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Abstract: The main function of the athlete tracking system is to collect the real-time competition
data of the athletes. Deep learning is a research hotspot in the field of image and video. With the
rapid development of science and technology, it has not only made a breakthrough in theory, but also
achieved excellent results in practical application. SiamRPN (Siamese Region Proposal Network) is
a single target tracking network model based on deep learning, which has high accuracy and fast
operation speed. However, in long-term tracking, if the target is completely obscured and out of the
sight of SiamRPN, the tracking of the network will be invalid. Considering the difficulty of long-term
tracking, the algorithm is improved and tested by introducing channel attention mechanism and
local global search strategy into SiamRPN. Experimental results show that this algorithm has higher
accuracy and prediction average overlap rate than the original SiamRPN algorithm when performing
tracking tasks on long-term tracking sequences. At the same time, the improved algorithm can still
achieve good results in the case of target disappearance and other challenging factors. This study
provides an important reference for the coaches of deep learning to realize long-term tracking of athletes.

Keywords: deep learning; targettracking algorithm; SiamRPN; attention mechanism; search strategy

1. Introduction

With the improvement of social and economic level and people’s growing demand for
spiritual culture, people attach more and more importance to sports events. Therefore, the
related applications of sports events have developed rapidly [1]. In a high-quality sports
event, real-time acquisition of athletes’ competition information plays a decisive role in
coaches’ personnel arrangement and tactical arrangement. However, nowadays, commonly
used wearable GPS devices are very complex to operate, difficult to maintain, and it is
difficult to ensure accuracy in long-term tracking [2]. With the development of science and
technology, tracking technology has also been significantly improved. As the strongest
single target tracking algorithm, SiamRPN (Siamese Region Proposal Network) algorithm
can better use data to enhance the discrimination ability of tracking target, and solve the
problem of conventional tracking technology being unable to use deep neural networks,
and improve the accuracy of the model [3]. However, the general SiamRPN algorithm
has two problems, one is the problem of adapting to the change of tracking target in the
tracking process, and the other is the widespread problem of tracking target disappearing
or being occluded in long-term tracking [4]. In order to solve the problems existing in the
conventional SiamRPN algorithm and achieve efficient and accurate tracking results, the
channel attention mechanism and a simple search strategy from local to global without
parameters are introduced, and the SiamRPN algorithm is improved, so as to build a target
long-term tracking algorithm model based on deep learning. An excellent target tracking
model can meet both accuracy andreal-time requirements, achievingan excellent tracking
function for athletes, so that coaches can quickly obtain effective information and complete
strategic deployment.

In previous research on single target tracking, there is a lack of related research on
long-term tracking. Therefore, the innovation of the research is to improve the SiamRPN
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tracking algorithm, introduce a local-to-global search strategy to change short-term tracking
into long-term tracking, and then add channel attention mechanism to assist long-term
tracking to achieve more accurate tracking performance. In addition, the research selects
the depth learning type of offline training to pre-train a large number of video datasets,
which can make the network model very robust.

2. Related Works

In recent years, target tracking technology has become a key research method in the
field of vision, and a special challenge was even held to find a tracking algorithm with
higher performance for real-life applications [5]. Many scholars have also analyzed and
discussed the related aspects of target tracking. Reddy et al. used the new segmentation
technology of SAR target tracking to achieve intelligent extraction of image speck noise, so
as to enhance image edge features, which has high practicability in image enhancement
segmentation [6]. Kent et al. used an unsupervised machine learning method, to establish
new double model on the basis of this, with the traditional monitoring of the performance
of the machine learning method in the simulation experiment; the experimental results
show that the double model of studying and putting forward a new unsupervised method
on the output quality and supervision technology with a strong comprehensive abilitycan
effectively suppress the background and achieve better target tracking results. However,
this method is too time-consuming and expensive to be used in actual production, and
users may not be sure whether they can find certain content in the data [7]. Koteswara et al.
obtained target tracking information in a marine environment by considering elevation
angle, frequency, and azimuth. In this paper, an efficient and reliable unscented Kalman
filter algorithm is proposed to enhance underwater target tracking in a 3D scene. In the
experiment, the original Gaussian generated noise Monte Carlo was used to verify the
method proposed in this study. The results show that the method developed in this study
can perform an underwater target tracking task more accurately. However, this algorithm
involves a large amount of calculation, is prone to allowing mistakes, and its accuracy
is greatly affected. Additionally, the robustness of model uncertainty is very poor—if
the system reaches a stable state, it will lose the ability to track the abrupt state [8]. Jang
and colleagues found that whena weak target maneuvers, for most of the multiple model
algorithms, the difference between target estimation problem is not obvious; in order
to solve the model of constant speed and coordination model of combination between
fuzziness of turning, to achieve better tracking of target maneuver problem, a new method
is put forward to achieve a faster dynamic response and better estimation precision [9].

With the development of information technology and the visual field, the depth of the
single target tracking algorithm learning type has been developed very quickly, some deep
learning models can be extremely robust, improving the network model and running speed
of the algorithm, and they can effectively improve the tracker discriminant ability, but
they can also enhance the accuracy of target tracking [10]. To meet the needs of fast multi-
material topology optimization of current phase angles, Sato constructed a new method of
agent modeling based on deep learning, and used a convolutional neural network to predict
motor performance from motor cross section images, so as to solve the problem of excessive
computation in multiple finite element analysis. The experimental results show that the
proposed method can double the operation speed of multi-material topology optimization
without losing the search ability. In addition, the optimized motor obtained through this
model and the manufactured reference model have higher average torque [11]. Abdel-
Basset et al. found that human activity recognition (HAR) is particularly important in the
Internet of Things in healthcare (IoHT), which can greatly affect the lives of individuals. The
large amount of data generated by smartphones can be used to analyze the multi-stream
of HAR by deep learning technology, and then adaptive channel compression technology
can be used to improve the feature extraction ability of convolutional neural networks.
Experimental results show that the performance of the deep learning model proposed in this
study to improve HAR is better than that of most advanced methods. However, the use cost
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of this model is very high, and the operation is very difficult. Moreover, the training time is
very long, which requires careful preprocessing of data and is very sensitive to parameter
scaling [12]. In order to solve the problem so that automatic driving measurement can
provide excellent controllers in all driving scenarios, Jin et al. studied and used deep
learning methods with excellent performance in nonlinear control and complex problems,
and discussed the application of deep learning methods in vehicle control. However,
this method cannot judge the correctness of the data, it struggles to correct the learning
results, and the decision results cause adverse effects, so its application market is relatively
narrow [13]. Duan et al. applied domain knowledge to neural networks and proposed a
new deep learning wireless transceiver, which utilized the channel model of the middle
layer of the communication physical layer to achieve the ideal performance of the end-
to-end communication system [14]. Wang and colleagues artificially solved the problem
of traditional tracking algorithms relying on manual feature extraction, and proposed an
underwater single target tracking method using reverse residual bottleneck blocks. The
results verified that the tracking speed of this method was improved to 73.74, and the
accuracy was improved to 0.524 [15]. An N uses the conjoined network to detect and track
visual objects, constructs the Siam network to classify moving objects, and uses the depth
neural network and target detection to achieve multi-target tracking. The research results
prove that this method can effectively eliminate the impact of target occlusion on multi-
target tracking, but this method requires a large number of parameters, and the output
results are difficult to explain, which seriously affects the credibility of the results [16].
Subrahmanyam uses the shift Rayleigh filter of continuous discrete system to solve the
underwater passive bearings only target tracking problem in real life. Experiments show that
the aluminum foil performance of this method is very good, and the target tracking accuracy
is relatively good [17]. Following the above literature summary, Table 1 was compiled.

Table 1. Summary of literature results.

Author Years Research Contents

Reddy B.M. et al. [6] 2021 Application of image enhancement and sar image speckle suppression and
automatic region segmentation extraction system

Kent J.S. et al. [7] 2021 Unsupervised machine learning in satellite images and its application in target
tracking and background suppression

Abdel-Basset M. et al. [12] 2021 Application of supervised dual-channel model in human activity recognition

Jin Y. et al. [13] 2021 Application of deep learning methods in various complex driving and
traffic environments

Duan S. et al [14]. 2021 Application of wireless transceiver in digital communication based on new
deep learning

Wang Z. et al. [15] 2021 Application of SiamRPN++based on convolution neural network in
underwater singletarget tracking

An N. et al. [16] 2021 Test of SiamRPN in multi-target tracking based on deep neural network

Koteswara R.S. et al. [8] 2022 Application of unscented Kalman filtering algorithm in ocean target tracking
and environmental monitoring

Jang J. et al. [9] 2022 Application of probability density function and numerical model in
multi-mode target tracking

Sato H. et al. [11] 2022 Agent model based on convolution neural network and prediction of
multi-material topology optimization based on genetic algorithm

Subrahmanyam K. [17] 2022 Application of 3D target tracking technology in long-distance underwater
target tracking

To sum up, domestic and foreign scholars mainly focus on practicality and accuracy
in the application of target tracking, and there are few studies on long-term target track-
ing. Therefore, based on the target cultivation algorithm of deep learning, this study uses
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channel attention mechanism and local-to-global search strategy to improve it, and builds
a long-term target tracking algorithm model based on deep learning. The real-time per-
formance and high accuracy of the target tracking algorithm can quickly provide effective
information for coaches and formulate coping strategies. Compared with the methods in
the above related literature, the proposed long-term target tracking model based on deep
learning can automatically detect the representative local appearance pattern of the target,
and locate the target by searching for the area with the same local pattern as the target
in the search area. The experiment also proves that the model proposed in the study can
better handle the difficult scenes in target tracking, and the accuracy is higher than that of
previous studies.

3. Deep Learning-Based Target Long-Time Tracking Algorithm Model Design
3.1. Deep Learning Tracking Algorithm Model Based on Offline Training

The tracking algorithm based on deep learning can be divided into two types—online
fine-tuning algorithm and offline training algorithm. The running speed of an online
fine-tuning algorithm is only a few frames per second, while in offline training, the running
speed of the algorithm can reach 100 frames per second, and the accuracy of the two is
almost the same [18,19]. Asthe demand of real-time tracking is 30 frames per second, the
online tuning algorithm struggles to meet the requirements, so the research object is the
deep learning tracking algorithm based on offline training. The deep learning type of offline
training can be pre-trained for video data sets. After a long time of pre-training, the network
model can become particularly robust. However, the most prominent difficult problem
in long-term tracking, that is, the occlusion and disappearance of the target, will lead to
tracking failure. Therefore, on the basis of SiamRPN, an attention mechanism is introduced
to solve the problem of long-term tracking and make tracking more accurate. A twin
network is composed of two convolutional neural subnetworks with the same structure
and parameters, which is a special deep learning architecture of the monocular tracking
algorithm [20]. The input of the network is a pair of images called model images and
search images [21]. Offline learning involves obtaining the feature map of two images by
forward-computing the subnet. Finally, the similarity measure of two images is calculated
by the similarity measure function, which is substituted for the loss function, and the
network parameters of a given label are adjusted by the back-propagation gradient. The
form of the loss function is shown in Equation (1).

L(ω(Y, Z, X)) = (1−Y)L+( fω(Z, X)) + YL−( fω(Z, X)) (1)

In Equation (1), Z is the model image, X is the search image, and Y is the truth marker
of the image pair. Y = 0. The corresponding loss function is L+ for image pairs with the
same target and Y = 1 for image pairs with different targets and L− for the corresponding
loss function. Figure 1 shows a typical construction of a twin network model.
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As can be seen from Figure 1, the input, output and intermediate feature diagram
dimensions of the study design (the feature diagram is H ×W × C) are represented by
the numbers on the diagram, with AlexNet selected as ϕω(.), and ? representing the
inter-correlation operation. From Figure 1, Equation (2) can be derived as follows:

fω(Z, X) = ϕω(Z) ?ϕω(X) (2)

In Equation (2), ϕω(.) represents a sub-network that extracts the depth characteristics
of an image, fω(Z, X) represents the similarity of two depth features, and ? represents the
interrelated operations. When a dual network is employed for tracking, typically, the model
image is selected from the first frame of the video representing the tracked objects and
their locations, while the retrieved frames are selected from the subsequent video frames.
Using Equation (2), the similarity index of the next frame to the previous frame can be
derived and the position of the tracked object and the position of the tracked object within
the next frame can thus be found for continuous tracking. The Region Proposal Network
(RPN) is implemented using a convolutional neural network for the input of a picture and
outputs a set of rectangular candidate regions with a score that indicates the probability of
the location of the target in that region, the structure of which is shown in Figure 2.
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As can be seen in Figure 2, the output feature map of the convolutional layer, fed
through a sliding window of size 3 × 3 in the RPN, produces a 256-dimensional feature
output. These features are fully concatenated and fed into two layers, one predicting
the probability of an object appearing in a candidate image and the other predicting the
coordinates of the candidate image (X, Y, W, H). For each position in the sliding window, the
RPN should predict k candidate fields, the classification layer should classify objects and
backgrounds such that the output is 2k, and the regression layer should predict coordinates
such that the output is 4k. To allow for parametric manipulation, the study introduces
k anchor points corresponding to each candidate image. The introduction of the anchor
points allows the calculation of the Intersection-over-Union (IoU) ratio between the anchor
points and the calibration frame. If the IoU is above a certain threshold, the anchor is
considered as a positive sample, if the IoU is below a certain threshold, the anchor is
considered as a negative sample, so that the network model can know whether an object
is present at that anchor. The twin region suggestion network (SiamRPN) is an improved
version of the SiamFC structure with the addition of the RPN, so that its overall structure
consists of a twin sub-network and a region suggestion sub-network, as shown in Figure 3.
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As can be seen in Figure 3, the input to the network is also a pair of images and the
deep feature extraction is also performed on this pair of images in a twin sub-network, but
the difference is that the tracking task is treated as a single target recognition task due to
the introduction of the region proposal sub-network. The proposed region sub-network is
divided into a classification branch at the top and a regression branch at the bottom. The
depth feature ϕω(Z) of the template image Z is convolved on the convolutional layer C1 in
the classification branch to obtain C1

ϕω(Z), and the number of channels becomes 2k× 256;
ϕω(Z) is convolved on the regression branch of the convolutional layer C3 to obtain
C3
ϕω(Z), and the number of channels becomes 4k× 256. After the second convolution of

the search image X on the two branches C2 and C4, the depth characteristics are obtained
as ϕω(X)C2

ϕω(Z) and C4
ϕω(Z), respectively, with the same number of channels. Then, by

using the similarity measure function in each branch, the similarity on the classification
branch f cls

ω (Z, X) can be obtained as shown in Equation (3).

f cls
ω (Z, X) = Cϕω(Z)

1 ? Cϕω(X)
2 (3)

The similarity in the regression branch f reg
ω (Z, X) is shown in Equation (4).

f reg
ω (Z, X) = Cϕω(Z)

3 ? Cϕω(X)
4 (4)

The essence of the twin region suggestion network is to learn the similarity between
two images, and the introduction to RPN is to make full use of the image information
on the object being tracked in the first frame of the video, to generate as many candidate
frames as possible to match the images in subsequent frames, and to enable the network
to handle multi-scale problems. The SiamRPN algorithm balances the requirements for
accuracy and real-time performance in the tracking problem. It is designed for arbitrary
short-term tracking tasks, but still has drawbacks when applied to long-term tracking systems
for athletes.

3.2. A SingleTarget Long-Time Tracking Framework Based on Improved SiamRPN

The feature channels of the convolution layer correspond to certain features of the
object, and different feature channels contribute differently to the final similarity measure.
Therefore, if the tracking target is set for an athlete, then the features of the athlete should
be more important than the features of other objects. In contrast, SiamRPN does not set
specific targets for athletes, and therefore, tracking for athletes is not ideal. In addition to
this, the ultra-long range and complete occlusion of the target create additional problems for
long-term tracking, as the search range of the SiamRPN algorithm does not cover the target in
its entirety when it reappears, thus causing the target tracking to fail [22,23]. To address these
issues, the study introduces a channel attention mechanism for the SiamRPN model branch,
increasing the weight of important features and searches, and a local–global search strategy so
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that tracking can continue when the target leaves the field of view or reappears after complete
occlusion, with the structure of the improved network shown in Figure 4.
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As can be seen in Figure 4, the channel focus mechanism proposed in the study is
only applicable on the model branch, i.e., the filtering process of the semantic attributes of
the different feature channels of the model image extracted by the twin network. During
the tracking process, the contribution of different channels will theoretically change when
the target scale changes or occlusion occurs, but the different channels need to be given
corresponding weights in order to accommodate the various target change during the
tracking process. Furthermore, as the channel attention proposed in the study is learned
in the offline stage and does not require online fine-tuning of parameters during tracking,
but only forward computation, the introduction of channel attention in the model branch
of the twin network will not have a significant impact on the overall network speed. The
structure of channel attention is shown in Figure 5.
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Figure 5. Channel Attention Structure.

As can be seen from Figure 5, the channel attention structure consists of a pooling
layer, two fully connected layers, a ReLU activation function, and a sigmoid activation
function. The pooling layer is a Global Average Pooling (GAP) layer, which uses a sampling
area of 6 × 6 with the same height and width as ϕω (Z). Assuming a sampling area size of
f × f and a sliding step of s, Equation (5) calculates the size of the feature map for each
channel after the global average pooling layer.
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 Hout =
⌊

Hin− f
s + 1

⌋
Wout =

⌊
Win− f

s + 1
⌋ (5)

The size of the feature map for each channel is obtained from Equation (5) as 1 × 1.
The channel note eventually learns a one-dimensional weight distribution, but since its
input is a three-dimensional 6 × 6 × 256 matrix, the global intermediate layer serves to
reduce the dimensionality equally by reducing the three-dimensional 6 × 6 × 256 matrix to
a one-dimensional 256 vector.

As this fully connected layer fc1 has 128 neurons, the output of this layer is a vector of
length 128 whose task is to combine the features extracted from the previous layer and the
output of the fully connected layer is activated by the activation function ReLU. Finally, the
fully connected layer fc2 with a sigmoid activation function of 256 neurons ensures that the
number of features filtered through the attention channel is the same as the original number
of features, so that the final output of the attention channel is a vector of weight distribution
of length 256. The twin network template branch outputs a feature map of ϕω(Z), which is
assumed to have a feature channel set ofϕω(Z) = [b1, b2, . . . , bn], bi ∈ RH×W , i = 1, 2, . . . , n,
where n is the number of channels. By assigning the corresponding weights to ϕω(Z)
through the channel-level operation shown in Equation (6), the final result is ϕ̃ω(Z), whose

set of feature channels is
∼

ϕω(Z) =
[∼

b1,
∼
b2, . . . ,

∼
bn

]
,
∼
bl ∈ RH×W , i = 1, 2, . . . , n.


∼
bl = βi·bi, i = 1, 2, . . . , n
∼

ϕω(Z) = β�ϕω(Z)
(6)

In Equation (6), β = [β1,β2, . . . ,βn],βi ∈ R, i = 1, 2, . . .,n represents the attention
of ϕω(Z) through the channel Cβ weights for subsequent outputs; � is a channel-level
multiplication operation to study the number of channels output from the twin network
template branches n = 256. Long-term monitoring tasks, in addition to considering the
difficulties of short-term monitoring that must be overcome, must also take into account the
additional challenges that over-distance field of view ranges and complete target occlusion
may pose to long-term monitoring. Therefore, the study proposes a simple and effective
method based on SiamRPN for switching from localtoglobal search areas. The classification
branch of the SiamRPN region suggestion sub-network is responsible for predicting the
probability of the presence of an object in a candidate image, while the feedback branch is
responsible for predicting the coordinates of the candidate image. The combination is a
set of candidate regions with scores, with the highest score Smax being used to determine
the beginning and end of the tracking error. With a threshold tbegin for entering a fault
situation and a threshold tend for exiting a fault situation, tend > tbegin. If Smax < tbegin, then
a fault situation is indicated and the initial search area of size 255 × 255 fails to detect the
re-emerging object, so a local-whole strategy must be used to extend the search area. If
Smax is no longer equal to any of the sizes Smax < tbegin, then iterative growth is no longer
required. Once Smax > tbegin is reached, the search area is covered again and reverts to
its original size of 255 × 255 and the size of the search area is used for further tracking.
The thresholds set for the study were tbegin = 0.8 and tend = 0.95. The similarity on the
classification branch f cls

ω (Z, X) can be obtained from Figure 4 as shown in Equation (7).

f cls
ω (Z, X) = Cϕ̃ω(Z)

1 ∗ C2
ϕω(X) (7)

In Equation (7), the convolution of ϕ̃ω(Z) with the convolution layer C1 in the classifi-
cation branch is performed to obtain Cϕ̃ω(Z)

1 with the number of feature channels 2k× 256,
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and ϕω(X) is convolved by the classification branch C2 to obtain C2
ϕω(X). The similarity

on the regression branch f reg
ω (Z, X) is shown in Equation (8)

f reg
ω (Z, X) = C

∼
ϕω(Z)
3 ? Cϕω(X)

4 (8)

In Equation (8), the convolution of ϕ̃ω(Z) with the convolution layer C3 in the regres-
sion branch is performed to obtain Cϕ̃ω(Z)

3 with the number of feature channels 4k× 256,
andϕω(X) is convolved by the regression branch C4 to obtain C4

ϕω(X). From Equation (6),
the similarity f cls

ω (Z, X) on the classification branch can be refined to Equation (9)

f cls
ω (Z, X) = Cβ�ϕω(Z)

1 ? C2
ϕω(X) (9)

We refine the similarity on the regression branch f reg
ω (Z, X) to Equation (10).

f reg
ω (Z, X) = Cβ�ϕω(Z)

3 ? Cϕω(X)
4 (10)

For offline training, the study used the same loss function as SiamRPN, with cross-
entropy loss for the classification branch and smooth L1 loss for the regression branch.
Assuming that Ax, Ay, AW , Ah represents the coordinates of the anchor point, yA represents
the probability of the anchor point predicting the presence of the target, Tx, Ty, Tw, Th
represents the coordinates of the calibration frame, and yT represents the probability of
the presence of the true target, the regularized distance d[0], d[1], d[2], d[3] is as shown in
Equation (11). 

d[0] = Tx−Ax
AW

d[1] = Ty−Ay
Ah

d[2] = ln Tw
Aw

d[3] = ln Th
Ah

(11)

The expression for the loss of smooth L1 is shown in Equation (12).

smoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(12)

Substituting Equation (11) into Equation (12) yields the loss of the regression branch,
as shown in Equation (13).

Lreg =
3

∑
i=0

smoothL1(d[i]) (13)

The loss of the classification branch is shown in Equation (14).

Lcls = C(yA, yT) = −
1
n∑ yT ln yA + (1− yT) ln(1− yA) (14)

The final loss function obtained for the whole is shown in Equation (15).

loss = Lreg + Lcls (15)

4. Performance Testing of the Target Long-Time Tracking Algorithm Model

In order to implement an athlete tracking model, the tracking algorithm used must
meet the criteria of excellence and speed. The performance of the tracking algorithms was
measured experimentally using Accuracy–Robustness (AR) plots and Frame Rate (Frames
Per Second, FPS) was chosen as a measure of how fast the tracking algorithms worked. In
order to better compare the performance of SiamFC and SiamRPN, benchmark algorithms
such as KCF, CCOT, ECO, Staple, MDNet, struck, TCNN, and ASMS were introduced in the
experiments for comparison. VOT2018 containing 60 selected video sequences was selected
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as the test dataset. In addition, the VOT-2018 LTB35 dataset was selected as the validation
set, including 35 videos of people in specific situations involving cars, motorcycles, or
bicycle lights. The AR plots obtained from the experiments are shown in Figure 6.
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The closer the tracking algorithm is to the top right, the higher its accuracy and stability.
As can be seen from Figure 6, the TCNN, SiamRPN, and MDNet algorithms perform best,
but TCNN and MDNet are deep learning tracking algorithms that rely on online fine-tuning
and require constant adjustment of model parameters in order to adapt to various changes
in the tracking process. As a result, TCNN and MDNet are time-consuming and run very
slowly. The specific performance values of each algorithm are shown in Table 2.

Table 2. Robustness, accuracy and FPS comparison results of different algorithm tests.

Tracking Algorithm Robustness Accuracy FPS

ASMS 35 0.476 132

TCNN 15 0.534 1

struck 80 0.405 15

Staple 42 0.522 45

MDNet 23 0.531 1

ECO 16 0.463 3

KCF 50 0.440 63

CCOT 22 0.475 0.3

SiamFC 37 0.502 88

SiamRPN 18 0.548 158

It can be seen from Table 2 that although the accuracy of SiamFC is only average, its
operation speed is very fast, and FPS can reach 88. Sinceit does not need to adjust the model
parameters online, SiamFC has greaterpractical application value. In terms of tracking,
deep learning gradually tends to twin networks. Using twin networks, the identification
problem can be transformed into a similarity measurement problem. This method can
not only ensure accuracy, but it can also ensure operation speed. Unlike other tracking
algorithms, the higher the accuracy, the slower the operation. At the same time, SiamFC
also has the problem of poor robustness. By comparing SiamRPN with other tracking
algorithms, it is found that SiamRPN has better accuracy and robustness, with the highest
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FPS value of 158, which is far beyond the real-time requirements of motion trajectory.
After adding RPN to SiamFC, the recognition accuracy of SiamRPN is improved by 9.2%.
The algorithm for comprehensive optimization is named improved SiamRPN, which is
compared with five benchmark algorithms such as TCNN. The accuracy and robustness of
the algorithm obtained from the experiment are shown in Figure 7.
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The closer the tracking algorithm is to the upper right, the higher the accuracy and
stability of the algorithm. It can be seen from Figure 7 that the accuracy robustness of
improved SiamRPN is the best compared with other benchmark algorithms. Aiming at the
problem that the AR sorting method cannot make good use of the accuracy and robustness
of the original data, we study the use of expected average overlap (EAO) to detect the
performance of the algorithm, as shown in Figure 8, which shows the comparison of
EAO point graphs of different algorithms. EAO point diagrams of improved SiamRPN,
SiamRPN, and TCNN algorithm models ranked first, second, and third, respectively.
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The specific test data in Table 3 show that compared with other algorithms, the accu-
racy of improved SiamRPN is 8.2% higher than TCNN and 5.5% higher than SiamRPN; The
robustness is equivalent to the performance of SiamRPN and TCNN; EAO is higher than
SiamRPN by 2.8 percentage points. FPS ranks third. Although it lags behind theSiamRPN
and ASMS algorithms, its 118 rate still far exceeds the real-time requirements (the real-time
standard is 30 fps).

Table 3. Comparison of Test Metrics for Different Algorithms.

Tracking Algorithm Robustness Accuracy FPS EAO

ASMS 35 0.476 132 0.169

TCNN 15 0.534 1 0.323

struck 80 0.405 15 0.095

Staple 42 0.522 45 0.169

MDNet 23 0.531 1 0.257

ECO 16 0.463 3 0.281

KCF 50 0.440 63 0.134

CCOT 22 0.475 0.3 0.267

SiamFC 37 0.502 88 0.186

SiamRPN 18 0.548 158 0.356

improved SiamRPN 17 0.578 118 0.384

The tracking work in the vot2018 long-term tracking data set is mainly manifested
in the rapid movement of the target, the movement of the camera and the continuous
turnover and change of the line of sight, the frequent change of the target scale, and the
easy occlusion of the target. In order to test the performance of the improved SiamRPN
algorithm on the vot2018 long-term tracking data set, five challenging sequences were
selected as test samples, and the performance was compared with the original SiamRPN
algorithm. In the experiment, the tracking target of the algorithm was human, which was
consistent with the object to be tracked by the research.

We comparethe accuracy of improved SiamRPN algorithm and SiamRPN algorithm
with FPs to test the performance of improved SiamRPN algorithm in long-term tracking.
The experimental results are shown in Figure 9. It can be seen from Figure 9 that the
operation speed of the improved SiamRPN algorithm on five long-term tracking sequences
is 49 MIPS slower than that of the original SiamRPN algorithm, but its accuracy is sig-
nificantly higher than that of the original SiamRPN algorithm. This shows that when
the tracking target disappears and reappears again, the local global search strategy has a
good solution. The five sequences selected in the study contain a large number of target
disappearances and other problems. The improved SiamRPN algorithm has a good re-
sponse mechanism, which shows that the improved algorithm has excellent comprehensive
performance in the long-term tracking data set.
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5. Conclusions

A high-level sports event often depends on the tactical arrangement of coaches.
Whether it is possible to accurately obtain the athletes’ sport status plays a key role in the
tactical deployment of coaches. Thanks to the continuous development and improvement
of deep convolution neural network, the application of deep learning in the field of vision
is also deepening. At present, SiamFC and SiamRPN are widely used in offline training.
As an extension of the SiamFC algorithm, SiamRPN has better accuracy and robustness,
and FPS value far exceeds the demand of real-time performance. However, SiamRPN
is only suitable for short-term tracking of a single target, not for long-term tracking of
athletes. Aiming at resolving the difficulties of SiamRPN tracking technology in long-
term tracking, an improved scheme based on the SiamRPN algorithm is proposed, that
is, a channel attention mechanism and a local global search strategy are introduced into
SiamRPN algorithm. The performance of the improved SiamRPN algorithm is tested on
the vot2018 data set. The research results show that the improved SiamRPN algorithm
has better accuracy robustness performance and higher prediction average overlap rate
than the original SiamRPN algorithm. In the long-term target tracking task, the improved
SiamRPN algorithm is slightly slower than SiamRPN algorithm, but it maintains a higher
accuracy. This shows that the improved algorithm improves the tracking ability of the
key features of the target, and it can repeat the coverage and continue to track when the
target reappears. A method based on the twin structure is proposed, which transforms the
tracking problem into the similarity measurement problem. This method has been proved
to be effective in experiments. However, in follow-up work, if the historical information
can be imported into the tracking process, the identification effect of tracking problems can
be further improved.
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