

even after the biomass reaches the stationary phase 
23

. Moreover, although bisabolene is 

produced during the cell growth phase as well, its synthesis rate was found to decrease at 

conditions favouring cell growth. At optimal conditions for algae biomass growth, cells will 

direct the majority of carbon towards their own reproduction, instead of synthesising other 

secondary metabolites, a phenomenon frequently found by other research e.g. biolipid 

production 
3,32

. As a result, to achieve maximum bisabolene production, biomass 

concentration should be controlled at a level which provides sufficient cells for bisabolene 

synthesis, while maintaining low growth activity. Consequently, both the hole diameter and 

incident light intensity are decreased for this scenario. From Table 4, it is concluded that in 

this case bisabolene productivity (µg g
-1

) is improved by 22.1 % compared to the scenario of 

maximizing biomass growth. 

 

Multi-objective optimization for biomass growth and bisabolene production 

To balance the trade-off between microalgal cell growth and biofuel production, multi-

objective optimization was implemented, and a Pareto frontier was generated as shown in Fig. 

2. The untraditional frontier further highlights the high nonlinearity and complexity of the 

current optimization problem, thus indicating the competence of the proposed modelling 

framework. Based on the Pareto frontier, the compromise point was identified and presented 

in Table 3, while the corresponding biomass concentration and bisabolene production are 

listed in Table 4. The optimal bisabolene productivity was estimated to be 48.55 µg g
-1

. 

Similarly to the previous two scenarios, the surrogate model can well predict biomass 

concentration and bisabolene production, but still underestimates the friction velocity. 

Nonetheless, based on the integrated model, the friction velocity remains below 0.5 cm s
-1

, 

and therefore does not restrain biomass growth.  
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Advantages of the current modelling framework 

Finally, to examine further the accuracy and predictive capability of the current surrogate 

model, an analysis was carried out to compare local biomass concentration and bisabolene 

production between the surrogate model prediction result and integrated model verification 

result for all three cases. Based on the analysis, it is concluded that for all cases, the 

prediction error of local biomass concentration does not exceed 2.5% throughout 6,000 

samples at different locations in the pilot scale PBR, while the error for local biofuel 

production is less than 1.0%. An example is also presented in Figure 3. This conclusion is 

strong evidence for the accuracy and predictive power of the proposed modeling framework. 

 

A major advantage of the current modelling framework is that it only requires the simulation 

result of a few design scenarios (i.e. two values for each design variable, in total 8 scenarios) 

from the physical model which in average requires 144 hours (6 days) to converge for each 

configuration of the pilot-scale PBR. This leads to a negligible overall calculating time 

compared to the traditional approach. For example, the total time spent in this work was 

around 7 weeks, including approx. 1,152 hours to run a few CFD models (each representing 

one configuration of PBR) and less than 1 day to execute the surrogate modelling framework. 

As the estimation of the process’ biochemical behaviors under each configuration of PBR 

took insignificant time to converge (less than 1 hour), it has been omitted in this estimate.; In 

contrast, current methods (e.g. response surface methodology (RSM)) require at least three 

levels of each design variable (i.e. 27 design scenarios) to get a good regression for 

optimization purpose 
33

. As a result, in total 23 weeks (3,864 hours) will be spent in the entire 

modelling procedure. Hence, the proposed surrogate modeling framework can greatly reduce 

computing time from months (16 weeks) to days (1 day), meanwhile guaranteeing a high 
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accuracy of the optimization result. Therefore, the proposed surrogate modelling framework 

may represent the only feasible solution for the rigorous design and optimization of large 

scale bioreactors if there is a larger number of design variables that have to be taken into 

account.   

 

More importantly, RSM and other regression methods tend to use a simple formulation e.g. 

quadratic equation to approximate the relation between the target index and the design 

variables 
33

. However, the current bioprocess is governed by sophisticated fluid dynamics and 

biochemical kinetics, indicating that its behaviour is complex and cannot be oversimplified 

by using a quadratic equation or other similar formulations. . Thus, neither the accuracy nor 

the reliability can be assured when using RSM to seek optimal photobioreactor configuration 

and process operating conditions. Based on this comparison, it is concluded that the current 

modelling framework represents a more accurate and efficient strategy, particularly for the 

modelling of complex multi-scale biosystems. 

 

Conclusion 

In the current study, a surrogate modelling framework was proposed to simultaneously 

identify the optimal configurations and operating conditions for pilot scale photobioreactor 

design and sustainable microalgal biofuel production. To guarantee the accuracy of the 

framework, an integrated kinetic-CFD model was initially constructed to investigate the 

behaviours of the underlying biosystem and to generate a sufficient number of data sets. Then, 

a convolutional artificial neuron network was developed through a state-of-the-art structure 

selection approach so that it can well represent the high nonlinearity and complexity of the 

original models. By implementing the robust hybrid stochastic optimization algorithm, 

optimal solutions with respect to different indices were successfully identified.  
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From these results it was found that due to the intricate hydrodynamic and biochemical 

mechanisms, the optimal incident light intensity and number of holes on the sparger decrease 

remarkably when the objective switches from biomass cultivation to biofuel production. This 

results in a 10% decrease on final biomass concentration but 22% increase on bisabolene 

productivity, which clearly suggests the importance of coupling effects of fluid dynamics and 

biological kinetics for bioprocess optimization, and the necessity of developing an efficient 

multi-scale modelling approach for bioprocess integration. Moreover, multi-objective 

optimization was executed to balance both cell growth and biofuel production. In all cases, 

friction velocity was well controlled to minimize the culture dead zone. All the three 

optimization schemes also resulted in noticeable increases in their objective indices compared 

to the initial design scenarios. Finally, from this detailed analysis, the current framework was 

demonstrated to combine great predictive capability with high computational efficiency, 

indicating its applicability for general biosystems modelling and optimization. 
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Table 1: Boundary values of the design variables. The range of number of holes was chosen 

based on the current PBR configuration; the total gas inflow rate (gas pumped from both 

sides of the sparger) and incident light intensity were determined by the working range of the 

120 L photobioreactor. 
 

Design variables Lower bound Upper bound 

Diameter of holes 1 mm 5 mm 

Number of holes  62 122 

Gas inflow rate 5 L min
-1

 20 L min
-1

 

Incident light intensity  60 µE m
-2

 s
-1

 300 µE m
-2

 s
-1
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Table 2: Training result of the surrogate model 

Model output Mean error, % Standard error, % Maximum error, % 

Biomass concentration 0.21% 1.07% 14.7% 

Bisabolene production 0.19% 3.75% 16.1% 

Friction velocity 1.22% 2.45% 17.5% 
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Table 3: Optimal configurations and operating conditions under different objective functions. 

The baseline results refer to the highest values (1.027 g L
-1

 biomass concentration and 50.77 

µg L
-1

 bisabolene production) found in the 40 scenarios in this work. 

 Optimize biomass Optimize bisabolene Multi-objective Opt. 

Incident light intensity 300 µE m
-2

 s
-1

 142 µE m
-2

 s
-1

 214 µE m
-2

 s
-1

 

Number of holes 84 118 98 

Diameter of holes 5 mm 1 mm 5 mm 

Gas inflow rate 18 L min
-1

 14 L min
-1

 20 L min
-1

 

Increase compared to 

the baseline results 

14.3% (biomass) 13.5% (bisabolene) 12.1% (biomass) 

13.8% (bisabolene) 
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Table 4: Comparison between the surrogate model prediction result (S-Model prediction) and 

integrated kinetic-CFD model verification result (K-CFD verification) 

Single-objective function: Maximize final biomass concentration 

Output variables S-Model prediction K-CFD verification Deviation 

Biomass concentration 1.174 g L
-1 

1.174 g L
-1

 0.0% 

Bisabolene production 51.82 µg L
-1 

51.83 µg L
-1

 0.006% 

Bisabolene productivity 44.13 µg g
-1

 44.15 µg g
-1

 0.05% 

Friction velocity 0.072 cm s
-1 

0.079 cm s
-1 

9.62% 

Single-objective function: Maximize final bisabolene production 

Output variables S-Model prediction K-CFD verification Deviation 

Biomass concentration 1.069 g L
-1 

1.069 g L
-1

 0.0% 

Bisabolene production 57.59 µg L
-1 

57.61 µg L
-1

 0.027% 

Bisabolene productivity 53.87 µg g
-1

 53.89 µg g
-1

 0.04% 

Friction velocity 0.128 cm s
-1 

0.169 cm s
-1 

32.5% 

Multi-objective function: Maximize biomass growth and bisabolene production 

Output variables S-Model prediction K-CFD verification Deviation 

Biomass concentration 1.151 g L
-1 

1.148 g L
-1

 0.258% 

Bisabolene production 57.76 µg L
-1 

55.73 µg L
-1

 0.064% 

Bisabolene productivity 50.18 µg g
-1

 48.55 µg g
-1

 3.36% 

Friction velocity 0.134 cm s
-1 

0.201 cm s
-1 

50.0% 
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List of Figure Captions: 

Figure 1: The 120 L flat-plate photobioreactor (a) and its CFD model (b). 

 

Figure 2: Pareto frontier of the multi-objective optimization problem. 

 

Figure 3: Prediction error of the surrogate model in case 1 (optimizing biomass 

concentration). (a): Prediction error on biomass concentration; (b): Prediction error on 

bisabolene production. 
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