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for Autonomous Driving Applications: a Review
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Abstract—Behaviour prediction function of an autonomous
vehicle predicts the future states of the nearby vehicles based
on the current and past observations of the surrounding envi-
ronment. This helps enhance their awareness of the imminent
hazards. However, conventional behaviour prediction solutions
are applicable in simple driving scenarios that require short pre-
diction horizons. Most recently, deep learning-based approaches
have become popular due to their promising performance in
more complex environments compared to the conventional ap-
proaches. Motivated by this increased popularity, we provide a
comprehensive review of the state-of-the-art of deep learning-
based approaches for vehicle behaviour prediction in this paper.
We firstly give an overview of the generic problem of vehicle
behaviour prediction and discuss its challenges, followed by
classification and review of the most recent deep learning-
based solutions based on three criteria: input representation,
output type, and prediction method. The paper also discusses
the performance of several well-known solutions, identifies the
research gaps in the literature and outlines potential new research
directions.

Index Terms—Vehicle behaviour prediction, trajectory predic-
tion, autonomous vehicles, intelligent vehicles, machine learning,
deep learning

I. INTRODUCTION

ADOPTION of autonomous vehicles in the near future
is expected to reduce the number of road accidents

and improve road safety [1]. However, for safe and efficient
operation on roads, an autonomous vehicle should not only
understand the current state of the nearby road-users, but also
proactively anticipate their future behaviour. One part of this
general problem is to predict the behaviour of pedestrians
(or generally speaking, the vulnerable road-users), which is
well-studied in computer vision literature [2], [3], [4], [5].
There are also several review papers on pedestrian behaviour
prediction such as [6], [7], [8]. Another equally important part
of the problem is prediction of the intended behaviour of other
vehicles on the road. In contrast to pedestrians, vehicles’ be-
haviour is constrained by their higher inertia, driving rules and
road geometry, which could help reduce the complexity of the
problem, compared to aforementioned problem. Nonetheless,
new challenges arise from interdependency among vehicles
behaviour, influence of traffic rules and driving environment,
and multimodality of vehicles behaviour. Practical limitations

This work was supported by Jaguar Land Rover and the U.K.-EPSRC
as part of the jointly funded Towards Autonomy: Smart and Connected
Control(TASCC) Programme under Grant EP/N01300X/1

S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, and P. Jennings are
with the Warwick Manufacturing Group, University of Warwick, Coven-
try CV4 7AL, U.K. (e-mail: sajjad.mozaffari, omar.al-jarrah, m.dianati,
Paul.Jennings@warwick.ac.uk)

A. Mouzakitis is with Jaguar Land Rover Ltd., Coventry CV4 7HS, U.K.

in observing the surrounding environment and the required
computational resources to execute prediction algorithms also
add to the difficulty of the problem, as explained in the later
sections of this paper.

There are several published survey papers on vehicle be-
haviour analysis. For example, Shirazi and Morris [9] provide
a review of vehicle monitoring, behaviour and safety anal-
ysis at intersections. A review of unsupervised approaches
for vehicle behaviour analysis with a focus on trajectory
clustering and topic modelling methods is provided in [10].
Anomaly detection techniques using visual surveillance are
reviewed in [11]. In [12] a joint review is provided on
tracking, prediction and decision making for autonomous
driving. None of these studies specifically focus on vehicle
behaviour prediction. In the most related paper to our work,
Lefevre et al. [13] provide a survey on vehicle behaviour
prediction and risk assessment in the context of autonomous
vehicles. The authors review various conventional approaches
that applied physics-based models and/or traditional machine
learning algorithms such as Hidden Markov Models, Support
Vector Machines, and Dynamic Bayesian Networks. Recent
advances in machine learning techniques (e.g., deep learning)
have provided new and powerful tools for solving the problem
of vehicle behaviour prediction. Such approaches have become
increasingly important due to their promising performance in
complex and realistic scenarios. However, to the best of our
knowledge, there is no systematic and comparative review of
the latter deep learning-based approaches. We thus present a
review of such studies using a new classification method which
is based on three criteria: input representation, output type,
and prediction method. In addition, we report the practical
limitations of implementing recent solutions in autonomous
vehicles. To make the paper self-contained, we also provide a
generic problem definition for vehicle behaviour prediction.

The rest of this paper is organised to a number of sections:
Section II is an introduction to the basics and the challenges
of vehicle behaviour prediction for autonomous vehicles. The
definition of used terminologies and the generic problem
formulation are also given in section II. Section III reviews
the related deep learning-based solutions and classifies them
based on three criteria: input representation, output type,
and prediction method. Section IV discusses the commonly
used evaluation metrics, compares the performance of several
well-known trajectory prediction models in public highway
driving datasets, and highlights the current research gaps in
the literature and potential new research directions. The key
concluding remarks are given in section V.
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II. BASICS AND CHALLENGES OF VEHICLE BEHAVIOUR
PREDICTION

Object detection and behaviour prediction can be consid-
ered as two main functions of the perception system of an
autonomous vehicle. While both of them rely on on- and off-
board sensory data, the former aims to localize and classify
the objects in the surrounding environment of the autonomous
vehicle and the latter provides an understanding of the dynam-
ics of surrounding objects and predicts their future behaviour.
Behaviour prediction plays a pivotal role in autonomous driv-
ing applications as it supports efficient decision making [14]
and enables risk assessment [13]. In this section, we firstly
discuss the challenges of vehicle behaviour prediction, then
we provide a terminology for vehicle behaviour prediction,
and finally we present a generic probabilistic formulation of
the problem.

A. Challenges

Vehicles (e.g., cars and trucks) have well-structured mo-
tions which are governed by driving rules and environment
conditions. In addition, vehicles, as non-holonomic systems,
cannot change their trajectories instantly to desired ones.
However, vehicle behaviour prediction is not a trivial task due
to several challenges. First, there is an interdependency among
vehicles behaviour where the behaviour of a vehicle affects
the behaviour of other vehicles and vice versa. Therefore,
predicting the behaviour of a vehicle requires observing the
behaviour of surrounding vehicles. Second, road geometry
and traffic rules can reshape the behaviour of vehicles. For
example, placing a give-way sign in an intersection can
completely change the behaviour of vehicles approaching it.
Therefore, without considering traffic rules and road geometry,
a model trained in a specific driving environment would have
limited performance in other driving environments. Third, the
future behaviour of vehicles is multimodal, meaning that given
history of motion of a vehicle, there may exist more than one
possible future behaviour for it. For example, when a vehicle is
slowing down at an intersection without changing its heading
direction, both turning right and turning left motions could
be expected. A comprehensive behaviour prediction module
in an autonomous vehicle should identify all possible future
motions to allow the vehicle to act reliably.

In addition to the intrinsic challenges of the vehicle be-
haviour prediction problem, implementing a behaviour predic-
tion module in autonomous vehicles comes with several practi-
cal limitations. For example, there are restricted computational
resources for on-board implementation in autonomous vehi-
cles. In addition, autonomous vehicles can partially observe
the surrounding environment using their on-board sensors due
to their limitations (e.g., object occlusion, limited sensor range,
and sensor noise). Most of existing studies assume having
access to a wide unobstructed top-down view of the driving
environment which can be obtained by infrastructure sensors
(e.g. an infrastructure surveillance camera). Nonetheless, such
data can be available if there exists a communication channel
with sufficient capacity between the infrastructure and the au-
tonomous vehicle. In addition, it is not cost-effective to cover

Fig. 1. An illustration of the adopted terminology and limited observability of
the EV’s onboard sensors. As an example of a criterion for dividing vehicles
into SVs and NVs, the vehicles within a threshold distance, d, to the TV are
considered to have impact on the TV’s behaviour. Unobservable vehicles by
the EV, including two of the SVs are represented with blur effect. The limited
observability can cause inaccurate prediction. For example, the preceding
vehicle of the TV, which is not observable by the EV, is changing its lane
allowing the TV to accelerate.

all road sections with such sensors. Therefore, a behaviour
prediction module cannot always rely on unobstructed vision
from an infrastructure sensor.

B. Terminology

To define the problem of vehicle behaviour prediction, we
adopt the following terms:
• Target Vehicles (TVs) are the vehicles whose behaviour

we are interested in predicting.
• Ego Vehicle (EV) is the autonomous vehicle which

observes the surrounding environment to predict the be-
haviour of TVs.

• Surrounding Vehicles (SVs) are the vehicles whose
behaviour is explored by the prediction model as it
can potentially impact TV’s future behaviour. Different
studies may adopt different criteria for selecting SVs
based on their modelling assumptions.

• Non Effective Vehicles (NVs) are the remaining vehicles
in driving environment that are assumed to have no
impact on the TV’s behaviour.

Figure 1 illustrates an example of a driving scenario using
the proposed terminology. In this Figure a distance-based
criterion, as an example, is used to divide the vehicles into
SVs and NVs.

C. Generic Problem Formulation

We use a probabilistic formulation for vehicle behaviour
prediction to cope with the uncertain nature of the problem.
The word ”behaviour” and ”manoeuvre” are sometimes used
in the literature interchangeably [15], [16], [17]; however,
we consider ”vehicle behaviour” as a general term that can
imply vehicle manoeuvre or trajectory depending on how it is
represented in the problem formulation. In the generic problem
formulation, we represent the future behaviour of TVs as the
states XTV s they will traverse in the future, defined as:

XTV s = {xi
t, x

i
t+1, ..., x

i
t+m}Ni=1 (1)

Where xi
t represents the states (e.g., position) of vehicle i at

time step t, N is the number of TVs, and m is the length of
the prediction window.
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The generic problem is formulated as computing the condi-
tional distribution P (XTV s|OEV ), where OEV are the avail-
able observations to the EV. This distribution is a mutual distri-
bution over series of states of several interdependent vehicles,
which can be intractable. To reduce the computational require-
ment of estimating P (XTV s|OEV ), many of existing works
dropped the interdependency among vehicles future behaviour.
As such, the behaviour of each TV can be predicted separately
with an affordable computational requirement. At each step,
one vehicle is selected as the TV and its P (XTV |OEV ) is
calculated, where:

XTV = {xT
t , x

T
t+1, ..., x

T
t+m} (2)

Where T is the selected TV.

III. CLASSIFICATIONS OF EXISTING WORKS

Lefevre et al. [13] classifies vehicle behaviour prediction
models to physics-based, manoeuvre-based, and interaction-
aware models. The simplest approaches that assume the be-
haviour of vehicles only depends on laws of physics are
classified in physics-based models. The models that predict
vehicles’ behaviour based on their intended manoeuvre are
called maneuvre-based approaches. Finally, the more advanced
models that consider interaction among vehicles are called
interaction-aware models. At the time of writing their paper, in
2014, there has been only a few examples of such interaction-
aware model. However, several advanced approaches, mostly
deep learning-based has been proposed in the literature since
2014 that requires more detailed classification. Thus, we
present three classifications based on three different criteria:
input representation, output type, and prediction method. First,
we classify existing studies based on how they represent the
input data. In this classification, the interaction-aware models
are divided into three classes. In second classification, different
approaches are classified based on their prediction output. We
do not include physics-based approaches as they are no longer
state-of-the-art, but different deep learning methods used in
behaviour prediction are discussed and classified in the last
classification. Figure 2 provides the classes and sub-classes
for each aforementioned classification criterion. The following
subsections address the classification based on each criterion
individually.

A. Input Representation

In this subsection, we provide a classification of existing
studies based on the type of input data and how it is rep-
resented. We divide them into four classes: track history of
the TV, track history of the TV and SVs, simplified bird’s
eye view, and raw sensor data. The last three classes can
be considered as sub-classes of interaction-aware approaches
which was introduced in [13]. We also discuss the availability
of these input data in autonomous driving applications.

1) Track history of the TV: The conventional approach for
predicting behaviour of the TV is to only use its current state
(e.g. position, velocity, acceleration, heading) or track history
of its states over time. This feature can be estimated if the TV
is observable by the EV’s sensors.

Fig. 2. Proposed classifications of state-of-the-art deep learning approaches
for vehicle behaviour prediction

In [18], [19], [20], the track history of x-y position, speed,
and heading of the TV are used to predict its behaviour at
different road junctions. All these works study the behaviour
of the TV in an environment without any SVs. Few deep
learning-based methods use this input set to predict the vehicle
behaviour in a driving environment with presence of other
vehicles [21], [22]. Xin et al. [21] argue that the information of
SVs is not available due to EV’s sensor limitations and object
occlusion; however, some of the SVs can usually be observed
by EV’s sensor (see Figure 1). Excluding the observable SV’s
state from the input set may result in inaccurate prediction
of the TV’s behaviour due to interdependencies of vehicles’
behaviour.

Although the track history of the TV has highly informative
features about its short-term future motion, relying only on the
TV’s track history can lead to erroneous results particularly in
long-term prediction in crowded driving environments.

2) Track history of the TV and SVs: One approach to
consider the interaction among vehicles is to explicitly feed
the track history of the TV and SVs to the prediction model.
The SVs’ states, similar to the TV’s states, can be estimated
in the object detection module of the EV; however, some of
the SVs can be outside of the EV’s sensor range or they might
be occluded by other vehicles on the road.

The existing studies vary in how to divide the vehicles in
the scene into surrounding vehicles (SVs) and non-effective
vehicles (NVs). In [23], [24], [25], history of states of the
TV and six of its closest neighbours are exploited to predict
the TV’s behaviour. In [26], [27], the three closest vehicles
in the TV’s current lane and two adjacent lanes are chosen
as reference vehicles. The reference vehicles and the vehicles
in front and behind of the two reference vehicles in adjacent
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lanes are selected as the SVs. The authors in [28] consider
nine vehicles in three lanes surrounding the target vehicle
including two vehicles in front of the TV. They indicate that
considering more vehicles in the input data can improve the
performance of behaviour prediction. For example, in a traffic
jam, knowing that the second vehicle ahead of the TV is
accelerating can enable early prediction of speed increase for
the TV. Instead of considering a fixed number of vehicles as
the SVs, a distance threshold is defined to divide vehicle into
the SVs and NVs in [29], [30], [31]. It means that only the
interactions of vehicles within this threshold are considered in
the prediction model. In [32], the states of all the observable
agents (e.g. vehicles, pedestrian, and cyclist) are used with
different weights, obtained by soft attention mechanism [33],
corresponding to their impacts on TV’s behaviour.

One drawback of most of these studies is that they assume
that the states of all SVs are always observable, which is not
a practical assumption in autonomous driving applications.
A more realistic approach should always consider sensor
impairments like occlusion and noise. In addition, relying only
on the track history of the TV and SVs is not sufficient for
behaviour prediction, because other factors like environment
conditions and traffic rules can also modify the behaviour of
vehicles.

3) Simplified Bird’s Eye View: An alternative way to
consider the interaction among vehicles is by exploiting a
simplified Bird’s Eye View (BEV) of the environment. In
this approach, static and dynamic objects, road lane, and
other elements of the environment are usually depicted with a
collection of polygons and lines in a BEV image. The result
is a map-like image which preserves the size and location of
objects (e.g. vehicles) and the road geometry while ignoring
their texture.

Lee et al. [34] fuse front-facing radar and camera data to
form a binary two-channel BEV image covering the frontal
area of the EV. One of the image channels specifies whether
the pixel is occupied by a vehicle or not, and the other depicts
the existence of lane marks. For n past frames, the images are
produced and stacked together to form a 2n-channel image as
the input to the prediction model. Instead of using a sequence
of binary images, indicating the existence of objects over time,
a single BEV image is used in [35], [36]. In this image, each
element of the scene (e.g., road, cross-walks) loses its actual
texture and instead is colour coded according to its semantics.
The vehicles are depicted by colour-coded bounding boxes
and the location history of vehicles are plotted using bounding
boxes with same colour and reduced level of brightness.

To enrich the temporal information within the BEV image,
Deo and Trivedi [37] use a social tensor which was first
introduced in [3] (known as social pooling layer). A social
tensor is a spatial grid around the target vehicle that the
occupied cells are filled with the processed temporal data
(e.g., LSTM hidden state value) of the corresponding vehicle.
Therefore, a social tensor contains both the temporal dynamic
of vehicles and spatial inter-dependencies among them. The
authors in [38] add scene context encoding channels to the
input representation used in [37]. These channels are produced
by encoding the static context of the scene (i.e., top-down view

image of the scene) using a convolutional neural network.
Lee et al. [39] use social pooling layer as an additional
input to another BEV representation created by performing
semantic segmentation on front-facing camera of the EV and
transforming it to the BEV.

The aforementioned works do not consider sensor impair-
ment in the input representation. To overcome this drawback,
a dynamic occupancy grid map (DOGMa [40]) is exploited
in [41], [42]. DOGMa is created from the data fusion of a
variety of sensors and provides a BEV image of the environ-
ment. The channels of this image contain the probability of
occupancy and velocity estimate for each pixel. The velocity
information helps distinguish between static and dynamic
objects in the environment; however, it does not provide
complete knowledge about the history of dynamic objects.

The advantages of simplified BEV is that first it is flexible
in terms of complexity of representation. Thus, it can match
applications with different computational resource constraints.
Second, it enables data fusion from different type of sensors
into a single BEV representation.

One drawback of this input representation, that applies
to the previously discussed input representations as well, is
that it inherits the limitations of the perception module(e.g.,
object detection and tracking) used for estimating the states
of static and dynamic objects (e.g., vehicles) in the driving
environment. Therefore, an error in estimating the states, or
under-representing the environment in the perception module
will be cascaded to the prediction module. For example, if
the object detection module use same label for an ambulance
and a normal car, the influence of the ambulance on future
behaviour of surrounding vehicles cannot be modelled.

4) Raw sensor data: In this approach, raw sensor data is
fed to the prediction model. Thus, the input data contains all
available knowledge about the surrounding environment. This
allows the model to learn extracting useful features from all
available sensory data.

Raw sensor data, compared to previous input representa-
tions, has larger dimension. Therefore, more computational re-
sources are required to process the input data, which can make
it impractical for on-board implementation in autonomous
vehicles. One solution to this problem is to share the com-
putational resources among different functions of autonomous
vehicle. In deep learning literature, it is common to train a
model for multiple tasks [45]. In an autonomous vehicle, the
object detection module exploits raw sensor data, and it usually
relies on a model with millions of parameters [46]. Thus, it can
be a good candidate for parameter sharing with the behaviour
prediction module.

Leo et al. [43] use a deep neural network to jointly solve the
problems of 3D detection, tracking, and motion forecasting for
autonomous vehicles. They exploit 3D point clouds data over
several time frames. The data is represented in BEV images,
and the height is considered as the channel dimension. To
exploit the lidar data, the same approach is used by [44];
however, they feed the 3D point cloud data in addition to a
simplified BEV to their deep model.

Table I provides a summary of classification of existing
studies based on input representation. It also summarizes the
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TABLE I
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON INPUT REPRESENTATION AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages Disadvantages Works Summary

Track History of
the TV

- Complies with limited
observability of the EV.

- Does not consider the
impact of environment and
interaction among vehicles
on the TV’s behaviour.
- Inherits the limitation of the
perception module of the EV.

[18], [20],
[19], [21],
[22]

Track history of the TV’s states
(e.g., position, velocity, heading, and etc.).

Track History of
the TV and SVs

- Considers the impact of
interaction among vehicles on
the TV’s behaviour.

- Does not consider the
impact of environment on
the TV’s behaviour.
- The States of SVs are not
always observable to the EV.
- Inherits the limitation of the
perception module of the EV

[24], [23],
[25]

History of states for the TV and six SVs.

[26], [27] History of states for the TV and three reference
vehicles and four adjacent vehicles to them.

[28] History of states for the TV and nine SVs.
[29], [30],
[31]

A distance threshold is defined to divide
vehicles into the SVs and NVs.

[32] A soft attention mechanism is used to
weight the impact of each observed vehicle.

Simplified Bird’s
Eye View

- Considers the impact of
environment and interaction
among vehicles on the TV’s
behaviour.
- Facilitates fusing the data
gathered from different sensors
on the EV.
- Flexible in terms of
complexity of representation.
- It can comply with limited
observability of the EV.

- Inherits the limitation of the
perception module of the EV.

[34]

A sequence of 2 channel top-down image
covering the environment in front of the TV.
It indicates the existence of vehicles and
lane lines over time.

[35], [36]
A BEV image of environment, in which
the road elements and vehicles are represented
with color-coded polygons and lines.

[37]
A top-down grid representation. Each occupied
cell is filled with the corresponding vehicle’s
LSTM hidden state (similar to [3]).

[38]
The representation in [37]
is augmented with CNN encoded image of the
static context of the driving scene.

[39] Semantic segmentation of environment in BEV.

[41], [42]
A top-down grid representation. Each cell
contains the probability of the cell occupation,
and its velocity.

Raw Sensor
Data

- Complies with limited
observability of the EV.
- No information loss.

- High computational cost. [43] 3D point clouds data over several time steps.

[44] Lidar data and rasterized map (i.e., the
representation used in [36]).

advantages and disadvantages of each class.

B. Output Type

In this subsection, we classify existing studies based on
how they represent a vehicle future behaviour as the output
of their prediction model. We consider four classes: manoeu-
vre intention, unimodal trajectory, multimodal trajectory, and
occupancy map.

1) Manoeuvre Intention: Manoeuvre intention prediction
(we shortly refer it as intention prediction) is the task of
estimating what manoeuvre the vehicle intends to do in
upcoming time-steps [13]. For example, in highway driving,
the set of manoeuvres could be left lane change, right lane
change, and keeping the lane; while in an intersection, it could
be: go straight, turn left, and turn right.

To predict the intention of a vehicle approaching a T-
junction, Zyner et al. [19] define three classes based on the
destination of the vehicle, namely ”east”, ”west”, or ”south”.
In [18], the same set of classes are used to predict the intention
of a vehicle at an un-signalized roundabout. Phillips et al. [23]
design a generalizable intention prediction model that can
predict the direction of travel of a vehicle up to 150m before
reaching three- and four-way intersections. Ding et al. [27] and

Lee et al. [34] apply intention prediction to highway driving
scenario. The former proposes an intention prediction model
to predict lane change and lane keeping behaviour for the TV;
while, the latter designs a model to predict the cut-in intention
of right/left preceding TVs w.r.t. the EV.

Existing studies predict the intention of vehicles using a
set of few classes. One drawback of these works is that they
can only provide a high-level understanding of the vehicle
behaviour. This problem can be solved by subdividing high-
level manoeuvres into sub-classes that describe the behaviour
more precisely. For example, in a highway driving scenario,
we can subdivide lane change classes into sharp lane change
and normal lane change. Another drawback is the specificity
of manoeuvre set to single driving environment, which can
be resolved by defining a set that contains the manoeuvres
in all desired driving scenarios. However, to predict a vehicle
behaviour using large and in depth set of classes, a larger and
more diverse training dataset that includes sufficient samples
in each class is required. In addition, larger model capacity is
needed to learn the mapping of the input data to the intention
set.

2) Unimodal trajectory: Trajectory prediction models de-
scribe the future behaviour of a vehicle by predicting series
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of future locations of the TV over a time window. Dealing
with continuous output of trajectory prediction models can add
more complexity to the problem compared to discrete output
of intention prediction models. However, predicting trajectory
instead of intention, provides more precise information about
future behaviour of vehicles. Given a specific driving situation
and history of motion for a vehicle, it might be possible
for it to traverse multiple different trajectories. Therefore,
the corresponding distribution has multiple modes. Unimodal
trajectory predictors are the models that only predict one
of these possible trajectories (usually the one with highest
likelihood). We divide such approaches into two sub-classes:

• Independent of intended manoeuvre: These approaches
predict a unimodal trajectory without explicitly considering
the effect of possible manoeuvres on it. The straightforward
approach to predict the trajectory of the TV is to estimate the
position of it over time [47], [38], [29]. The predictor model
can also estimate the displacement of the TV relative to its
last position at each step [31], [25]. The other approach used
in [28] is to predict lateral position and longitudinal velocity
separately. This approach can be specially useful when the
region of interest is longitudinally large, therefore longitudinal
position can be a quite large figure. In addition to the position
and velocity, the heading angle of the vehicle is predicted
in [43]. To cope with uncertainty of the trajectory prediction
problem, Djuric et al. [36] propose a trajectory prediction
model that estimates standard deviation for the predicted x-
and y-positions. In [32], the mean, standard deviation, and
correlation coefficient of a bivariate Gaussian distribution cor-
responding to x- and y- positions are predicted for each time
step. The main disadvantage of unimodal trajectory prediction
models which are independent of intended manoeuvre is that
they may converge to the average of all the possible modes
because the average can minimize the displacement error of
unimodal trajectory prediction; however, the average of modes
is not necessarily a valid future behaviour [20]. Figure 3
illustrates this problem.
• Conditioned on intended manoeuvre: The other unimodal

trajectory prediction approaches estimate the likelihood of
each member of a predefined manoeuvre intention set and
predict the trajectory that corresponds to the most probable
intention. Xin et al. [21] propose an intention-aware model
to predict trajectory based on estimated lane change intention
for the TV in highway driving. In [30], [44], the intention set
is extended from only lane change intentions to turning right,
turning left, stopping, and so on. This allows using the predic-
tion model in urban driving. Unimodal trajectory prediction
approaches conditioned on intended manoeuvre are unlikely
to converge to the mean of modes, as in these approaches
the predicted trajectory corresponds to one of predefined
behaviour modes. However, there are two main drawbacks
in these approaches. First, they cannot accurately predict a
vehicle trajectory if the vehicle’s intention does not exist in
the predefined intention set. This problem can commonly occur
in complex driving scenarios, as it is hard to predetermine
all possible driving intentions in such environments. Second,
unlike previous sub-class, we need to manually label the

Fig. 3. An illustration of invalidity of the average of manoeuvres. The red
car is approaching the green car on the road. It is probable for the red car to
either reduce its speed (green dots) or change its lane (blue dots). A unimodal
non manoeuvre-based trajectory predictor may predict an average of these two
manoeuvres (red dots) to reduce the prediction error. However, the average of
these two manoeuvres is not a valid manoeuvre since it results in a collision
with the preceding vehicle.

intention of vehicles in the training dataset, which is time-
consuming, expensive and error-prone.

3) Multimodal trajectory: Multimodal trajectory prediction
models predict one trajectory per behaviour modes (a.k.a.
policy/manoeuvre/intention) alongside the mode probability.
We divide multimodal prediction approaches into two sub-
categories:
• Static modes: In this sub-class, a set of behaviour modes

is explicitly defined and the trajectories are predicted for each
member of this set. In [37], [24], a set of six manoeuvre
classes for highway driving is defined and the trajectory dis-
tribution for each manoeuvre class is predicted. Predicting the
distribution allows them to model the uncertainty of trajectory
prediction for each manoeuvre separately. Their models also
predict the likelihood of each manoeuvre.
• Dynamic modes: In these approaches, the modes can

be dynamically learnt based on the driving scenario. Cui et
al. [35] develop a model that predicts a fixed number of
deterministic trajectory sequences and their probabilities. Each
of these sequences can correspond to a possible manoeuvre in
the driving environment. In [39], [20], [22], the distribution of
vehicles’ trajectory is modelled. Then, a fixed number of tra-
jectory sequences are sampled from the modelled distribution
and ranked based on their likelihoods.

The first sub-category of multimodal approaches can be
considered as a multimodal extension to unimodal trajectory
prediction approaches conditioned on intended manoeuvre
as they predict the trajectories for all the behaviour modes
rather than the mode with highest likelihood. Therefore, the
drawbacks we mentioned for unimodal models conditioned
on intended manoeuvre, namely difficulties in defining a
comprehensive intention set and manual labelling of intentions
in the training dataset, are not solved here. In contrast, the
approaches in the second sub-category are exempted from
these two problems as they do not require a pre-defined
intention set. However, due to dynamic definition of modes,
they are prone to converge to a single mode [20] or not being
able to explore all the existing modes.

4) Occupancy map: In these approaches, instead of predict-
ing vehicles trajectories, the occupancy of each cell in a BEV
map of the driving environment is estimated for future time-
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TABLE II
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON OUTPUT TYPE AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages Disadvantages Work Summary of Output Type

Manoeuvre
Intention

- Usually has low computational
cost.

- Only provides a high-level
understanding of the vehicle behaviour.
- Usually covers manoeuvres that are
specifically defined for a single driving
scenario.

[19],
[18]

The destination of travel at a roundabout and
a T-junction.

[23] The probabilities of turning right, left, and
going straight at an intersection.

[27] Lane change behaviour of the TV in
highway driving scenarios.

[34] Right/left cut-in of left/right preceding TVs.

Unimodal
Trajectory

General:
- Less computational cost
compared to multimodal models.
Conditioned on intended
manoeuvre:
- Fixes the problem of convergence
to the mean of behaviour modes.

General:
- Does not fully represent the vehicle
behaviour prediction space which is
multimodal.
Independent from intended
manoeuvre:
- Is prone to convergence to the mean
of behaviour modes.
Conditioned on intended
manoeuvre:
- Is prone to trajectory prediction error
if the vehicle’s intention is not among
pre-defined intentions.
- Manual labelling is required.

[47],
[29],
[38]

The positions of the TV over
time.

[31],
[25]

The displacement of the TV relative to its
last position for each step.

[28] Longitudinal velocities and lateral
positions over time.

[36] The x-y position and the standard deviation.

[32]
The mean and variance of a bivariate
Gaussian distribution corresponding to
x- and y- positions.

[43] The bounding box (e.g. location and
heading angle) of the TV.

[21] The TV’s trajectory (based on lane change
estimation for highway driving).

[30],
[44]

The TV’s trajectory (based on intention
estimation for urban driving).

Multimodal
Trajectory

General:
Potentially can fully represent the
vehicle behaviour prediction
multimodal space.
Dynamic modes:
- No manual labelling for behaviour
modes is required.
- Potentially can adopt to different
driving situations.

General:
- High computational cost.
Dynamic modes:
- Is prone to convergence to one
behaviour mode or not to explore
all the modes.
Static modes:
Same drawbacks of unimodal
models conditioned on intention.

[37],
[24]

The trajectory distribution per each of six
predefined manoeuvres and
their probability.

[39],
[20],
[22]

A number of samples from the estimated
distribution of trajectory.

[35] A number of deterministic trajectories
sequences and their probabilities.

Occupancy
Map

- Can potentially predict multiple
modes.

- prediction accuracy is limited by
size of cells of the map.

[41],
[42]

The probability of occupancy for each
pixel of BEV grid map of the driving
environment.

steps. In [41], [42], the trajectory is predicted by estimating
the vehicles occupancy likelihood for each cell in the dynamic
occupancy grid map (DOGMa [40]) and each time-step in
prediction horizon. They create DOGMa by assigning a grid
map to a bird’s eye view of the environment around the EV.
Their model can dynamically predict multiple trajectory modes
by assigning high probability to separate groups of cells in
front of a TV. The drawback of such approaches is that their
prediction accuracy is limited by the size of the cells in the
map. Increasing the number of cells in the grid will reduce the
cells’ size; however, it results in higher computational costs.

Table II provides a summary of classification of existing
studies based on output type. It also summarizes the advan-
tages and disadvantages of each class.

C. Prediction Method

In this subsection, we classify existing studies based on the
prediction model used into three classes, namely recurrent
neural networks, convolutional neural networks, and other
methods.

1) Recurrent neural networks: The simplest recurrent neu-
ral network (a.k.a. Vanilla RNN) can be considered as an
extension to two-layer fully-connected neural network where
the hidden layer has a feedback. This small change allows
to model sequential data more efficiently. At each sequence
step, the Vanilla RNN processes the input data from current
step alongside the memory of past steps, which is carried in
the previous hidden neurons. A Vanilla RNN with sufficient
number of hidden units can, in principle, learn to approximate
any sequence to sequence mapping [52]. However, it is difficult
to train this network to learn long sequences in practice due
to gradient vanishing or exploding, which is why gated RNNs
are introduced [53]. In each cell of these networks, instead of
a simple fully connected hidden layer, a gated architecture is
deployed. Long short-term memory (LSTM) [54] and Gated
recurrent unit (GRU) [55] are the most commonly used gated
RNNs. In vehicle behaviour prediction, LSTMs are the most
used deep models. Here, we sub-categorize recent studies
based on the complexity of network architecture:
• Single RNN: In these models, either a single recurrent

neural network is used in the simplest form of behaviour
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TABLE III
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON THE PREDICTION METHOD AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages/Disadvantages Work Summary of Prediction Method

Recurrent
Neural
Networks

- Good at processing
temporal dependencies.
Single RNN:
- Requires additional
mechanism to model
interaction and contextual
features.

[19],
[18],
[23]

Single RNN: Multi-layer LSTM network is used as a sequence classifier.

[30] Single RNN: Two-layer LSTM is used to predict the parameters of acceleration distribution.

[28] Single RNN: Single-layer LSTM is used to predict future x-y position of the TV.

[22] Single RNN: An encoder-decoder LSTM is used to predict the probability of the occupancy
on a grid BEV.

[27] Multiple RNNs: A group of GRUs is used to model the pairwise interaction between the TV
and each of the SVs.

[25] Multiple RNNs: One group of LSTMs is used to model individual vehicles’ trajectory, another
group is used to model pairwise interaction.

[21] Multiple RNNs: One LSTM is used to estimate the target lane, another LSTM is used to
predict the trajectory based on estimated target lane.

[20] Multiple RNNs: Multi-layer LSTM are used to predict mixtures of Gaussian distribution.

[24]
Multiple RNNs: One LSTM encoder is applied to the input sequence. The hidden state is fed
to six LSTM decoders (one per manoeuvre). Another LSTM encoder is used to predict the
probability of each manoeuvre.

[32]
Multiple RNNs: multiple LSTMs are grouped as two layers: instance layer and category layer.
The former learns instance movement and their interactions, while the latter reason about the
similarities of the instance in the same category.

Convolutional
Neural
Networks

- Good at processing
spatial dependencies.
- 2D CNNs lack a mechanism
to model data series.

[34] Six layer CNN with convolution and fully connected layers are used to predict the intention
of surrounding vehicles.

[35],
[36]

MobileNetV2 [48] is used as feature extractor.

[41] A convolution-deconvolution architecture, introduced in [49], is used to predict
vehicle behaviour.

[43]

First, 3D convolutions are applied to the temporal dimension of input data. Then, a series of
2D convolution is used to capture spatial features. Finally, two branches of convolution
layers are used to find the probability of being a vehicle and predict the bounding box over
current and future frames.

[44]
First, two backbone CNNs are used to extract the features of lidar data and rasterized map
separately. Then three different networks are applied to the concatenation of extracted
features to detect vehicles and predict their future intention and trajectory.

Other Methods

Fully-connected NNs:
- Usually rely on current state
only.

[26] Parameters of vehicle behaviour distribution are estimated using multi-layer fully-connected
network.

Combination of RNNs
and CNNs:
- Can take advantage of
capabilities of both
RNNs and CNNs.

[37] An LSTM is applied to each vehicle trajectory. The result is represented in a BEV grid structure
and then is fed to a CNN. The output is fed to six LSTM decoders (one per manoeuvre).

[42]
A convolution network extracts spatial features from the input image. These features are fed to
encoder-decoder LSTM. The result is fed to deconvolution network to map to output image with
the same size as input.

[39] CVAE-based encoder-decoder GRU generates trajectory distribution. A number of samples from
this distribution are ranked and refined based on contextual features.

[38]
A concatenated vector of agents’ movement and static scene encoded by LSTMs and CNNs,
respectively are fed to a U-net like network. The encoded movement in the input and output of
the mentioned network is fed to LSTM decoders to predict future trajectory for the agents.

Graph Neural Networks:
- Comply with graph
structure of traffic.
- Static scene context is
usually neglected.

[31] Graph Convolutional Network (GCN[50]) and Graph Attention Network (GAT[51]) are
used with some adaptations.

[29] Graph Convolutional Model is used which consists of several convolutional and graph operation
layers.
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prediction (e.g., intention prediction or unimodal trajectory
prediction) or a secondary model is used alongside a single
RNN to support more sophisticated features like interaction-
awareness and/or multimodal prediction. To predict the in-
tention of vehicles, an LSTM is used by [19], [18], [23]
as a sequence classifier. In this task a sequence of features
is fed to successive cells of an LSTM. Then, the hidden
state of the last cell in the sequence is mapped to output
dimension (i.e., the number of defined classes). In [19], [18],
the input is embedded using a fully-connected layer and is
fed to a three-layer LSTM; while, a two-layer LSTM without
embedding is used in [23]. Altch and de La Fortelle [28]
use a single layer LSTM to predict the future x-y position
of the TV as a regression task. Despite having less parameters
and complexity, single layer LSTMs are reported to achieve
competitive results compared to the multilayer counterpart in
some tasks [56], [57]. To predict an intention-based trajectory,
Ding and Shen [30] use an LSTM encoder to predict the
intention of the TV using its states. Then, the predicted
intention and map information are used to generate an initial
future trajectory for the TV. Finally, a nonlinear optimization
method is used to refine the initial future trajectory based on
the vehicles interaction, traffic rules (e.g. red lights), and road
geometry. To predict multimodal behaviour, Zyner et al. [20]
first use an encoder-decoder three-layer LSTM to predict the
parameters of a weighted Gaussian Mixture Model (GMM) for
each step of the future trajectory. Then, a clustering approach
is used to extract the trajectories that correspond to the modes
with highest probabilities. Park et al. [22] use an encoder
decoder LSTM to predict the probability of occupancy on a
grid map and apply a beam search algorithm [58] to select k
most probable future trajectory candidates.
• Multiple RNNs: To deal with multimodality and/or in-

teraction awareness within recurrent neural networks, usually
an architecture of several RNNs are used in existing studies.
Ding et al. [27] use a group of GRU encoders to model
the pairwise interaction between the TV and each of SVs,
based on which the intention of the TV is predicted for a
longer horizon. Dai et al. [25] use two groups of LSTM
networks for the TV’s trajectory prediction, one group for
modelling the TV and each of SVs individual trajectory and
the other for modelling the interaction between the TV and
each of the SVs. Xin et al. [21] exploit one LSTM to predict
the target lane of the TV and another LSTM to predict the
trajectory based on the TV’s states and the predicted target
lane. To predict multimodal trajectories, the authors in [24]
use six different decoder LSTMs which correlate with six
specific manoeuvres of highway driving. An encoder LSTM
is applied to the past trajectory of vehicles. The hidden state
of each decoder LSTM is initialized with the concatenation
of the last hidden state of the encoder LSTM and a one-hot
vector representing the manoeuvre specific to each decoder.
The decoder LSTMs predict the parameters of manoeuvre-
conditioned bivariate Gaussian distribution of future locations
of the TV. Another encoder LSTM is also used to predict
the probability of each of six manoeuvres. Multiple LSTMs
are structured in [32] as two main layers, named as instance
layer and category layer. The former learns the instance (i.e.

agents) movement and their interactions and the latter reason
about the similarities among the instances of same category.
This network is applied to a graph representation of input data
containing 4 dimensions for the instances, their interactions,
time, and high-level categorization of instances.

Although RNNs are one of the main neural networks
associated with data series analysis and prediction such as
trajectory prediction, they have deficiency in modelling spatial
relationship such as vehicles spatial interaction and image-
like data such as driving scene context. This explains why
sophisticated solutions using RNNs usually exploit additional
methods to compensate the weakness of single RNN.

2) Convolutional neural networks: Convolutional neural
networks (CNNs) include convolution layers, where a filter
with learnable weights is convolved over the input, pool-
ing layers, which reduce the spatial size of input by sub-
sampling, and fully-connected layers, which map their input to
desired output dimension. CNNs are commonly used to extract
features from image data. They have achieved successful
results in the computer vision domain [59], [60]. This success
motivates researchers in other domains to represent their data
as an image to be able to apply CNNs on them [61]. However,
recently one-dimensional CNNs are also widely used to extract
features from one-dimensional signals [62].

Lee et al. [34] use a six-layer CNN to predict the intention
of surrounding vehicles using a binary BEV representation.
MobileNetV2 [48], which is a memory-efficient CNN de-
signed for mobile applications, is used in [35], [36] to extract
relevant features from a relatively complex BEV representa-
tion. Hoermann et al. [41] use a convolution-deconvolution
architecture, which was previously introduced in [49] for
image segmentation task, to output the probability of occu-
pancy for future time steps in a BEV image. This model
first generates a feature vector using a convolutional network.
Then, a deconvolutional network is used to upscale this vector
to the output image. A more complex architecture is used
in [44], [43] to deal with the tasks of object detection and
behaviour prediction simultaneously. In [43], 3D convolution
is performed on the temporal dimension of 4D representation
of voxelized lidar data to capture temporal features, then
a series of 2D convolutions are applied to extract spatial
features. Finally, two branches of convolution layers are added
to predict the bounding boxes over the detected objects for
current and future frames and estimate the probability of being
a vehicle for the detected objects, respectively. In [44], two
backbone CNNs are used to separately process the BEV lidar
input data and the rasterized map. The extracted features are
concatenated and fed to three different networks to detect the
vehicles, estimate their intention, and predict their trajectories.

Convolutional neural network are valued in vehicle be-
haviour prediction for their capabilities in taking image-
like data, generating image-like output, and keeping spatial
relationship of the input data while processing it. These
capabilities enables modelling vehicles’ interaction and driving
scene context and producing occupancy map output. However,
2D CNNs lack a mechanism to model data series which
is required in vehicle behaviour prediction for modelling
temporal dependencies among vehicles’ states over time.
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3) Other Methods:

• Fully-connected Neural Networks: A simplistic approach
for vehicle behaviour modelling is to rely only on the current
state of the vehicles, which might be inevitable due to un-
availability of states history of vehicles or first-order Markov
assumption. In this case, the input data is not a sequence
and any feed-forward neural networks (e.g. fully-connected
neural network) can be used instead of RNNs. In [63], it
is shown that in some driving scenarios, feed-forward neural
networks can have competitive results with faster processing
time compared to recurrent neural networks. Hu et al. [26] use
a multi-layer fully connected network to predict the parameters
of a Gaussian Mixture Model (GMM). The GMM models the
multimodal distribution of arriving time and final location for
the TV.
• Combination of RNNs and CNNs: In existing works,

recurrent neural networks are used because of their temporal
feature extracting power, and convolutional neural networks
are used for their spatial feature extracting ability. This inspires
some researchers to use both in their models to process both
the temporal and spatial dimensions of the data. Nachiket et
al. [37] use one encoder-LSTM per vehicle to extract the
temporal dynamics of the vehicle. The internal states of these
LSTMs form a social tensor which is fed to a convolutional
neural network to learn the spatial interdependencies. Finally,
six decoder LSTMs are used to produce the manoeuvre-
conditioned distribution of the future trajectory of the TV.
In [42], a CNN is applied on simplified BEV images each
representing the environment around the TV at different time
frame. Then, the sequence of extracted features is fed to an
Encoder-Decoder LSTM to learn the temporal dynamics of
the input data. The decoder LSTM outputs are fed to a de-
convolutional neural network to produce output images which
represent how the environment around the TV will evolve in
the following time steps. In [39], an encoder-decoder GRU is
used to generate the distribution of trajectories, then multiple
samples of this distribution are fed to decoder GRU to refine
and rank them. The latter module also receives the contextual
features which are extracted by a CNN model applied on
the scene representation. Multi-Agent Tensor Fusion (MATF)
encoding and decoding is introduced in [38]. In the encoding
part, a social tensor, augmented with convolutional encoded
scene context channels, is fed to a U-net [64] like fully convo-
lutional network to fuse interaction among agents and between
agents and scene context while keeping spatial locality. Finally,
the fused vectors for each vehicle are extracted from the output
layer of the U-net like network and are added to the LSTM
encoded vectors of the vehicles dynamics and then are fed to
LSTM decoders to predict future trajectory per vehicle.
• Graph Neural Networks: The vehicles in a driving sce-

nario and their interaction can be considered as a graph in
which the nodes are the vehicles and the edges represent the
interaction among them. Using this representation, Graph Neu-
ral Networks (GNNs) [65], [66] can be used to predict TV’s
behaviour. Diehl et al. [31] compare the trajectory prediction
performance of two state-of-the-art graph neural networks,
namely, Graph Convolutional Network(GCN) [50] and Graph

Attention Network (GAT) [51]. They also propose some adap-
tations to improve the performance of these networks for the
vehicle behaviour prediction problem. Li et al. [29] propose
a graph-based interaction-aware trajectory prediction (GRIP)
model. They use a graph convolutional model, which consists
of several convolutional layers as well as graph operations, to
model the interaction among the vehicles. The output of the
graph convolutional model is fed to an LSTM encoder-decoder
to predict the trajectory for multiple TVs. One drawback of
current graph-based approach is that static scene context is
usually neglected in the modelling procedure.

Table III provides a summary of classification of existing
studies based on the prediction method.

IV. EVALUATION

In this section, first we present evaluation metrics that are
commonly used for vehicle behaviour prediction in existing
studies. Then, the performance of some of existing works is
discussed. Finally, we identify and discuss the main research
gaps and opportunities.

A. Evaluation Metrics

We discuss the evaluation metrics for intention prediction
models and trajectory prediction models separately, as the
former is a classification problem and the latter is a regression
problem and each problem has a separate set of metrics.

1) Intention Prediction Metrics:
• Accuracy: One of the most common classification met-

rics is accuracy which is defined as total number of correctly
classified data samples divided by total number of data sam-
ples. However, relying only on the accuracy can be misleading
for an imbalanced dataset. For example, the number of lane
changes in a highway driving dataset is usually much less
than lane keeping. Thus, an intention predictor that regardless
of input data always output lane keeping gains high accuracy
score. Therefore, other metrics like precision, recall, and F1
score are also used in existing studies [23], [44].
• Precision: For a given class, precision is defined as the

ratio of total number of data samples which are correctly
classified in that class to the total number of samples classified
as the given class. A low precision indicates a large number
of incorrectly classified data as the given class.
• Recall: For a given class, recall is defined as the ratio of

total number of data samples which are correctly classified in
that class to the total number of samples in the given class. A
low Recall indicates a large number of data in the given class
that are incorrectly classified in other classes.
• F1 Score: The F1 score (a.k.a. F-score or F-measure) is

a balance between precision and recall and is defined as:

F1 = 2 · precision · recall
precision + recall

(3)

• Negative Log Likelihood (NLL): For each data sample in
a multi-class classification task, NLL is calculated as:

NLL = −
M∑
c=1

yclog(ŷc) (4)
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TABLE IV
COMPARISON OF TRAJECTORY PREDICTION ERROR OF SOME OF THE EXISTING WORKS FOR DIFFERENT PREDICTION HORIZONS

Works Classification RMSE

Input Representation Output Type Prediction Model 1 s 2 s 3 s 4 s 5 s

CV - - - 0.73 1.78 3.13 4.78 6.68

[28] Track history of the TV and SVs Unimodal Trajectory RNN (Single RNN) 0.72 2 3.76 5.97 9.01

[21] Track history of the TV Unimodal Trajectory RNN (Multiple RNNs) 0.49 1.41 2.6 4.06 5.79

MATF [38] Simplified Bird’s Eye View Unimodal Trajectory Combination of RNNs and CNNs 0.57 1.51 2.51 3.71 5.12

M-LSTM [24] Track history of the TV and SVs Multimodal Trajectory RNN (Multiple RNNs) 0.58 1.26 2.12 3.24 4.66

CS-LSTM [37] Simplified Bird’s Eye View Multimodal Trajectory Combination of RNNs and CNNs 0.61 1.27 2.09 3.1 4.37

ST-LSTM [25] Track history of the TV and SVs Unimodal Trajectory RNN (Multiple RNNs) 0.56 1.19 1.93 2.78 3.76

GRIP [29] Track history of the TV and SVs Unimodal Trajectory Graph Neural Networks 0.64 1.13 1.8 2.62 3.6

Where yc is a binary indicator of correctness of predicting
the data sample in class c, ŷc is the predicted probability of
the data sample belonging to class c, and M is the number
of classes. Although NLL values are not as interpretable as
previously discussed metrics, it can be used to compare the
uncertainty of different intention prediction models [27].
• Average Prediction Time: This metric is used in intention

prediction approaches [27], [26], such as lane change predic-
tion, where the approach is applied on a sliding window of
the input data series to predict the occurrence of a positive
class(e.g., lane change). The metric is obtained by taking
the average of the time of the first correct positive class
prediction for all samples, considering the time of lane change
occurrence as the origin. In [27], they considered the time
when a consistent correct lane change prediction starts to
increase robustness of the metric.

2) Trajectory Prediction Metrics: The following metrics
are the commonly used metrics in the literature. A detailed
discussion on other trajectory prediction metrics can be found
in [67].
• Final Displacement Error (FDE): This error measures

the distance between predicted final location ŷtfinal
and true

final location of the TV ytfinal
at the end of prediction horizon

tfinal , while it does not consider the prediction error occurred
in other time steps in the prediction horizon.

FDE = |ŷtfinal
− ytfinal

| (5)

• Mean Absolute Error (MAE) or Root Mean Squared
Error (RMSE): MAE measures the average magnitude of
prediction error et, while RMSE measures the square root of
the average of the squared prediction error:

MAE =
1

n

n∑
t=1

|et| (6)

RMSE =

√√√√ 1

n

n∑
t=1

e2t (7)

Where n is number of data samples and et can be defined
as the displacement error between the predicted trajectory

and the ground truth. MAE and RMSE are two of the most
common metrics for regression problems and act roughly
similar. However, RMSE is more sensitive to large errors due
to usage of squared error in its definition.
• Minimum of K Metric: In some of existing multimodal

trajectory prediction studies [4], [35], [39], [68], where K
trajectories are predicted for different modes, the metric (e.g.,
MSE, FDE) is calculated using one of the K trajectories that
minimize the metric (i.e., best predicted trajectory). The main
shortcoming of this evaluation method, also discussed in [68],
is that the quality of ignored K−1 trajectories is not examined.
Therefore, a model, reported to have high performance using
this metric, can have mostly poor predictions.
• Cross Entropy: For a modelled trajectory distribution q,

and ground truth data distribution p, the cross entropy can be
calculated as:

H(p, q) = E
x∼p
−log(q(x)) (8)

Cross entropy (a.k.a. Negative Log Likelihood) can be reported
as a metric in both intention prediction and trajectory predic-
tion; however, in multimodal trajectory prediction this metric
can be more important as both MAE and RMSE are biased
in favour of models that predict the average of modes [37]
which is not necessarily a good prediction, as discussed before.
Although cross entropy penalises a multimodal prediction
model for not covering all the modes of ground truth data
distribution, it will assign relatively low penalty for a model
that predict other modes in addition to ground truth modes.
Therefore, Rhinehart et al. [68] propose using a symmetrized
cross entropy metric which is defined as:

H(p, q) + H(q, p̄) = E
x∼p
−log(q(x)) + E

x∼q
−log(p̄(x)) (9)

where p̄ is an approximate to p, as it is not possible to evaluate
the ground truth data distribution p′s PDF.
• Computation Time: The trajectory prediction models

are usually more complex compared to intention prediction
models. Therefore, they can take more computation time which
might make them impractical for on-board implementation in
autonomous vehicles. Thus, it is crucial to report and compare
computation time in trajectory prediction models.
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B. Performance of Existing Methods

In this part we compare the performance of some of re-
viewed trajectory prediction methods. The selected studies for
comparison are the ones that used common publicly available
datasets and common metrics. These studies report RMSE
errors for prediction horizons of 1.0 to 5.0s on NGSIM I-80
and US-101 highway driving datasets [69]. Table IV provides
the reported error for each model which is obtained from the
original paper (except the RMSE calculation of [28] which
has been modified by [21] to match the position error in SI
units). Note that the RMSE error is reported for longitudinal
and lateral position separately in [21]; however, we calculated
the total RMSE error to be consistent with other studies.
Furthermore, in [25] the error is calculated for US-101 and
I-80 separately; while, we report the average of them. We
also report the prediction result of a constant velocity Kalman
Filter(CV) model as a simple baseline which is obtained
from [29].

To compare the performance of selected works, Table IV
states the category each work belongs to. According to the
table IV, most of deep learning-based methods surpass the
simple baseline constant velocity model (CV) with a high
margin. Among reviewed deep learning-based models, com-
plex models (e.g., Multiple RNNs or Combination of RNNs
and CNNs) achieve better performance compared to simple
models like single RNN. Nonetheless, increasing the complex-
ity of output, by predicting multimodal trajectory instead of
unimodal trajectory, does not always result in lower RMSE.
For example, the models named GRIP [29] and ST-LSTM [25]
achieve better performance compared to M-LSTM [24] and
CS-LSTM [37], while the former studies predict unimodal
trajectories and the latter ones predict multimodal trajectories.
This can be due to limited model capacity or limited data
used in training the discussed multimodal trajectory prediction
models.

C. Research Gaps and New Opportunities

We discuss some of the main research gaps in vehicle
behaviour prediction problem, which can be considered as
opportunities for future works:

1) Unlike object detection which has unified way of eval-
uation [46], there is no benchmark for evaluating existing
studies on vehicle behaviour prediction. This prevents a fair
comparison among different deep learning-based approaches
and between deep learning-based and other methods. For
example, among the reviewed deep learning-based papers,
there are only seven works that use unified evaluation method
(the works that we compare their performance in this paper).
In addition, only a few works report the computation time
of their algorithms, while this metric is highly important in
autonomous driving applications. As a future work, a bench-
mark can be defined and used in vehicle behaviour prediction
to be able to thoroughly compare the performance of different
studies.

2) Most of the existing works consider full observability
of the surrounding environment and vehicles’ states which
is not feasible in practice. Infrastructure sensors can provide

Fig. 4. An illustration of the vehicle behaviour prediction problem for con-
nected autonomous vehicles. The sensors implemented in other autonomous
vehicles and infrastructure can provide more information about the SVs and
reduce the object occlusion problem in ego vehicle.

non-occluded top-down view of the environment; however, it
is impractical to cover all road sections with such sensors.
Therefore, a realistic solution for behaviour prediction should
always consider sensor impairments (e.g. occlusion, noise)
which can limit the number of observable vehicles around
the TV and in turn may reduce the accuracy of behaviour
predictors in autonomous vehicles. One possible solution is
the utilization of connected autonomous vehicles. In this case,
the connected vehicle can exploit the information gained
by sensors implemented in other vehicles or infrastructure
through V2V and V2I communication (see Figure 4).

3) In recent studies, traffic rules are rarely considered as
an explicit input to the model; while, they can reshape the
behaviour of a vehicle in a driving scenario. Some of the
existing studies include road direction or traffic light as an
input to the prediction model [23], [30] which are only a small
part of traffic signs and rules.

4) In addition to the vehicle’s states and scene information
which both are usually considered in recent works, other visual
and auditory data of vehicles, like vehicle’s signalling lights
and vehicle horn can also be used to infer about its future
behaviour.

5) Most of the existing works are limited to a specific
driving scenario such as roundabout, intersection, and T-
junction. However, a vehicle behaviour prediction module
in fully autonomous vehicle should be able to predict the
behaviour in any driving scenario. Developing a model which
can be applied to a variety of driving environment can be a
direction for future research.

V. CONCLUSION

Although deep learning-based behaviour prediction solu-
tions have shown promising performance, especially in com-
plex driving scenarios, by utilizing sophisticated input repre-
sentation and output type, there are several open challenges
that need to be addressed to enable their adoption in au-
tonomous driving applications. Particularly, while most of
existing solutions considered the interaction among vehicles,
factors such as environment conditions and set of traffic
rules are not directly inputted to the prediction model. In
addition, practical limitations such as sensor impairments and
limited computational resources have not been fully taken into
account.
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