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Abstract—In this paper, a novel integrated real-time trajectory
planning and tracking control framework capable of dealing with
autonomous ground vehicle (AGV) parking maneuver problems
is presented. In the motion planning component, a newly-
proposed idea of utilizing deep neural networks (DNNs) for
approximating optimal parking trajectories is further extended
by taking advantages of a recurrent network structure. The
main aim is to fully exploit the inherent relationships between
different vehicle states in the training process. Furthermore, two
transfer learning strategies are applied such that the developed
motion planner can be adapted to suit various AGVs. In order
to follow the planned maneuver trajectory, an adaptive learning
tracking control algorithm is designed and served as the motion
controller. By adapting the network parameters, the stability
of the proposed control scheme, along with the convergence
of tracking errors, can be theoretically guaranteed. In order
to validate the effectiveness and emphasize key features of our
proposal, a number of experimental studies and comparative
analysis were executed. The obtained results reveal that the
proposed strategy can enable the AGV to fulfill the parking
mission with enhanced motion planning and control performance.

Note to Practitioners—This article was motivated by the
problem of optimal automatic parking planning and tracking
control for autonomous ground vehicles (AGVs) maneuvering in
a restricted environment (e.g., constrained parking regions). A
number of challenges may arise when dealing with this problem
(e.g., the model uncertainties involved in the vehicle dynamics,
system variable limits, and the presence of external disturbances).
Existing approaches to address such a problem usually exploit the
merit of optimization-based planning/control techniques such as
model predictive control and dynamic programming in order for
an optimal solution. However, two practical issues may require
further considerations: 1). The nonlinear (re)optimization process
tends to consume a large amount of computing power and it
might not be affordable in real-time; 2). Existing motion planning
and control algorithms might not be easily adapted to suit
various types of AGVs. To overcome the aforementioned issues,
we present an idea of utilizing the recurrent deep neural network
(RDNN) for planning optimal parking maneuver trajectories and
an adaptive learning NN-based (ALNN) control scheme for robust
trajectory tracking. In addition, by introducing two transfer
learning strategies, the proposed RDNN motion planner can be
adapted to suit different AGVs. In our follow-up research, we will
explore the possibility of extending the developed methodology
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for large-scale AGV parking systems collaboratively operating in
a more complex cluttered environment.

Index Terms—Real-time trajectory planning, tracking control,
autonomous ground vehicle, deep neural networks, adaptive
learning tracking control.

I. INTRODUCTION

THE development of autonomous ground vehicles (AGVs)

or self-driving cars has received considerable attention

during the last two decades due to its potential benefits in

terms of alleviating urban traffic congestion, reducing harmful

emissions, and enhancing road safety. The overall aim is

to replace the role of manned vehicles in a less risky and

more economic fashion [1]–[3]. Loosely speaking, four key

modules are involved in an AGV system [4]: localization

and mapping, environmental perception, motion planning, and

motion control. The last two modules are mainly responsible

for making driving decisions and steering vehicle movements

[5], [6]. Consequently, they are usually identified as important

indicators to reflect the intelligence level of an AGV platform.

The research executed in this work focuses on the automatic

parking maneuver problem. This type of maneuver is a basic

but typical usecase in the intelligent driving mode. However,

it is undeniable that planning the parking maneuver for AGVs

in an effective and timely manner is still challenging, as

complex traffic environment or physical requirements must

be frequently taken into account [6]–[8]. This task becomes

even harder when certain performance index is required to

be optimized. Therefore, both scholars and engineers are

stimulated to design more promising motion planners capable

to deal with various AGV parking maneuver scenarios. In [9],

employing the double tree structure, an enhanced random tree-

like motion planner was advocated to generate trajectories for

mobile robotic systems. Similarly, a novel motion planning

method, combining random tree and optimal control theory,

was proposed in [10]. These two works belong to the class of

sample-and-search methods where a finite set of mesh grids is

first applied to discretize the search space. Then a satisfactory

connection between the initial pose and the target pose is

selected.

On the contrary, in [11] the authors utilized a particu-

lar dynamic optimization algorithm to plan the time-optimal

parking trajectory for a class of wheeled mobile robots.
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Furthermore, benefiting from an initial guess generator, a dual-

loop parking maneuver planner was established for the AGV

in [12]. These two works mainly aim to construct an optimal

control formulation consisting of the AGV dynamics, vehicle-

related constraints, and other parking demands. Subsequently,

well-developed optimization algorithms are utilized to produce

the maneuver trajectories which will then be used for the

automatic driving controller or advising human drivers. One

advantage associate with this type of approach is that different

limitations/demands can easily be included in the optimization

process. However, these reported optimization-based strategies

suffer from two critical issues: 1). They are less likely to be

implemented in real-time due to huge computational demands;

2). The algorithm’s convergence can significantly be affected

by disturbances, uncertainties, local infeasible regions, etc.

Recently, some investigations revealed that it is possible to

plan the optimal maneuver trajectory by using deep neural

network (DNN)-based direct recalling [13], [14]. The core

idea of this approach is to train the DNN on pre-generated

trajectory ensembles such that it can learn and represent the

relationship between optimal control actions and maneuver

trajectories. This enables to plan the maneuver trajectory

online by iteratively recalling the trained mapping relationship.

Although previous works have reported successful applications

of this approach and verified the effectiveness of its results,

two critical problems still remain. First, different vehicle state

variables are treated independently in the DNN, which means

their inherent relations might not be fully exploited. Second,

this method might not be adapted to suit different types of

autonomous ground vehicles. Nevertheless, due to the high

potential for real-time applications, we make an attempt to

address the aforementioned issues and design an enhanced

recurrent DNN-based (RDNN) motion planner for the problem

considered in this paper.

Once a pre-planned trajectory has been produced, it should

be provided to the motion controller to track during the

actual maneuver phase. Currently, numerous contributions to

the design of trajectory tracking controllers for autonomous

vehicles can be reviewed in the literature [15]–[20]. For

example, the problem of tracking control of robotic cars was

addressed in [15], where an observer-based PID controller was

constructed. A multi-AGVs formation control problem was

considered in [16], where the authors applied a hybrid strategy

combining robust control and neural network to deal with the

uncertain parameters as well as the external disturbances. In

[17], a humanmachine co-driving AGVs control strategy was

designed based on an adaptive command filtering method. The

authors of [18] addressed the problem of steering a line of

autonomous vehicles by using predetermined speed profiles

imposed on the AGVs. The problem of AGV path tracking

under different payloads was considered in [20], wherein

the authors designed and applied a dynamic sliding-mode

control to deal with uncertainties and achieve stable steering

performance. Considering system uncertainties and actuator

constraints, a T-S fuzzy output feedback control scheme was

constructed to generate the steering wheel maneuver profiles

in [21]. Another potentially effective control algorithm which

can be applied to form the trajectory tracking system is the

model predictive control (MPC). For example, by taking into

account some dynamic public traffic restrictions, a model

predictive guidance and control framework was established in

[22] to plan and steer the vehicle’s trajectory. Besides, the

authors of [23] proposed an MPC-scheme, which is capable

of anticipating the motion of the front vehicle, to fulfill the

control of car following.

In addition, owing to the strong approximation, adaption

and learning capabilities, applications of NN-based or deep

learning-based algorithms on autonomous vehicle trajectory

tracking control problems have also gained significant atten-

tion [24]–[26]. Such an intelligent controller has been widely

investigated in recent years. For instance, the work presented

by Lin et al. [27] indicated that by applying a fuzzy NN-

based controller, the motion control mission can successfully

be fulfilled and the trajectory tracking performance is likely

to be improved. Yang et al. [28] investigated the possibility of

applying an adaptive NN scheme in order to steer the motion

of a wheeled inverted pendulum system. Besides, the authors

addressed a micro-aerial vehicle trajectory following problem

in [29], wherein a backstepping-free NN-based control law

was derived to achieve robust tracking. Compared to other

tracking control schemes, NN-based control algorithms tend

to be easily constructed and initialized. Moreover, certain

adaptive strategies can be designed and embedded in this

control scheme, thereby allowing the NN learns online. Due

to these reasons, in this paper, we are interested in designing

an adaptive learning NN-based (ALNN) control algorithm to

steer the AGV parking maneuver.

When applying the ALNN controller, two important issues

required to be considered are the close-loop stability and the

convergence of tracking errors. That is, whether the system

state variable can be stabilized and whether the actual maneu-

ver trajectory is able to follow the pre-planned reference as

close as possible. Consequently, our next focus of this paper

is to address these concerns. To do this, we have devoted

efforts on designing an NN-based control law, and an adaptive

learning law. The stability of the proposed ALNN control

scheme, along with the convergence of tracking errors, can

theoretically be guaranteed. This will be detailed in later

sections of the paper.

The main contributions/novelties of the present work lie in

the following aspects:

1) The idea of utilizing deep neural networks (DNNs) for ap-

proximating optimal parking trajectories proposed in [30]

is further extended by taking advantages of a recurrent

network structure. This modification (denoted as RDNN)

helps the training process to better exploit the inherent

relationships between different vehicle states, thereby

resulting in an enhanced approximation performance.

2) Two transfer learning strategies are proposed such that

the developed RDNN motion planner can be adapted to

suit various types of AGVs.

3) An adaptive learning NN-based (ALNN) control algo-

rithm is constructed to track the planned linear and angu-

lar velocities of the AGV. Theoretical results are provided

to guarantee the tracking performance and stability of the

ALNN motion controller.
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4) Detailed comparative experiments and case studies were

performed to demonstrate the effectiveness of the pro-

posed trajectory planning and control scheme for the

problem considered in this paper.

The remaining sections of this paper are outlined as fol-

lows. In Section II, the parking maneuver mission and AGV

equations of motion are briefly introduced. Following that, in

Section III we construct the real-time RDNN-based trajec-

tory planning method and demonstrate the transfer learning

strategy. Subsequently, in Section IV, the ALNN trajectory

tracking controller, along with some theoretical results, will

be detailed. Section V provides a number of comparative case

studies in order to validate the effectiveness of the proposed

design. Finally, in Section VI, key findings observed from the

experimental results will be summarised and concluded.

II. PROBLEM FORMULATION

A. Parking Maneuver Scenarios

Fig. 1: Parking maneuver scenarios

Parking maneuver can be regarded as an important usecase

among the intelligent driving modes. In this study, we focus

on two typical parking maneuver scenarios which commonly

exist in the real world. They are, namely, the parallel parking

as well as the vertical parking. Their illustrations and some

notations are visualized in Fig. 1, in which the bold solid line

indicates the boundary of the road.

Prior to present the parking maneuver optimization model

in detail, the AGV equations of motion as well as the collision

avoidance constraints will be introduced in the following

subsections.

B. AGV Equations of Motion

The AGV equations of motion can be described as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̇�𝑥(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡))
�̇�𝑦(𝑡) = 𝑣(𝑡) sin(𝜃(𝑡))

𝜃(𝑡) = 𝑣(𝑡) tan(𝜑(𝑡))
𝐿

�̇�(𝑡) = 𝜂1(𝑡)
�̇�(𝑡) = 𝑎(𝑡)
�̇�(𝑡) = 𝜂2(𝑡)

(1)

where

(𝑝𝑥, 𝑝𝑦) : represents the pose of the AGV;

(𝜃, 𝜑) : represents the heading and steering angles;

(𝑣, 𝑎) : represents the speed and acceleration;

(𝜂1, 𝜂2) : represents the steering rate and jerk;

(𝐿, 𝑡) : represents the wheel base of the AGV;

and the time variable.

Defining the state variables of the controlled AGV as 𝑥(𝑡) =
[𝑝𝑥(𝑡), 𝑝𝑦(𝑡), 𝜃(𝑡), 𝜑(𝑡), 𝑣(𝑡), 𝑎(𝑡)]

𝑇 with a given initial con-

dition 𝑥(0) = 𝑥ini, (1) can be abbreviated as �̇�(𝑡) =
𝑓(𝑥(𝑡), 𝑢(𝑡)). Here, 𝑢 = [𝜂1(𝑡), 𝜂2(𝑡)]

𝑇 stands for the control

variable consisting of the steering rate 𝜂1 and jerk 𝜂2, while

𝑓(𝑥(𝑡), 𝑢(𝑡)) denotes the right hand side of (1). During the

parking maneuver, the state variable of the AGV is required

to satisfy its mechanical limit which is expressed as 𝑥(𝑡) ∈
[𝑥min, 𝑥max]𝑇 . To enhance the continuity and smoothness of

the acceleration and steering angle trajectories, two additional

system equations with respect to 𝑎 and 𝜑 are introduced in

(1). Moreover, rate constraints are also imposed on �̇�(𝑡) and

�̇�(𝑡), resulting in 𝑢(𝑡) ∈ [𝑢min, 𝑢max]𝑇 .

C. Collision Avoidance Constraints

The region occupied by the vehicle can be denoted as S(𝑥),
which is a subset of R

𝑛. One simple way to establish the

collision avoidance constraint is to consider the controlled

AGV as a point mass, thereby resulting in S(𝑥) = 𝑝(𝑡) for

any 𝑡 ∈ [0, 𝑡𝑓 ]. Here, 𝑝(𝑡)=[𝑝𝑥(𝑡), 𝑝𝑦(𝑡)] stands for the position

of the AGV at 𝑡 and this assumption is applied in a number

of literature works. However, an on-road object such as an

obstacle or a parked vehicle cannot be simply treated as a

point mass in reality [31], [32]. Alternatively, they should be

considered as a full-dimensional object. As a result, motivated

by [32], a collision-free AGV maneuver trajectory should

satisfy

S(𝑥) ∩O
(𝑚) = ∅, ∀𝑚 = 1, ..., 𝑁𝑜, (2)

with
⎧

⎪

⎨

⎪

⎩

S(𝑥) = 𝑄(𝑥)W+ 𝑇 (𝑥),

W = {𝑧 ∈ R
𝑛|𝐺𝑧 ≤ 𝑔},

O
(𝑚) = {𝑧 ∈ R

𝑛|𝐴(𝑚)𝑧 ≤ 𝑏(𝑚)}.

(3a)

(3b)

(3c)

In (2) and (3), we apply O
(𝑚) to represent the region oc-

cupied by the 𝑚-th obstacle, and its shape is regulated by

(𝐴(𝑚), 𝑏(𝑚)). Here, 𝑚 = 1, ..., 𝑁𝑜 and 𝑁𝑜 stands for the num-

ber of obstacles. Note that in real-world scenarios, multiple

obstacles may exist in the environment. (𝐺, 𝑔) regulates the

shape of the initial compact set W. 𝑄(𝑥) can be understood as
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a rotation matrix, whereas 𝑇 (𝑥) outputs a translation vector.

From the definition of O
(𝑚), it is obvious that the obstacles

are modeled as convex compact sets with zero as the interior

point. Note that for nonconvex obstacles, they can usually be

approximated by a number of convex ones. Although both

S(𝑥) and O
(𝑚) are modeled as convex regions, constraint (2)

is nondifferentiable and nonconvex. To preserve the continuity

and model smoothly the collision avoidance constraint, the

following inequality can be applied:

dist(S(𝑥),O) > 𝑑 ≥ 0. (4)

where O denotes the region occupied by the obstacle, while 𝑑
can be regarded as a safety margin. In addition, the definition

of distance is utilized, which is given by [32], [33]:

dist(S(𝑥),O) : = min
𝑟

{‖𝑟‖ : (S(𝑥) + 𝑟) ∩O = ∅}. (5)

Simply imposing condition (4) for the entire time domain

𝑡 ∈ [0, 𝑡𝑓 ] may result in numerical difficulties for gradient-

based optimization algorithms, as condition (4) requires a

solution to the sub-optimization problem. Alternatively, an

equivalent form is used by exploring the next proposition

established in [32], [33]:

Proposition 1. Given that the obstacle and the AGV are in the

form of (3a) and (3c), then imposing inequality constraint (4)

is equivalent to

Find 𝜆(𝑚) ≥ 0, 𝜇(𝑚) ≥ 0
s.t. ∀𝑡 ∈ [0, 𝑡𝑓 ]

(𝐴(𝑚)𝑇 (𝑥)− 𝑏(𝑚))𝑇𝜆(𝑚) − 𝑔𝑇𝜇(𝑚) > 𝑑

𝑄𝑇 (𝑥)𝐴(𝑚)T 𝜆(𝑚) +𝐺𝑇𝜇(𝑚) = 0

‖𝐴(𝑚)T 𝜆(𝑚)‖ ≤ 1

(6)

where 𝜆(𝑚) and 𝜇(𝑚) are dual variables.

By applying Proposition 1, a smooth transformation of the

original collision avoidance constraint (4) can be obtained,

thereby alleviating the burden of the optimization process.

D. Parking Maneuver Optimization Model

To describe the mission profile in a straightforward manner,

a constrained optimal control formulation is presented. The

established formulation contains multiple constraints reflecting

the physical limits and safety factors. Specifically, we model

the parking maneuver optimization problem in the form of

min
𝑥,𝑢,𝜆(m),𝜇(m)

𝐽 =

∫︁ 𝑡f

0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡+Φ(𝑥(𝑡𝑓 ), 𝑡𝑓 )

s.t. ∀𝑡 ∈ [0, 𝑡𝑓 ], ∀𝑚 ∈ {1, ..., 𝑁𝑜}
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))
𝑥(0) = 𝑥0

𝑥(𝑡𝑓 ) = 𝑥𝑓

(𝐴(𝑚)𝑇 (𝑥)− 𝑏(𝑚))𝑇𝜆(𝑚) − 𝑔𝑇𝜇(𝑚) > 𝑑

𝑄𝑇 (𝑥)𝐴(𝑚)T 𝜆(𝑚) +𝐺𝑇𝜇(𝑚) = 0

‖𝐴(𝑚)T 𝜆(𝑚)‖ ≤ 1
𝑥(𝑡) ∈ [𝑥min, 𝑥max]
𝑢(𝑡) ∈ [𝑢min, 𝑢max]
𝜆(𝑚) ≥ 0, 𝜇(𝑚) ≥ 0

(7)

where 𝐿(𝑥(𝑡), 𝑢(𝑡)) stands for the process cost, while

Φ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) denotes the terminal cost. Note that the optimiza-

tion problem (7) is in a continuous-time form. A discretized

version will be presented in the next section in company with

the optimal trajectory ensemble generation process.

In this paper, we aim to fulfill the parking mission within

the shortest time possible, thus resulting in 𝐽 = 𝑡𝑓 . In (7),

𝑥𝑓 denotes the target final state value which is directly related

to the considered parking scenarios. It should be noted that

for the parking maneuver scenarios described in Fig. 1, the

regions where the AGV cannot enter are modeled as obstacles.

Specifically, for the vertical parking case, the no-enter zones

can be described by three axis-aligned rectangles (e.g., regions

highlighted in solid color as shown in Fig. 1(d)). Similarly, for

the parallel parking case, the no-enter zones can be described

by three rectangles of a different size. This idea can also be

extended to other irregular parking cases.

III. RDNN-BASED OPTIMAL PARKING TRAJECTORY

GENERATION

The trajectory optimization model (7) can be solved with

an acceptable accuracy offline using off-the-shelf numerical

optimizers [11]. However, in reality, the trajectory should be

planned in real-time. To alleviate the high computational bur-

den caused by the numerical optimization process and improve

the algorithm’s real-time convergence performance, efforts

can be devoted to searching a near-optimal initial reference

solution as suggested in [12] and [34]. However, designing

a high-quality initial guess of trajectory for a constrained

optimization problem is inherently difficult. Besides, there is

no guarantee that one preassigned initial reference trajectory

can work perfectly well for different parking maneuver cases.

To explore an effective alternative, a DNN-based real-time

parking maneuver planner was proposed in our previous work

[30], where DNNs were trained on the pre-generated parking

trajectory dataset to learn the mapping relationship between

the optimized states and control inputs. Later, the trained

networks were used to serve as onboard trajectory planner,

producing near-optimal control actions with vehicle current

states as input of the network. In this way, the long-standing

challenge of addressing the trajectory optimization model in

real-time becomes unnecessary. Developed upon our previous

works, the RDNN parking maneuver planner introduced in

this paper further extends the DNN-based method by taking

advantages of a recurrent network structure. Moreover, a

transfer learning strategy is designed such that the developed

RDNN motion planner has the capability of suiting various

types of AGVs. Specifically, the developed RDNN contains

four main steps:

1) Optimal parking trajectory dataset generation;

2) RDNN construction;

3) Data aggregation and training;

4) Transfer layer construction.

Next, these four components will be discussed in detail.

A. Generation of Optimal Maneuver Trajectory Dataset

To construct the optimal maneuver trajectory dataset D for

a particular parking scenario, the discretized version of the
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Algorithm 1 Optimal parking maneuver dataset generation

1: Input: 𝑁𝑑 and D = ∅;
2: Output: The final parking trajectory set D;
3: /*Main procedure*/

4: Step 1: Generate time nodes {𝑡𝑘}
𝑁k
𝑘=1;

5: while ‖D‖ < 𝑁𝑑 do
6: Step 2: Randomly initialize the noise value ∆𝜁𝑥;
7: Step 3 Assign

𝑥ini = 𝑥0 +∆𝜁𝑥

8: Step 4: Form the parking trajectory optimization model (7)
9: with noise-perturbed initial conditions;

10: Step 5: Discretize the optimization model to form

min
𝑥k,𝑢k,𝜆

(m)
k

,𝜇
(m)
k

𝐽 =

𝑁k
∑︁

𝑘=0

𝐿(𝑥𝑘, 𝑢𝑘) + Φ(𝑥𝑁k
, 𝑡𝑘)

s.t. ∀𝑘 ∈ {1, ..., 𝑁𝑘}, ∀𝑚 ∈ {1, ..., 𝑁𝑜}
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘)
𝑥0 = 𝑥ini

𝑥𝑁k
= 𝑥𝑓

(𝐴(𝑚)𝑇 (𝑥𝑘)− 𝑏(𝑚))𝑇𝜆
(𝑚)
𝑘

− 𝑔𝑇𝜇
(𝑚)
𝑘

> 𝑑

𝑄𝑇 (𝑥𝑘)𝐴
(𝑚)T 𝜆

(𝑚)
𝑘

+𝐺𝑇𝜇
(𝑚)
𝑘

= 0

‖𝐴(𝑚)T 𝜆
(𝑚)
𝑘

‖ ≤ 1
𝑥min ≤ 𝑥𝑘 ≤ 𝑥max

𝑢min ≤ 𝑢𝑘 ≤ 𝑢max

𝜆
(𝑚)
𝑘

≥ 0, 𝜇
(𝑚)
𝑘

≥ 0
(8)

11: Step 6: Access the two-step parking trajectory planner [12]
12: to address the optimization model (8);
13: if the solver can successfully terminate (tolerance 𝜖) then
14: Step 7: Output the optimal result and perform

D = D ∪ {(𝑥*

𝑘, 𝑢
*

𝑘)}

15: else
16: Step 8: Discard the current solution and perform

D = D ∪ ∅

17: end if
18: end while
19: Output the final dataset D

optimization problem (7) should be established and addressed

iteratively with noise-perturbed initial conditions. Specifically,

the dataset D which contains 𝑁𝑑 optimal parking maneuver

trajectories (e.g., ‖D‖ = 𝑁𝑑) can be generated by following

the main steps presented in Algorithm 1. Note that in (8), the

temporal nodes are denoted as {𝑡𝑘}
𝑁k

𝑘=1 with 𝑡1 = 0 and 𝑡𝑁k
=

𝑡𝑓 . Here, 𝑁𝑘 denotes the number of discrete time points. The

vehicle state and control variables at 𝑡𝑘 can then be abbreviated

as 𝑥𝑘 and 𝑢𝑘, respectively.

B. RDNN Construction and Training

Once the dataset D is formed, an RDNN network with

long short-term memory (LSTM) architecture is constructed to

learn the mapping relationships between the optimized states

and control actions. Specifically, for the automatic parking

mission, we aim to construct two RDNNs such that a near-

optimal 𝑢𝑘 = [𝜂1(𝑡𝑘), 𝜂2(𝑡𝑘)]
𝑇 can be produced with AGV

states as the network input:

𝜂1(𝑡𝑘) ≈ N1(𝑥𝑘)
𝜂2(𝑡𝑘) ≈ N2(𝑥𝑘)

(9)

Fig. 2: An example of RDNN with 3 hidden layers

In (9), N1 and N2 can be treated as the acceleration

control network and the steering control network, respectively.

Different from the fully-connected DNN applied in [30], the

RDNN implicitly embeds memory effects into the model. It

has been shown in a number of related works [35], [36] that

a neural network with LTSM recurrent structure is able to

outperform other networks in regards to predicting time series

data, which might be more suitable for the considered mission

scenario.

Fig. 3 provides a graphical illustration of an RDNN with

3 hidden layers, from where it is obvious that a recurrent

structure allows neurons to form a direct cycle, thereby making

the internal state to exhibit dynamic behaviour.

From Fig. 3, the output of the 𝑔-th network unit in 𝑗-th

layer at discrete time point 𝑡𝑘 can be determined by:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑧𝑗,𝑔,𝑡k = 𝜎𝑠(𝑊𝑧𝑥𝑗,𝑔,𝑡k + 𝑈𝑧𝑜𝑗,𝑔,𝑡k−1 + 𝑏𝑧)
𝑢𝑗,𝑔,𝑡k = 𝜎𝑠(𝑊𝑢𝑥𝑗,𝑔,𝑡k + 𝑈𝑢𝑜𝑗,𝑔,𝑡k−1 + 𝑏𝑢)
ℎ𝑗,𝑔,𝑡k = 𝜎𝑠(𝑊ℎ𝑥𝑗,𝑔,𝑡k + 𝑈ℎ𝑜𝑗,𝑔,𝑡k−1 + 𝑏ℎ)
𝑐𝑗,𝑔,𝑡k = 𝜎ℎ(𝑊𝑐𝑥𝑗,𝑔,𝑡k + 𝑈𝑐𝑜𝑗,𝑔,𝑡k−1 + 𝑏𝑐)
𝑐𝑗,𝑔,𝑡k = 𝑧𝑗,𝑔,𝑡k𝑐𝑗,𝑔,𝑡k−1 + 𝑢𝑗,𝑔,𝑡k𝑐𝑗,𝑔,𝑡k
𝑜𝑗,𝑔,𝑡k = ℎ𝑗,𝑔,𝑡k𝜎ℎ(𝑐𝑗,𝑔,𝑡k )

(10)

in which 𝑗 = 1, ..., 𝑁𝑙 and 𝑔 = 1, ..., 𝑁𝑜. Here, 𝑁𝑙 and 𝑁𝑜

represent the number of layer and neurons at each layer. 𝑥𝑗,𝑔,𝑡k

and 𝑜𝑗,𝑔,𝑡k are, respectively, the input and output vectors of

the LSTM unit. 𝑧𝑗,𝑔,𝑡k , 𝑢𝑗,𝑔,𝑡k and ℎ𝑗,𝑔,𝑡k denote the forget,

update and output activation vectors. 𝑐𝑗,𝑔,𝑡k and 𝑐𝑗,𝑔,𝑡k are the

cell input and state vectors. The activation functions 𝜎𝑠 and

𝜎ℎ are given by:

𝜎𝑠(𝑥) =
1

1+𝑒−x , 𝜎ℎ(𝑥) =
𝑒2x−1
𝑒2x+1

. (11)

In (10), 𝑊(·), 𝑈(·) and 𝑏(·) are weight matrices and bias

vectors. They are updated during the network training process.

To be more specific, the network training process can be

viewed as an optimization problem with weight matrices and

bias vectors being the decision variables. The performance
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index can be written in the form of:

min𝐿 = 1
𝑁Tr

𝑁Tr
∑︁

𝑖=1

1

𝑁𝑘

𝑁k
∑︁

𝑗=1

[𝑥(𝑡𝑗𝑇 )− �̂�(𝑡𝑗𝑇 )]
2

(12)

where 𝑥(𝑡𝑗𝑇 ) and �̂�(𝑡𝑗𝑇 ) represent the target and approxi-

mated network outputs. 𝑁Tr stands for the size of the training

dataset, and 𝑇 =
𝑡f
𝑁k

. Note that we divide D into three

subsets (e.g., D = DTr ∪DTe ∪DV). They are, respectively, the

training set DTr containing 70% data of D, the testing set DTe

containing 20% data of D, and the validation set DV (10% data

of D). These subsets are used to train, test, and validate the

network such that it can acquire the ability to map relationship

between optimized states and control variables. The Adam

optimizer [37], which leverages the stochastic gradient descent

(SGD) method and an adaptive learning rate strategy, is applied

to train the network model. The SGD algorithm process is

exactly the same as suggested in [37]. For the adaptive learning

process, if 𝜁 stands for the learning rate, then its updated value

𝜁 can be calculated by 𝜁 = 𝜁𝑒−𝜆𝑠g/𝑠d , in which 𝜆 ∈ [0.7, 1].
𝑠𝑔 and 𝑠𝑑 are the current iteration index and the decay step.

C. Data Aggregation and Retraining

To enhance the network approximation accuracy, a data

aggregation (DA) strategy is designed and applied. The central

idea of this strategy is to retrain the RDNN on an updated

training dataset. Specifically, by testing the RDNN on DTe,

we are able to detect a number of parking maneuver samples

which cannot be accurately approximated. These samples will

be collected to a so-called bad performance dataset Dd and

adhered to DTr. Subsequently, the network is re-trained on DTr.

The motivation for the use of DA is to allow some emphasis

on the detected Dd such that the network can recover from past

mistakes. To be more precise, the DA and re-training process

are summarised in the pseudocode (see Algorithm 2).

Algorithm 2 Data aggregation and training process

1: procedure
2: Step 1: Initialize Dd = ∅;
3: Step 2: Specify the acceptable thresholds of trajectory
4: approximation error 𝜖𝑎 and terminal state error 𝜖𝑡;
5: Step 3: Train the RDNN on DTr;
6: Step 4: Test the trained RDNN on DTe;
7: for 𝑚 := 1, 2, ..., ‖DV‖ do
8: if the approximation error and terminal state error of the

𝑚th trajectory among DV can stay within the threshold then
9: Step 5: Perform

Dd = Dd ∪ ∅

10: else
11: Step 6: Insert the 𝑚-th parking trajectory to Dd;
12: end if
13: end for
14: Step 7: Perform

DTr = DTr ∪ Dd

15: Step 8: Retrain the RDNN on DTr;
16: end procedure

Fig. 3: Two TL schemes

D. Transfer Learning Strategy

One limitation of the proposed RDNN parking maneuver

planner is that this method might not be easily adapted to

suit different types of AGVs. This is because the network is

trained on the parking trajectory set of a specific vehicle. A

direct implementation of the trained RDNN to another AGV

may result in algorithm performance degradation. However,

in real-world automatic parking scenarios, differences always

exist in terms of the AGV dynamics. Owing to the high

potential for real-time applications, we make an attempt to

address the this issue and extend the RDNN motion planner

such that it can be adapted to suit various types of AGVs.

The proposed method takes the advantage of transfer learning

(TL) techniques. More specifically, let us assume a large set of

parking trajectories D𝐴 is generated for a particular AGV (e.g.,

vehicle A). Besides, we define D𝐵 as a limited-size parking

trajectory dataset for another AGV (e.g., vehicle B). The main

objective of transfer learning is to reinforce the mapping

relationship N𝐴(𝑥) : 𝑥 ↦→ 𝑢, (𝑥, 𝑢) ∈ D𝐴 by maximally

exploiting the knowledge of N𝐵(𝑥) : 𝑥 ↦→ 𝑢, (𝑥, 𝑢) ∈ D𝐵 . To

achieve this goal, the structure of the RDNN motion planner

is modified and two transfer learning strategies are proposed

and visualized in Fig. 4:

∙ TL strategy 1: The LSTM layers are divided into general

hidden layers and specific hidden layers. After training

the network on the optimal parking trajectory dataset of

vehicle A, we fix the network parameters of the general

hidden layers and retrain the specific layer parameters on

the dataset of vehicle B.

∙ TL strategy 2: A surplus layer will be inserted between

the last hidden LTSM layer and the final output layer

after training the RDNN on the dataset of vehicle A. A
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retraining process will be carried out for this surplus layer

using the limited-size parking trajectory dataset of vehicle

B. Note that in this strategy, only the weight and bias

parameters of the surplus layer will be updated.

In TL strategy 1, it assumes that the general hidden layers

can abstract the behaviour of the parking maneuver once the

first training is completed. Subsequently, the retraining on

specific hidden layers plays a dominant role in determining the

maneuver action for other vehicles. In TL strategy 2, on the

other hand, it is assumed that the maneuver action of another

vehicle can be captured by learning additional features of the

dataset B.

E. Overall Algorithm Structure

To detail the proposed RDNN-based real-time parking tra-

jectory planning scheme, general offline and online operations

are structured and presented in Algorithm 3.

Algorithm 3 RDNN-based parking motion control process

1: Offline: Establish the trajectory optimization model given by (7)
2: Perform Algorithm 1 to generate the trajectory dataset D;
3: Construct and train the RDNN on DTr;
4: Perform Algorithm 2 to enhance the approximation ability of the

RDNN;
5: /*Main Iteration*/
6: Online: At each time node 𝑘 := 0, 1, ...;
7: (a) Obtain the current AGV state 𝑥𝑘;
8: (b) Compute optimal control actions via

𝑢𝑘 := N (𝑥𝑘)

9: (c) Apply 𝑢𝑘 to the AGV kinematic system (1) until 𝑡𝑘+1;
10: (d) Calculate 𝑥𝑘+1 via numerical integration:

𝑥𝑘+1 = 𝑥𝑘 +

∫︁ 𝑡k+1

𝑡k

𝑓(𝑥𝑘,N (𝑥𝑘))𝑑𝑡

11: (e) Set 𝑘 = 𝑘 + 1;
12: (f) Re-perform steps a)-e) for 𝑡𝑘+1.

IV. ALNN-BASED TRAJECTORY TRACKING CONTROLLER

In this section, an ALNN-based trajectory tracking con-

troller is introduced so as to provide the analytical form

of the control variables and to track the AGV reference

linear and angular velocity profiles generated via the RDNN-

based trajectory planner. Theoretical results are established

to guarantee the tracking performance and stability of the

proposed tracking controller.

A. AGV Dynamics

The control of the two front wheels of the AGV is consid-

ered in this section. The dynamics of the AGV can be written

in the following general form [38]:

𝑀(𝑞)�̇�+ 𝐶(𝑞, 𝑞)𝑅+𝐺(𝑞) + 𝐹 (𝑞) + 𝜏𝑑 = 𝐵(𝑞)𝜏 (13)

where 𝑞 = [𝑝𝑥, 𝑝𝑦, 𝜃]
𝑇 , 𝜔 = 𝑣 tan(𝜑)

𝐿 , and 𝑅 = [𝑣, 𝜔]𝑇 .

𝜏 = [𝜏1, 𝜏2]
𝑇 denotes the control input. Here, 𝜏1 and 𝜏2 are,

respectively, the toques produced by the left and right motors.

The matrices 𝑀(𝑞), 𝐶(𝑞, 𝑞), 𝐺(𝑞), 𝐹 (𝑞), and 𝐵(𝑞) are in the

form of

𝑀(𝑞) =

[︂

2 𝐼ω
𝑟2 + 2𝑚𝜔 +𝑚𝑣 0

0 2 𝑏2

𝑟2 𝐼𝜔 + 𝐼𝑧

]︂

,

𝐶(𝑞, 𝑞) =

[︂

0 −𝑑𝑚𝑣𝜃

𝑑𝑚𝑣𝜃 0

]︂

, 𝐺(𝑞) = 0,

𝐹 (𝑞) = 𝐹𝑐𝑞, 𝐵(𝑞) =

[︂

2
𝑟

2
𝑟

− 2
𝑟 𝑏

2
𝑟 𝑏

]︂

.

(14)

Definitions of these matrices as well as some other vehicle-

related parameters are introduced in Table I. Note that in this

TABLE I: Definitions of matrices and parameters

𝑀(𝑞): The inertia matrix

𝐶(𝑞, 𝑞): The centripetal matrix

𝐺(𝑞): The gravitation term

𝐹 (𝑞): The surface friction matrix

𝐵(𝑞): The input transformation matrix

𝜏d: The unknown bounded disturbance

𝑚v , 𝑚ω : The mass of the AGV and the motorized wheel

𝐼ω , 𝐼z : The inertia of the motorized wheel and the AGV

𝑟, 2𝑏: The radius of the wheel and the length of the rear axle

𝑑: The distance between the centre of mass and the

centre of the back axle

paper 𝐹 (𝑞) = 𝐹𝑐𝑞 is supposed to be an uncertain term with the

unknown coefficient matrix 𝐹𝑐. Based on (13), the dynamic

model with respect to 𝑅 can be written as

�̇� = −𝑀−1(𝑞)(𝐶(𝑞, 𝑞)𝑅+𝐷(𝑞)−𝐵(𝑞)𝜏) (15)

where 𝐷(𝑞) = 𝐹 (𝑞) + 𝜏𝑑.

B. ALNN-based Controller Design and Stability Analysis

From the definition of 𝑀(𝑞) and 𝐶(𝑞, 𝑞) given by (14),

it is easy to verify that the 𝑀(𝑞) is symmetric and positive

definite and 𝑀 − 2𝐶(𝑞, 𝑞) is skew-symmetric. If the error

between the pre-planned velocity vectors 𝑅𝑟 = [𝑣𝑟, 𝜔𝑟]
𝑇 and

𝑅 is denoted as 𝑒(𝑡) = 𝑅𝑟(𝑡)−𝑅(𝑡), then the main objective

of the ALNN tracking controller is to robustly steer the error

term 𝑒(𝑡) to a small neighbourhood around the origin in the

presence of unknown disturbances and uncertainties 𝐷(𝑞).
Before presenting the proposed ALNN-based controller, some

assumptions are made below.

Assumption 1. The AGV reference velocity trajectories and

their derivatives (𝑅𝑟, �̇�𝑟) are considered to be continuous and

bounded.

Assumption 2. The system uncertain term 𝐷(𝑞) is considered

to be bounded. That is, ‖𝐷(𝑞)‖ ≤ �̄�. Here, �̄� is an unknown

positive constant.

Assumption 3. For any (𝑞, 𝑞) ∈ R
2, 𝐶(𝑞, 𝑞) is bounded. That

is, 𝐶 ≤ ‖𝐶(𝑞, 𝑞)‖ ≤ 𝐶, where 𝐶 and 𝐶 are two positive

constants.

Assumption 1 prevents the vehicle from jerking. The static

friction limit is related to the tire, road friction coefficient and

positive pressure. Besides, the tires rely on friction to provide

centripetal force. Therefore, the other two assumptions are also

reasonable.
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Differentiating the error term 𝑒, the tracking error dynamics

can be written as

�̇� =�̇�𝑟 − �̇�

=�̇�𝑟 +𝑀−1(𝑞)(𝐶(𝑞, 𝑞)𝑅+𝐷(𝑞)−𝐵(𝑞)𝜏)
(16)

Define a Lyapunov function in the form of 𝑉1 = 1
2𝑒

𝑇𝑀𝑒, then

by taking the derivative of 𝑉1, we can obtain

�̇�1 =𝑒
𝑇
𝑀�̇�+

1

2
𝑒
𝑇
�̇�𝑒

=𝑒
𝑇

(︂

𝑀(�̇�𝑟 − �̇�) +
1

2
�̇�𝑒

)︂

=𝑒
𝑇

(︂

𝑀�̇�𝑟 + 𝐶𝑅+𝐷 −𝐵𝜏 +
1

2
�̇�𝑒

)︂

=𝑒
𝑇

(︂

𝑀�̇�𝑟 + 𝐶𝑅𝑟 +𝐷 −𝐵𝜏 +

(︂

1

2
�̇� − 𝐶

)︂

𝑒

)︂

=𝑒
𝑇

(︂

𝑀�̇�𝑟 + 𝐶𝑅𝑟 +𝐷 −𝐵𝜏

)︂

(17)

Note that in (17), the skew-symmetry property of 𝑀−2𝐶(𝑞, 𝑞)
is applied to replace 1

2𝑒
𝑇 �̇�𝑒 by the term 𝑒𝑇𝐶𝑒. Define

𝜉 = [𝑅,𝑅𝑟, 𝑒]
𝑇 and suppose there exists a continuous input

function 𝜏* such that the error term can be steered to a

small neighbourhood of the origin, leading to lim
𝑡 ↦→+∞

|𝑅𝑟 −

𝑅| = 0. Then, there exists an ideal NN-based control law

𝜏*(𝜉) = −𝐵−1(𝑊 *T

𝑆(𝑉 *T

𝜉)) with constant weight matri-

ces (𝑊 *, 𝑉 *) such that 𝑅𝑟 can be tracked. More precisely,

substituting 𝜏*(𝑧) into the AGV system yields

−𝑊 *T

𝑆(𝑉 *T

𝜉) + 𝜖𝜏 = 𝑀�̇�𝑟 + 𝐶𝑅𝑟

in which 𝜖𝜏 (𝑧) denotes the NN approximation error, and 𝑆(·)
is the sigmoid activation function.

Assumption 4. The ideal weight matrices and the NN ap-

proximation error are upper bounded. That is, ‖𝑊 *‖ ≤ �̄� ,

‖𝑉 *‖ ≤ 𝑉 , and |𝜖𝜏 ≤ 𝜖𝑙|, where �̄� , 𝑉 and 𝜖𝑙 are three

positive constants.

Now, let us construct a robust NN tracking control law in

the form of
⎧

⎨

⎩

𝜏 = −𝐵−1(𝜏nn + 𝜏𝑏)

𝜏nn = �̂�𝑇𝑆(𝑉 𝑇 𝜉)

𝜏𝑏 = −
[︀

𝐾𝑝(‖𝑆
′

𝑉 𝑇 𝜉‖2 + ‖𝜉�̂�𝑇𝑆
′

‖2 + 1) +𝐾𝑠

]︀

𝑒

(18)

where 𝜏nn is the approximation of the optimal control law

𝜏* with �̂� and 𝑉 being the estimation of 𝑊 * and 𝑉 *,

respectively. 𝜏𝑏 can be viewed as a bounding control term,

which is responsible for restricting the state bounds of the

AGV dynamics. 𝐾𝑝 and 𝐾𝑠 are positive definite diagonal

matrices. 𝑆 = 𝑆(𝑉 𝑇 𝜉), and 𝑆
′

denotes its derivative.

If the estimation errors of weight matrices are defined as

�̃� = �̂� − 𝑊 * and 𝑉 = 𝑉 − 𝑉 *, then based on Taylor

expansion, the approximation error between 𝜏nn and 𝜏* can

be described as

𝜏nn(𝜉)− 𝜏
*(𝜉) = �̂�

𝑇
𝑆(𝑉 𝑇

𝜉)−𝑊
*
T

𝑆(𝑉 *
T

𝜉)

= �̂�
𝑇
𝑆

′

𝑉
𝑇
𝜉 + �̃�

𝑇 (𝑆 − 𝑆
′

𝑉
𝑇
𝜉) + ∆𝜏

(19)

in which ∆𝜏 stands for the residual term. It was shown in [39]

that ∆𝜏 satisfies

‖∆𝜏‖ ≤ ‖𝑊 *‖‖𝑆
′

𝑉
𝑇
𝜉‖+ ‖𝑉 *‖‖𝜉�̂�𝑇

𝑆
′

‖+ ‖𝑊 *‖ (20)

By substituting (18) and (20) into (17), �̇�1 can be further

written as

�̇�1 =𝑒
T (︀

− 𝑊
*T

𝑆(𝑉
*T

𝜉) + 𝜖τ + 𝐷 + �̂�
T
𝑆(𝑉

T
𝜉) + 𝜏b

)︀

=𝑒
T (︀

�̂�
T
𝑆

′
𝑉

T
𝜉 + �̃�

T
(𝑆 − 𝑆

′
𝑉

T
𝜉) + 𝜖τ + 𝐷 + ∆τ + 𝜏b

)︀

≤𝑒
T (︀

ΛW + 𝜖τ + 𝐷 + ‖𝑊
*
‖‖𝑆

′
𝑉

T
𝜉‖ + ‖𝑉

*
‖‖𝜉�̂�

T
𝑆

′
‖

+ ‖𝑊
*
‖ − 𝐾p‖𝜉�̂�

T
𝑆

′
‖
2
𝑒 − 𝐾p‖𝑆

′
𝑉

T
𝜉‖

2
𝑒 − 𝐾p𝑒 − 𝐾s𝑒

)︀

≤𝑒
T (︀

ΛW + 𝜖l + �̄� + �̄� − 𝐾p𝑒 − 𝐾s𝑒
)︀

+ 𝑉 ‖𝜉�̂�
T
𝑆

′
‖𝑒

+ �̄�‖𝑆
′
𝑉

T
𝜉‖𝑒 − 𝐾p‖𝜉�̂�

T
𝑆

′
‖
2
𝑒
2
− 𝐾p‖𝑆

′
𝑉

T
𝜉‖

2
𝑒
2

≤𝑒
T (︀

ΛW + 𝜖l + �̄� + �̄� − 𝐾p𝑒 − 𝐾s𝑒
)︀

+
𝑉 2

4𝐾p

+
�̄� 2

4𝐾p

(21)

where Λ𝑊 = �̂�𝑇𝑆
′

𝑉 𝑇 𝜉 + �̃�𝑇 (𝑆 − 𝑆
′

𝑉 𝑇 𝜉). According to

(21), an adaptive learning law-based robust NN controller can

be designed (annotated as ALNN), and we are able to derive

the following theorem.

Theorem 1. Given the AGV dynamics and tracking error

systems in the form of (13) and (16). If Assumptions 1–4 can

be satisfied and the multiple layer ALNN weights are tuned

via:
{︃

˙̂
𝑉 = −Γ𝑣

(︀

𝛿𝑣𝑉 + 𝜉�̂�𝑇𝑆
′

𝑒
)︀

˙̂
𝑊 = −Γ𝑤

(︀

𝛿𝑤�̂� + (𝑆 − 𝑆
′

𝑉 𝑇 𝜉)𝑒
)︀

(22)

in which 𝛿𝑣 and 𝛿𝑤 are two positive design parameters, Γ𝑣 =
Γ𝑇
𝑣 > 0 and Γ𝑤 = Γ𝑇

𝑤 > 0 are constant matrices, then we

have the following properties by applying the control law (18):

(1) The close-loop variables (𝑅, 𝑒, 𝑉 , �̂� ) will be maintained

in a compact set during the control process;

(2) The trajectory tracking error 𝑒, together with the weight

estimation error (𝑉 , �̃� ), will be eventually steer to a

small neighbourhood of the origin.

Proof: The proof is detailed in the Appendix.

C. Tracking Controller Framework

To clearly demonstrate how the RDNN-based motion plan-

ner and the ALNN-based parking control scheme work, the

key algorithm processes are visualized in Fig. 4 and Fig. 5.

V. EXPERIMENTAL STUDY

This section validates the effectiveness of the proposed

RDNN-based motion planning method, the transfer learning

strategies as well as the ALNN tracking control algorithm

for the AGV automatic parking problem. The experiment

was executed on two AGV models: a simulated autonomous

vehicle and a real intelligent car (2012 BYD Su Rui 1.5

TID) as illustrated in Fig. 6(a) and Fig. 6(b). Meanwhile, we

consider two real-world parking scenarios: a parallel parking

case and a vertical parking case as shown in Fig. 6(c) and

Fig. 6(d), respectively. The AGV model/parking scene-related

parameters are tabulated in Table II. The ranges of variables

appeared in the optimization model (7) are assigned as:
{︃

|𝑝𝑥| ≤ 20m |𝑝𝑦 | ≤ 5m |𝜃| ≤ 1.5708rad

|𝑣| ≤ 2m/s |𝑎| ≤ 0.5m/s2 |𝜑| ≤ 0.5760rad

|𝜂1|𝑙 ≤ �̇�max𝜑max |𝜂2| ≤ 0.5m/s3 𝑡 ≤ 50s
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Fig. 4: ALNN-based parking control scheme
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Lower Level: Real Time Control

Fig. 5: Kinematic control process

TABLE II: AGV model/parking scene-related parameters

Parameter
Value

Parameter
Value

Vehicle A Vehicle B Scenario 1 Scenario 2

𝑚, kg 1723 1395 𝑊 , m 5 5

𝐼z , kg·m2 4175 4192 𝑙L, m 5 2.5

𝑆l, m 4 4.680 𝑙W , m 2.5 5

𝑆w , m 1.988 1.765 𝑝x(0), m -5.14 -6.14

𝑏, m 0.872 0.76 𝑝y(0), m 1.41 1.62

𝑑, m 1.468 1.62 𝜃(0), rad 0.1047 0.1309

𝑟, m 0.335 0.335 𝑣(0), m·s−1 0 0

𝑙, m 2.70 2.66 𝜑(0), rad 0 0

Here, �̇�max = 0.6 and 𝜑max = 0.5760. By following the

procedure detailed in Algorithm 1, 100000 optimal parking

trajectories were produced for vehicle A, while a limited

20000 trajectories were generated for vehicle B. The parking

trajectory datasets are used to construct the RDNN-based park-

ing maneuver planner. Here, the initial condition perturbation

for (𝑝𝑥(0), 𝑝𝑦(0), 𝜃(0)) was supposed to be normally dis-

tributed on [−1, 1m], [−0.5, 0.5m] and [−0.0873, 0.0873rad],
respectively. As for the uncertain coefficient matrix 𝐹𝑐 and

external disturbance 𝜏𝑑, their elements are supposed to be uni-

formly distributed on [0, 0.01] and [−0.01, 0.01], respectively.

Regarding the RDNN motion planner and ALNN tracking

controller, their structural parameters are assigned as follows:

𝑁𝑙 = 5, 𝑁𝑜 = 30, 𝑁𝑘 = 100, 𝜆 = 0.8, 𝜁0 = 10−4, Γ𝑣 ,

Γ𝑤 = diag{5}, 𝛿𝑤 = 0.5, and 𝛿𝑣 = 0.25. The network

structural parameters of the RDNN motion planner are trained

on the pre-generated parking trajectory dataset offline, while

the structural parameters of the ALNN motion controller are

updated using the online update law (22).

As shown in [30], the depth of the network tends to have

significant impact on the approximation of optimal parking

trajectories. Hence, extensive test trials were carried out to

determine a proper number of RDNN layers for the automatic

parking problem and the pre-generated optimal trajectory

dataset. The results reveal that constructing the RDNN with

more than five hidden layers is unnecessary for the investigated

problem. However, for other motion planning problems where

the system state-control relationships are relatively complex or

highly nonlinear, a deeper network might bring more benefits.

Besides, efforts have been devoted to select a proper length of

the RDNN input sequence. After several tuning tests, we found

that five sequential AGV kinematic states can result in best

final approximation results. The initial weights of the ALNN

are all assigned as zero, whereas the diagonal components

of 𝐾𝑝 and 𝐾𝑠 are set to 0.25 and 0.5, respectively. The

real-time sampling interval is set to 𝑇 = 0.1s. Regarding

Fig. 6: AGV models and parking scenarios

Fig. 7: Test platform

the test platform, an illustration is visualized in Fig. 7, from

where it can be observed that three main components are

included in the platform: 1). A Dell EMC PowerEdge R930

rack server which is responsible for producing the parking

trajectory dataset and training the RDNN; 2). An IPC-610MB-

30LDE/I5-2400/DDR3 industrial PC which is responsible for
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creating executable scripts via LabVIEW real-time mode; and

3). An NI PXI-8820 embedded controller which is responsible

for testing the performance of the RDNN motion planner and

the ALNN tracking control algorithm.

A. Results and Discussion

First, attention is given to highlight the merit of applying

the recurrent network structure. We evaluate the trajectory

planning and control performance by applying the DNN-based

direct recalling strategy reported in [30] and the RDNN-

based strategy designed in this study for the two considered

parking scenarios. In addition, to analyze the impact of the DA

strategy on the algorithm performance, comparison between

the RDNN-based approach with and without equipping the

DA process (denoted as RDNN-DA and RDNN) is also carried

out.

Fig. 8 demonstrates the trajectory planning and actual

tracking results of using the three strategies for the parallel

parking scenario. Specifically, in the left column of Fig. 8,

the AGV maneuver trajectories are shown, whereas in the

middle column of Fig. 8, the error profiles between the

optimized reference and the actual posture are shown. Be-

sides, in the right column of Fig. 8, the linear and angular

velocity profiles obtained via different methods are visualized.

From the obtained results, it is clear that differences can be

detected in the actual parking trajectory profiles. The RDNN-

DA methods tends to have the best trajectory planning and

control performance than its counterparts, as the corresponding

maneuver trajectories are closer to the optimized references.

Moreover, according to the linear and angular velocity profiles,

it can be verified that the ALNN algorithm is able to track the

AGV motion command profiles.

Fig. 9 illustrates the maneuver planning and command

tracking results obtained via the three strategies for the vertical

parking scenario. Similar to the results presented in Fig. 8, the

best maneuver planning and command tracking performance

are achieved by applying the RDNN-DA approach. Hence,

we may conclude that certain advantages can be acquired

if a recurrent network structure is employed to approximate

the optimal trajectory-steering relationship and then act as

the online motion planner. This can be explained by the fact

that an RDNN is more likely to fully exploit the functional

relationship between the optimal state and control variables,

as they are all time series data in nature.

Furthermore, by comparing the results obtained via the

RDNN and RDNN-DA, one may conclude that using the DA

process in the network training phase is helpful for enhancing

the approximation accuracy, as the network tends to recover

from past mistakes.

B. Comparative Studies

Monte-Carlo experiments are employed to further test and

compare the performance and robustness of applying dif-

ferent parking maneuver planning and control approaches.

Specifically, 500 trials were executed and statistical results

are tabulated in Table III. Note that in this table, two types

of performance indicators are adopted. That is, the process

TABLE III: Parking planning and Control Results: Vehicle A

Different

Methods

Scenario 1

(Process error)

Scenario 1

(Terminal error)
∫︁

tf

0
e
2
xdt

∫︁

tf

0
e
2
ydt

∫︁

tf

0
e
2
θdt |pxf | |pyf | |θf |

DNN in [26] 0.1018 0.1652 0.0348 0.018 0.11 0.0262

RDNN 0.0617 0.1180 0.0343 0.014 0.05 0.0125

RDNN-DA 0.0470 0.0179 0.0277 0.010 0.00 0.0087

Different

Methods

Scenario 2

(Process error)

Scenario 2

(Terminal error)
∫︁

tf

0
e
2
xdt

∫︁

tf

0
e
2
ydt

∫︁

tf

0
e
2
θdt |pxf | |pyf | |θf |

DNN in [26] 0.0338 0.0681 0.0063 0.1287 0.15 0.0082

RDNN 0.0049 0.0077 0.0009 0.0996 0.11 0.0074

RDNN-DA 0.0011 0.0049 0.0004 0.0208 0.07 0.0054

error (

∫︁ 𝑡f

0

𝑒2𝑥𝑑𝑡,

∫︁ 𝑡f

0

𝑒2𝑦𝑑𝑡,

∫︁ 𝑡f

0

𝑒2𝜃𝑑𝑡) and the terminal error

(|𝑝𝑥𝑓 |, |𝑝𝑦𝑓 |, |𝜃𝑓 |). According to the results reported in Table

III, it is obvious that implementing the proposed RDNN-

DA approach can result in a relatively-higher probability of

guiding the AGV to the target parking point. That is, a

smaller terminal posture error, together with a smaller tracking

process error, is likely to be obtained. This further confirms the

advantages of using the proposed approach for the considered

automatic parking maneuver problems.

To analyze the real-time applicability of the proposed

RDNN-DA algorithm, attention is given to the average process

time required to execute the online motion planning algorithm.

The computational results for the Monte-Carlo experiments

are collected to construct the histograms and visualized in

Fig. 10 and Fig. 11. The average computational effort (process

time) required by the proposed RDNN-DA approach in two

scenarios are 10.7178ms and 10.9719ms, respectively, while

the DNN-based approach requires 7.8099ms and 7.9109ms.

Although the process time is increased compared to the DNN-

based approach, it is still less than the sampling interval,

which confirms the real-time applicability of the algorithm.

Moreover, the statistical results reported in Table III indicate

that the proposed approach has higher precision in parking ma-

neuver. We hereby conclude that the proposed approach is able

to produce near optimal results, while requiring significantly

lower computational efforts. This allows more possibilities in

real-world applications.

C. Performance Evaluation of Transfer Learning Schemes

In the previous subsection, we have shown the effectiveness

and potential of applying the designed parking maneuver

planning and control algorithm in real-time applications. Here,

we focus on the test and validation of the proposed two parking

transfer learning schemes. By defining the trajectory dataset

of vehicle A as the source domain, the TL scheme 1 and

TL scheme 2 illustrated in Fig. 4 are performed to retrain the

network on the trajectory dataset of vehicle B (target domain).

Subsequently, the trained network will serve as the online

parking maneuver planner for vehicle B. Note that for the

transfer learning scheme 1, the first three hidden layers of the

RDNN are specified as general hidden layers, while the last

two are specified as the specific hidden layers.

Figs. 12 and 13 demonstrates, respectively, the AGV maneu-

ver profiles and the velocity tracking trajectories obtained via

the two TL schemes for different parking scenarios. Compared

to the parking maneuver profiled illustrated in Figs. 8 and 9,
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Fig. 8: Parking maneuver and tracking results for vehicle A: Scenario 1 (The target posture is [0.65;−1.25; 0])
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Fig. 9: Parking maneuver and tracking results for vehicle A: Scenario 2 (The target posture is [1.25;−3.97; 1.5708])

Fig. 10: Computational performance of DNN-based approach

Fig. 11: Computational performance of RDNN-DA approach

the posture errors shown in Figs. 12 and 13 become larger.

However, the algorithm can still steer the vehicle into a

small neighbourhood of the target point. 500 Monte-Carlo

experiments were carried out and the statistical results are

shown in Table IV. From Table IV and Figs. 12 and 13, it

is clear that both the process and terminal errors experience

TABLE IV: TL schemes performance evaluation on target domain (Vehicle B)

Different

TL schemes

Scenario 1

(Process error)

Scenario 1

(Terminal error)
∫︁

tf

0
e
2
xdt

∫︁

tf

0
e
2
ydt

∫︁

tf

0
e
2
θdt |pxf | |pyf | |θf |

TL scheme 1 0.2265 0.1504 0.0881 0.011 0.0441 0.0436

TL scheme 2 0.3130 0.2422 0.1292 0.006 0.1319 0.0599

Different

TL schemes

Scenario 2

(Process error)

Scenario 2

(Terminal error)
∫︁

tf

0
e
2
xdt

∫︁

tf

0
e
2
ydt

∫︁

tf

0
e
2
θdt |pxf | |pyf | |θf |

TL scheme 1 0.0476 0.0487 0.0067 0.1496 0.1316 0.0349

TL scheme 2 0.0462 0.0539 0.0036 0.1000 0.1317 0.0351

an increase in comparison to the results shown in Table III.

However, the two parking missions can still be fulfilled with a

relatively high accuracy, which indicates that the two proposed

TL schemes are able to achieve a good transferability for the

considered parking problem.

VI. CONCLUSION

In this paper, we investigated the problem of real-time park-

ing maneuver planning and tracking control for autonomous

ground vehicles (AGVs). A novel RDNN-based motion plan-

ning approach, along with two transfer learning strategies, has

been structured to plan the parking movement for different

AGVs in real-time. Subsequently, an ALNN-oriented control

algorithm has been introduced so as to track the planned ma-

neuver trajectory. Based on the obtained experimental results

and comparative analysis, we have revealed that:

∙ Using the proposed RDNN-based motion planner can

better exploit the functional relationship between the

optimal state and control variables, thus resulting in
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Fig. 12: Performance Evaluation of different TL schemes on vehicle B: Scenario 1 (The target posture is [0.7508;−1.25; 0])
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Fig. 13: Performance Evaluation of different TL schemes on vehicle B: Scenario 2 (The target posture is [1.25;−4.12; 1.5708])

enhanced approximation accuracy to the optimal linear

and angular velocity command profiles.

∙ Adopting the ALNN-based control algorithm is able to

accurately track the optimized AGV motion command

profiles with guaranteed tracking performance and algo-

rithm stability.

∙ The trust on the real-time applicability of the proposed

deep learning-based automatic parking motion planning

and control scheme can be appreciated.

∙ The proposed TL strategies have the capability of extend-

ing the developed RDNN motion planner such that it can

be adapted to suit different types of AGVs.

As a consequence, the deep learning-based trajectory plan-

ning and control strategy suggested in this study may serve as a

promising tool for the considered automatic parking problem.

APPENDIX

PROOF OF THEOREM 1

Proof: For Part (1), due to the fact that 𝑉 * and 𝑊 *

are constant vectors, we have
˙̃𝑉 =

˙̂
𝑉 and

˙̃𝑊 =
˙̂
𝑊 ,

respectively. Define 𝑉2 = 1
2𝑉

𝑇Γ−1
𝑣 𝑉 + 1

2�̃�
𝑇Γ−1

𝑤 �̃� . Then for

the Lyapunov function 𝑉3 = 𝑉1+𝑉2, the following inequality

holds

�̇�3 =�̇�1 + 𝑉
𝑇Γ−1

𝑣
˙̃
𝑉 + �̃�

𝑇Γ−1
𝑤

˙̃
𝑊

=�̇�1 + 𝑉
𝑇Γ−1

𝑣
˙̂
𝑉 + �̃�

𝑇Γ−1
𝑤

˙̂
𝑊

≤𝑒
𝑇
(︀

𝜖𝑙 + �̄� + �̄� −𝐾𝑝𝑒−𝐾𝑠𝑒
)︀

+
𝑉 2

4𝐾𝑝

+
�̄� 2

4𝐾𝑝

− 𝛿𝑣𝑉
𝑇
𝑉 − 𝛿𝑤�̃�

𝑇
�̂�

(23)

Notice that one has

2𝑉 𝑇
𝑉 = ‖𝑉 ‖2 + ‖𝑉 ‖2 − ‖𝑉 *‖2 ≥ ‖𝑉 ‖2 − ‖𝑉 *‖2

2�̃�𝑇
�̂� = ‖�̃�‖2 + ‖�̂�‖2 − ‖𝑊 *‖2 ≥ ‖�̃�‖2 − ‖𝑊 *‖2

(24)

Then, (23) can be further transcribed to

�̇�3 ≤𝑒
𝑇
(︀

𝜖𝑙 + �̄� + �̄� −𝐾𝑝𝑒−𝐾𝑠𝑒
)︀

+
𝑉 2 + �̄� 2

4𝐾𝑝

−
𝛿𝑣

2
‖𝑉 ‖2 −

𝛿𝑤

2
‖�̃�‖2 +

𝛿𝑣

2
�̄�

2 +
𝛿𝑤

2
�̄�

2

≤(𝜖𝑙 + �̄� + �̄� )|𝑒| −𝐾𝑝|𝑒|
2 − 𝑒

𝑇
𝐾𝑠𝑒−

𝛿𝑣

2
‖𝑉 ‖2

−
𝛿𝑤

2
‖�̃�‖2 +

𝑉 2 + �̄� 2

4𝐾𝑝

+
𝛿𝑣

2
�̄�

2 +
𝛿𝑤

2
�̄�

2

(25)

Define (𝛼1, 𝛼2) in the form of

𝛼1 = 𝜖𝑙 + �̄� + �̄�

𝛼2 =
𝑉 2 + �̄� 2

4𝐾𝑝

+
𝛿𝑣

2
�̄�

2 +
𝛿𝑤

2
�̄�

2 (26)

Based on (25) and (26), it is straightforward to have

�̇�3 ≤𝛼1|𝑒| −𝐾𝑝|𝑒|
2 − 𝑒

𝑇
𝐾𝑠𝑒−

𝛿𝑣

2
‖𝑉 ‖2 −

𝛿𝑤

2
‖�̃�‖2 + 𝛼2

≤− 𝑒
𝑇
𝐾𝑠𝑒−

𝛿𝑣

2
‖𝑉 ‖2 −

𝛿𝑤

2
‖�̃�‖2 + 𝛼2 +

𝛼2
1

4𝐾𝑝

=− 𝜚𝑉3 + 𝐿

(27)

in which

𝜚 = min

{︂

2𝜆(𝐾𝑠)

�̄�(𝑀)
,

𝛿𝑣

�̄�(Γ−1
𝑣 )

,
𝛿𝑤

�̄�(Γ−1
𝑤 )

}︂

𝐿 = 𝛼2 +
𝛼2
1

4𝐾𝑝

(28)
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In (28), 𝜆(·) and �̄�(·) are the minimum and maximum eigen-

values of the matrix. By multiplying the left and right sides

of �̇�3 ≤ −𝜚𝑉3 + 𝐿 by 𝑒𝜚𝑡 and integrating the outcome over

[0, 𝑡], one can easily obtain the following inequality

𝑉3(𝑡) ≤ 𝑒
−𝜚𝑡

(︀

𝑉3(0)−
𝐿

𝜚

)︀

+
𝐿

𝜚

≤
𝐿

𝜚
+ 𝑉3(0)

(29)

According to (23)–(29), it is obvious that

|𝑒| ≤
√︁

𝑁
𝜆(𝑀)

, |𝑅| ≤ max
[0,𝑡]

(𝑅𝑟) +
√︁

𝑁
𝜆(𝑀)

,

‖𝑉 ‖ ≤
√︁

𝑁

𝜆(Γ−1
v )

, ‖�̃�‖ ≤
√︁

𝑁

𝜆(Γ−1
w )

.
(30)

where 𝑁 = 2(𝑉3(0) + 𝐿/𝜚). This means the close-loop

variables can be maintained in the compact sets defined as

O𝑒 =

{︂

𝑒 : |𝑒| ≤

√︃

𝑁

𝜆(𝑀)

}︂

O𝑅 =

{︂

𝑅 : |𝑅| ≤ max
[0,𝑡]

(𝑅𝑟) +

√︃

𝑁

𝜆(𝑀)

}︂

O𝑣 =

{︂

𝑉 : ‖𝑉 ‖ ≤

√︃

𝑁

𝜆(Γ−1
𝑣 )

}︂

O�̃� =

{︂

�̃� : ‖�̃�‖ ≤

√︃

𝑁

𝜆(Γ−1
𝑤 )

}︂

(31)

For Part (2), starting from (29) and (30), we can derive

|𝑒| ≤

√︃

2𝑒−𝜚𝑡
(︀

𝑉3(0)−
𝐿
𝜚

)︀

+ 2𝐿
𝜚

𝜆(𝑀)
(32)

When 𝑉3(0) = 𝐿
𝜚 , we have ∀𝑡 ≥ 0, |𝑒| ≤

√︀

2𝐿/𝜚𝜆(𝑀).
Otherwise, for any 𝑒𝑠 > 2𝐿/𝜚𝜆(𝑀), a time point 𝑡𝑠 exists

such that |𝑒| ≤ 𝑒𝑠 and lim
𝑡 ↦→∞

|𝑒| =
√︀

2𝐿/𝜚𝜆(𝑀) for any 𝑡 >

𝑡𝑠. Similar procedures can be re-performed for 𝑉 and �̃� ,

resulting in compact regions

O
𝑓
𝑒 =

{︂

𝑒 : lim
𝑡 ↦→∞

|𝑒| ≤

√︃

2𝐿

𝜚𝜆(𝑀)

}︂

O
𝑓
𝑣 =

{︂

𝑉 : lim
𝑡 ↦→∞

‖𝑉 ‖ ≤

√︃

2𝐿

𝜚𝜆(Γ−1
𝑣 )

}︂

O
𝑓
�̃� =

{︂

�̃� : lim
𝑡 ↦→∞

‖�̃�‖ ≤

√︃

2𝐿

𝜚𝜆(Γ−1
𝑤 )

}︂

(33)

This implies that (𝑒, 𝑉 , �̃� ) can be eventually steered

to a small neighbourhood of the origin determined by

(𝐾𝑝,𝐾𝑠, 𝛿𝑣, 𝛿𝑤, 𝜖𝑙) and it completes the proof.
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