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Deep Learning-based Vehicle Behaviour Prediction

for Autonomous Driving Applications: a Review
Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul Jennings,

and Alexandros Mouzakitis

Abstract—Behaviour prediction function of an autonomous
vehicle predicts the future states of the nearby vehicles based
on the current and past observations of the surrounding envi-
ronment. This helps enhance their awareness of the imminent
hazards. However, conventional behaviour prediction solutions
are applicable in simple driving scenarios that require short pre-
diction horizons. Most recently, deep learning-based approaches
have become popular due to their promising performance in
more complex environments compared to the conventional ap-
proaches. Motivated by this increased popularity, we provide a
comprehensive review of the state-of-the-art of deep learning-
based approaches for vehicle behaviour prediction in this paper.
We firstly give an overview of the generic problem of vehicle
behaviour prediction and discuss its challenges, followed by
classification and review of the most recent deep learning-
based solutions based on three criteria: input representation,
output type, and prediction method. The paper also discusses
the performance of several well-known solutions, identifies the
research gaps in the literature and outlines potential new research
directions.

Index Terms—Vehicle behaviour prediction, trajectory predic-
tion, autonomous vehicles, intelligent vehicles, machine learning,
deep learning

I. INTRODUCTION

A
DOPTION of autonomous vehicles in the near future

is expected to reduce the number of road accidents

and improve road safety [1]. However, for safe and efficient

operation on roads, an autonomous vehicle should not only

understand the current state of the nearby road-users, but also

proactively anticipate their future behaviour. One part of this

general problem is to predict the behaviour of pedestrians

(or generally speaking, the vulnerable road-users), which is

well-studied in computer vision literature [2], [3], [4], [5].

There are also several review papers on pedestrian behaviour

prediction such as [6], [7], [8]. Another equally important part

of the problem is prediction of the intended behaviour of other

vehicles on the road. In contrast to pedestrians, vehicles’ be-

haviour is constrained by their higher inertia, driving rules and

road geometry, which could help reduce the complexity of the

problem, compared to aforementioned problem. Nonetheless,

new challenges arise from interdependency among vehicles

behaviour, influence of traffic rules and driving environment,

and multimodality of vehicles behaviour. Practical limitations
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in observing the surrounding environment and the required

computational resources to execute prediction algorithms also

add to the difficulty of the problem, as explained in the later

sections of this paper.

There are several published survey papers on vehicle be-

haviour analysis. For example, Shirazi and Morris [9] provide

a review of vehicle monitoring, behaviour and safety anal-

ysis at intersections. A review of unsupervised approaches

for vehicle behaviour analysis with a focus on trajectory

clustering and topic modelling methods is provided in [10].

Anomaly detection techniques using visual surveillance are

reviewed in [11]. In [12] a joint review is provided on

tracking, prediction and decision making for autonomous

driving. None of these studies specifically focus on vehicle

behaviour prediction. In the most related paper to our work,

Lefevre et al. [13] provide a survey on vehicle behaviour

prediction and risk assessment in the context of autonomous

vehicles. The authors review various conventional approaches

that applied physics-based models and/or traditional machine

learning algorithms such as Hidden Markov Models, Support

Vector Machines, and Dynamic Bayesian Networks. Recent

advances in machine learning techniques (e.g., deep learning)

have provided new and powerful tools for solving the problem

of vehicle behaviour prediction. Such approaches have become

increasingly important due to their promising performance in

complex and realistic scenarios. However, to the best of our

knowledge, there is no systematic and comparative review of

the latter deep learning-based approaches. We thus present a

review of such studies using a new classification method which

is based on three criteria: input representation, output type,

and prediction method. In addition, we report the practical

limitations of implementing recent solutions in autonomous

vehicles. To make the paper self-contained, we also provide a

generic problem definition for vehicle behaviour prediction.

The rest of this paper is organised to a number of sections:

Section II is an introduction to the basics and the challenges

of vehicle behaviour prediction for autonomous vehicles. The

definition of used terminologies and the generic problem

formulation are also given in section II. Section III reviews

the related deep learning-based solutions and classifies them

based on three criteria: input representation, output type,

and prediction method. Section IV discusses the commonly

used evaluation metrics, compares the performance of several

well-known trajectory prediction models in public highway

driving datasets, and highlights the current research gaps in

the literature and potential new research directions. The key

concluding remarks are given in section V.
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II. BASICS AND CHALLENGES OF VEHICLE BEHAVIOUR

PREDICTION

Object detection and behaviour prediction can be consid-

ered as two main functions of the perception system of an

autonomous vehicle. While both of them rely on on- and off-

board sensory data, the former aims to localize and classify

the objects in the surrounding environment of the autonomous

vehicle and the latter provides an understanding of the dynam-

ics of surrounding objects and predicts their future behaviour.

Behaviour prediction plays a pivotal role in autonomous driv-

ing applications as it supports efficient decision making [14]

and enables risk assessment [13]. In this section, we firstly

discuss the challenges of vehicle behaviour prediction, then

we provide a terminology for vehicle behaviour prediction,

and finally we present a generic probabilistic formulation of

the problem.

A. Challenges

Vehicles (e.g., cars and trucks) have well-structured mo-

tions which are governed by driving rules and environment

conditions. In addition, vehicles, as non-holonomic systems,

cannot change their trajectories instantly to desired ones.

However, vehicle behaviour prediction is not a trivial task due

to several challenges. First, there is an interdependency among

vehicles behaviour where the behaviour of a vehicle affects

the behaviour of other vehicles and vice versa. Therefore,

predicting the behaviour of a vehicle requires observing the

behaviour of surrounding vehicles. Second, road geometry

and traffic rules can reshape the behaviour of vehicles. For

example, placing a give-way sign in an intersection can

completely change the behaviour of vehicles approaching it.

Therefore, without considering traffic rules and road geometry,

a model trained in a specific driving environment would have

limited performance in other driving environments. Third, the

future behaviour of vehicles is multimodal, meaning that given

history of motion of a vehicle, there may exist more than one

possible future behaviour for it. For example, when a vehicle is

slowing down at an intersection without changing its heading

direction, both turning right and turning left motions could

be expected. A comprehensive behaviour prediction module

in an autonomous vehicle should identify all possible future

motions to allow the vehicle to act reliably.

In addition to the intrinsic challenges of the vehicle be-

haviour prediction problem, implementing a behaviour predic-

tion module in autonomous vehicles comes with several practi-

cal limitations. For example, there are restricted computational

resources for on-board implementation in autonomous vehi-

cles. In addition, autonomous vehicles can partially observe

the surrounding environment using their on-board sensors due

to their limitations (e.g., object occlusion, limited sensor range,

and sensor noise). Most of existing studies assume having

access to a wide unobstructed top-down view of the driving

environment which can be obtained by infrastructure sensors

(e.g. an infrastructure surveillance camera). Nonetheless, such

data can be available if there exists a communication channel

with sufficient capacity between the infrastructure and the au-

tonomous vehicle. In addition, it is not cost-effective to cover

Fig. 1. An illustration of the adopted terminology and limited observability of
the EV’s onboard sensors. As an example of a criterion for dividing vehicles
into SVs and NVs, the vehicles within a threshold distance, d, to the TV are
considered to have impact on the TV’s behaviour. Unobservable vehicles by
the EV, including two of the SVs are represented with blur effect. The limited
observability can cause inaccurate prediction. For example, the preceding
vehicle of the TV, which is not observable by the EV, is changing its lane
allowing the TV to accelerate.

all road sections with such sensors. Therefore, a behaviour

prediction module cannot always rely on unobstructed vision

from an infrastructure sensor.

B. Terminology

To define the problem of vehicle behaviour prediction, we

adopt the following terms:

• Target Vehicles (TVs) are the vehicles whose behaviour

we are interested in predicting.

• Ego Vehicle (EV) is the autonomous vehicle which

observes the surrounding environment to predict the be-

haviour of TVs.

• Surrounding Vehicles (SVs) are the vehicles whose

behaviour is explored by the prediction model as it

can potentially impact TV’s future behaviour. Different

studies may adopt different criteria for selecting SVs

based on their modelling assumptions.

• Non Effective Vehicles (NVs) are the remaining vehicles

in driving environment that are assumed to have no

impact on the TV’s behaviour.

Figure 1 illustrates an example of a driving scenario using

the proposed terminology. In this Figure a distance-based

criterion, as an example, is used to divide the vehicles into

SVs and NVs.

C. Generic Problem Formulation

We use a probabilistic formulation for vehicle behaviour

prediction to cope with the uncertain nature of the problem.

The word ”behaviour” and ”manoeuvre” are sometimes used

in the literature interchangeably [15], [16], [17]; however,

we consider ”vehicle behaviour” as a general term that can

imply vehicle manoeuvre or trajectory depending on how it is

represented in the problem formulation. In the generic problem

formulation, we represent the future behaviour of TVs as the

states XTV s they will traverse in the future, defined as:

XTV s = {xi
t, x

i
t+1, ..., x

i
t+m}Ni=1 (1)

Where xi
t represents the states (e.g., position) of vehicle i at

time step t, N is the number of TVs, and m is the length of

the prediction window.
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The generic problem is formulated as computing the condi-

tional distribution P (XTV s|OEV ), where OEV are the avail-

able observations to the EV. This distribution is a mutual distri-

bution over series of states of several interdependent vehicles,

which can be intractable. To reduce the computational require-

ment of estimating P (XTV s|OEV ), many of existing works

dropped the interdependency among vehicles future behaviour.

As such, the behaviour of each TV can be predicted separately

with an affordable computational requirement. At each step,

one vehicle is selected as the TV and its P (XTV |OEV ) is

calculated, where:

XTV = {xT
t , x

T
t+1, ..., x

T
t+m} (2)

Where T is the selected TV.

III. CLASSIFICATIONS OF EXISTING WORKS

Lefevre et al. [13] classifies vehicle behaviour prediction

models to physics-based, manoeuvre-based, and interaction-

aware models. The simplest approaches that assume the be-

haviour of vehicles only depends on laws of physics are

classified in physics-based models. The models that predict

vehicles’ behaviour based on their intended manoeuvre are

called maneuvre-based approaches. Finally, the more advanced

models that consider interaction among vehicles are called

interaction-aware models. At the time of writing their paper, in

2014, there has been only a few examples of such interaction-

aware model. However, several advanced approaches, mostly

deep learning-based has been proposed in the literature since

2014 that requires more detailed classification. Thus, we

present three classifications based on three different criteria:

input representation, output type, and prediction method. First,

we classify existing studies based on how they represent the

input data. In this classification, the interaction-aware models

are divided into three classes. In second classification, different

approaches are classified based on their prediction output. We

do not include physics-based approaches as they are no longer

state-of-the-art, but different deep learning methods used in

behaviour prediction are discussed and classified in the last

classification. Figure 2 provides the classes and sub-classes

for each aforementioned classification criterion. The following

subsections address the classification based on each criterion

individually.

A. Input Representation

In this subsection, we provide a classification of existing

studies based on the type of input data and how it is rep-

resented. We divide them into four classes: track history of

the TV, track history of the TV and SVs, simplified bird’s

eye view, and raw sensor data. The last three classes can

be considered as sub-classes of interaction-aware approaches

which was introduced in [13]. We also discuss the availability

of these input data in autonomous driving applications.

1) Track history of the TV: The conventional approach for

predicting behaviour of the TV is to only use its current state

(e.g. position, velocity, acceleration, heading) or track history

of its states over time. This feature can be estimated if the TV

is observable by the EV’s sensors.

Fig. 2. Proposed classifications of state-of-the-art deep learning approaches
for vehicle behaviour prediction

In [18], [19], [20], the track history of x-y position, speed,

and heading of the TV are used to predict its behaviour at

different road junctions. All these works study the behaviour

of the TV in an environment without any SVs. Few deep

learning-based methods use this input set to predict the vehicle

behaviour in a driving environment with presence of other

vehicles [21], [22]. Xin et al. [21] argue that the information of

SVs is not available due to EV’s sensor limitations and object

occlusion; however, some of the SVs can usually be observed

by EV’s sensor (see Figure 1). Excluding the observable SV’s

state from the input set may result in inaccurate prediction

of the TV’s behaviour due to interdependencies of vehicles’

behaviour.

Although the track history of the TV has highly informative

features about its short-term future motion, relying only on the

TV’s track history can lead to erroneous results particularly in

long-term prediction in crowded driving environments.

2) Track history of the TV and SVs: One approach to

consider the interaction among vehicles is to explicitly feed

the track history of the TV and SVs to the prediction model.

The SVs’ states, similar to the TV’s states, can be estimated

in the object detection module of the EV; however, some of

the SVs can be outside of the EV’s sensor range or they might

be occluded by other vehicles on the road.

The existing studies vary in how to divide the vehicles in

the scene into surrounding vehicles (SVs) and non-effective

vehicles (NVs). In [23], [24], [25], history of states of the

TV and six of its closest neighbours are exploited to predict

the TV’s behaviour. In [26], [27], the three closest vehicles

in the TV’s current lane and two adjacent lanes are chosen

as reference vehicles. The reference vehicles and the vehicles

in front and behind of the two reference vehicles in adjacent
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lanes are selected as the SVs. The authors in [28] consider

nine vehicles in three lanes surrounding the target vehicle

including two vehicles in front of the TV. They indicate that

considering more vehicles in the input data can improve the

performance of behaviour prediction. For example, in a traffic

jam, knowing that the second vehicle ahead of the TV is

accelerating can enable early prediction of speed increase for

the TV. Instead of considering a fixed number of vehicles as

the SVs, a distance threshold is defined to divide vehicle into

the SVs and NVs in [29], [30], [31]. It means that only the

interactions of vehicles within this threshold are considered in

the prediction model. In [32], the states of all the observable

agents (e.g. vehicles, pedestrian, and cyclist) are used with

different weights, obtained by soft attention mechanism [33],

corresponding to their impacts on TV’s behaviour.

One drawback of most of these studies is that they assume

that the states of all SVs are always observable, which is not

a practical assumption in autonomous driving applications.

A more realistic approach should always consider sensor

impairments like occlusion and noise. In addition, relying only

on the track history of the TV and SVs is not sufficient for

behaviour prediction, because other factors like environment

conditions and traffic rules can also modify the behaviour of

vehicles.

3) Simplified Bird’s Eye View: An alternative way to

consider the interaction among vehicles is by exploiting a

simplified Bird’s Eye View (BEV) of the environment. In

this approach, static and dynamic objects, road lane, and

other elements of the environment are usually depicted with a

collection of polygons and lines in a BEV image. The result

is a map-like image which preserves the size and location of

objects (e.g. vehicles) and the road geometry while ignoring

their texture.

Lee et al. [34] fuse front-facing radar and camera data to

form a binary two-channel BEV image covering the frontal

area of the EV. One of the image channels specifies whether

the pixel is occupied by a vehicle or not, and the other depicts

the existence of lane marks. For n past frames, the images are

produced and stacked together to form a 2n-channel image as

the input to the prediction model. Instead of using a sequence

of binary images, indicating the existence of objects over time,

a single BEV image is used in [35], [36]. In this image, each

element of the scene (e.g., road, cross-walks) loses its actual

texture and instead is colour coded according to its semantics.

The vehicles are depicted by colour-coded bounding boxes

and the location history of vehicles are plotted using bounding

boxes with same colour and reduced level of brightness.

To enrich the temporal information within the BEV image,

Deo and Trivedi [37] use a social tensor which was first

introduced in [3] (known as social pooling layer). A social

tensor is a spatial grid around the target vehicle that the

occupied cells are filled with the processed temporal data

(e.g., LSTM hidden state value) of the corresponding vehicle.

Therefore, a social tensor contains both the temporal dynamic

of vehicles and spatial inter-dependencies among them. The

authors in [38] add scene context encoding channels to the

input representation used in [37]. These channels are produced

by encoding the static context of the scene (i.e., top-down view

image of the scene) using a convolutional neural network.

Lee et al. [39] use social pooling layer as an additional

input to another BEV representation created by performing

semantic segmentation on front-facing camera of the EV and

transforming it to the BEV.

The aforementioned works do not consider sensor impair-

ment in the input representation. To overcome this drawback,

a dynamic occupancy grid map (DOGMa [40]) is exploited

in [41], [42]. DOGMa is created from the data fusion of a

variety of sensors and provides a BEV image of the environ-

ment. The channels of this image contain the probability of

occupancy and velocity estimate for each pixel. The velocity

information helps distinguish between static and dynamic

objects in the environment; however, it does not provide

complete knowledge about the history of dynamic objects.

The advantages of simplified BEV is that first it is flexible

in terms of complexity of representation. Thus, it can match

applications with different computational resource constraints.

Second, it enables data fusion from different type of sensors

into a single BEV representation.

One drawback of this input representation, that applies

to the previously discussed input representations as well, is

that it inherits the limitations of the perception module(e.g.,

object detection and tracking) used for estimating the states

of static and dynamic objects (e.g., vehicles) in the driving

environment. Therefore, an error in estimating the states, or

under-representing the environment in the perception module

will be cascaded to the prediction module. For example, if

the object detection module use same label for an ambulance

and a normal car, the influence of the ambulance on future

behaviour of surrounding vehicles cannot be modelled.

4) Raw sensor data: In this approach, raw sensor data is

fed to the prediction model. Thus, the input data contains all

available knowledge about the surrounding environment. This

allows the model to learn extracting useful features from all

available sensory data.

Raw sensor data, compared to previous input representa-

tions, has larger dimension. Therefore, more computational re-

sources are required to process the input data, which can make

it impractical for on-board implementation in autonomous

vehicles. One solution to this problem is to share the com-

putational resources among different functions of autonomous

vehicle. In deep learning literature, it is common to train a

model for multiple tasks [45]. In an autonomous vehicle, the

object detection module exploits raw sensor data, and it usually

relies on a model with millions of parameters [46]. Thus, it can

be a good candidate for parameter sharing with the behaviour

prediction module.

Leo et al. [43] use a deep neural network to jointly solve the

problems of 3D detection, tracking, and motion forecasting for

autonomous vehicles. They exploit 3D point clouds data over

several time frames. The data is represented in BEV images,

and the height is considered as the channel dimension. To

exploit the lidar data, the same approach is used by [44];

however, they feed the 3D point cloud data in addition to a

simplified BEV to their deep model.

Table I provides a summary of classification of existing

studies based on input representation. It also summarizes the
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TABLE I
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON INPUT REPRESENTATION AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages Disadvantages Works Summary

Track History of

the TV

- Complies with limited

observability of the EV.

- Does not consider the

impact of environment and

interaction among vehicles

on the TV’s behaviour.

- Inherits the limitation of the

perception module of the EV.

[18], [20],

[19], [21],

[22]

Track history of the TV’s states

(e.g., position, velocity, heading, and etc.).

Track History of

the TV and SVs

- Considers the impact of

interaction among vehicles on

the TV’s behaviour.

- Does not consider the

impact of environment on

the TV’s behaviour.

- The States of SVs are not

always observable to the EV.

- Inherits the limitation of the

perception module of the EV

[24], [23],

[25]
History of states for the TV and six SVs.

[26], [27]
History of states for the TV and three reference

vehicles and four adjacent vehicles to them.

[28] History of states for the TV and nine SVs.

[29], [30],

[31]

A distance threshold is defined to divide

vehicles into the SVs and NVs.

[32]
A soft attention mechanism is used to

weight the impact of each observed vehicle.

Simplified Bird’s

Eye View

- Considers the impact of

environment and interaction

among vehicles on the TV’s

behaviour.

- Facilitates fusing the data

gathered from different sensors

on the EV.

- Flexible in terms of

complexity of representation.

- It can comply with limited

observability of the EV.

- Inherits the limitation of the

perception module of the EV.

[34]

A sequence of 2 channel top-down image

covering the environment in front of the TV.

It indicates the existence of vehicles and

lane lines over time.

[35], [36]

A BEV image of environment, in which

the road elements and vehicles are represented

with color-coded polygons and lines.

[37]

A top-down grid representation. Each occupied

cell is filled with the corresponding vehicle’s

LSTM hidden state (similar to [3]).

[38]

The representation in [37]

is augmented with CNN encoded image of the

static context of the driving scene.

[39] Semantic segmentation of environment in BEV.

[41], [42]

A top-down grid representation. Each cell

contains the probability of the cell occupation,

and its velocity.

Raw Sensor

Data

- Complies with limited

observability of the EV.

- No information loss.

- High computational cost.
[43] 3D point clouds data over several time steps.

[44]
Lidar data and rasterized map (i.e., the

representation used in [36]).

advantages and disadvantages of each class.

B. Output Type

In this subsection, we classify existing studies based on

how they represent a vehicle future behaviour as the output

of their prediction model. We consider four classes: manoeu-

vre intention, unimodal trajectory, multimodal trajectory, and

occupancy map.

1) Manoeuvre Intention: Manoeuvre intention prediction

(we shortly refer it as intention prediction) is the task of

estimating what manoeuvre the vehicle intends to do in

upcoming time-steps [13]. For example, in highway driving,

the set of manoeuvres could be left lane change, right lane

change, and keeping the lane; while in an intersection, it could

be: go straight, turn left, and turn right.

To predict the intention of a vehicle approaching a T-

junction, Zyner et al. [19] define three classes based on the

destination of the vehicle, namely ”east”, ”west”, or ”south”.

In [18], the same set of classes are used to predict the intention

of a vehicle at an un-signalized roundabout. Phillips et al. [23]

design a generalizable intention prediction model that can

predict the direction of travel of a vehicle up to 150m before

reaching three- and four-way intersections. Ding et al. [27] and

Lee et al. [34] apply intention prediction to highway driving

scenario. The former proposes an intention prediction model

to predict lane change and lane keeping behaviour for the TV;

while, the latter designs a model to predict the cut-in intention

of right/left preceding TVs w.r.t. the EV.

Existing studies predict the intention of vehicles using a

set of few classes. One drawback of these works is that they

can only provide a high-level understanding of the vehicle

behaviour. This problem can be solved by subdividing high-

level manoeuvres into sub-classes that describe the behaviour

more precisely. For example, in a highway driving scenario,

we can subdivide lane change classes into sharp lane change

and normal lane change. Another drawback is the specificity

of manoeuvre set to single driving environment, which can

be resolved by defining a set that contains the manoeuvres

in all desired driving scenarios. However, to predict a vehicle

behaviour using large and in depth set of classes, a larger and

more diverse training dataset that includes sufficient samples

in each class is required. In addition, larger model capacity is

needed to learn the mapping of the input data to the intention

set.

2) Unimodal trajectory: Trajectory prediction models de-

scribe the future behaviour of a vehicle by predicting series
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of future locations of the TV over a time window. Dealing

with continuous output of trajectory prediction models can add

more complexity to the problem compared to discrete output

of intention prediction models. However, predicting trajectory

instead of intention, provides more precise information about

future behaviour of vehicles. Given a specific driving situation

and history of motion for a vehicle, it might be possible

for it to traverse multiple different trajectories. Therefore,

the corresponding distribution has multiple modes. Unimodal

trajectory predictors are the models that only predict one

of these possible trajectories (usually the one with highest

likelihood). We divide such approaches into two sub-classes:

• Independent of intended manoeuvre: These approaches

predict a unimodal trajectory without explicitly considering

the effect of possible manoeuvres on it. The straightforward

approach to predict the trajectory of the TV is to estimate the

position of it over time [47], [38], [29]. The predictor model

can also estimate the displacement of the TV relative to its

last position at each step [31], [25]. The other approach used

in [28] is to predict lateral position and longitudinal velocity

separately. This approach can be specially useful when the

region of interest is longitudinally large, therefore longitudinal

position can be a quite large figure. In addition to the position

and velocity, the heading angle of the vehicle is predicted

in [43]. To cope with uncertainty of the trajectory prediction

problem, Djuric et al. [36] propose a trajectory prediction

model that estimates standard deviation for the predicted x-

and y-positions. In [32], the mean, standard deviation, and

correlation coefficient of a bivariate Gaussian distribution cor-

responding to x- and y- positions are predicted for each time

step. The main disadvantage of unimodal trajectory prediction

models which are independent of intended manoeuvre is that

they may converge to the average of all the possible modes

because the average can minimize the displacement error of

unimodal trajectory prediction; however, the average of modes

is not necessarily a valid future behaviour [20]. Figure 3

illustrates this problem.

• Conditioned on intended manoeuvre: The other unimodal

trajectory prediction approaches estimate the likelihood of

each member of a predefined manoeuvre intention set and

predict the trajectory that corresponds to the most probable

intention. Xin et al. [21] propose an intention-aware model

to predict trajectory based on estimated lane change intention

for the TV in highway driving. In [30], [44], the intention set

is extended from only lane change intentions to turning right,

turning left, stopping, and so on. This allows using the predic-

tion model in urban driving. Unimodal trajectory prediction

approaches conditioned on intended manoeuvre are unlikely

to converge to the mean of modes, as in these approaches

the predicted trajectory corresponds to one of predefined

behaviour modes. However, there are two main drawbacks

in these approaches. First, they cannot accurately predict a

vehicle trajectory if the vehicle’s intention does not exist in

the predefined intention set. This problem can commonly occur

in complex driving scenarios, as it is hard to predetermine

all possible driving intentions in such environments. Second,

unlike previous sub-class, we need to manually label the

Fig. 3. An illustration of invalidity of the average of manoeuvres. The red
car is approaching the green car on the road. It is probable for the red car to
either reduce its speed (green dots) or change its lane (blue dots). A unimodal
non manoeuvre-based trajectory predictor may predict an average of these two
manoeuvres (red dots) to reduce the prediction error. However, the average of
these two manoeuvres is not a valid manoeuvre since it results in a collision
with the preceding vehicle.

intention of vehicles in the training dataset, which is time-

consuming, expensive and error-prone.

3) Multimodal trajectory: Multimodal trajectory prediction

models predict one trajectory per behaviour modes (a.k.a.

policy/manoeuvre/intention) alongside the mode probability.

We divide multimodal prediction approaches into two sub-

categories:

• Static modes: In this sub-class, a set of behaviour modes

is explicitly defined and the trajectories are predicted for each

member of this set. In [37], [24], a set of six manoeuvre

classes for highway driving is defined and the trajectory dis-

tribution for each manoeuvre class is predicted. Predicting the

distribution allows them to model the uncertainty of trajectory

prediction for each manoeuvre separately. Their models also

predict the likelihood of each manoeuvre.

• Dynamic modes: In these approaches, the modes can

be dynamically learnt based on the driving scenario. Cui et

al. [35] develop a model that predicts a fixed number of

deterministic trajectory sequences and their probabilities. Each

of these sequences can correspond to a possible manoeuvre in

the driving environment. In [39], [20], [22], the distribution of

vehicles’ trajectory is modelled. Then, a fixed number of tra-

jectory sequences are sampled from the modelled distribution

and ranked based on their likelihoods.

The first sub-category of multimodal approaches can be

considered as a multimodal extension to unimodal trajectory

prediction approaches conditioned on intended manoeuvre

as they predict the trajectories for all the behaviour modes

rather than the mode with highest likelihood. Therefore, the

drawbacks we mentioned for unimodal models conditioned

on intended manoeuvre, namely difficulties in defining a

comprehensive intention set and manual labelling of intentions

in the training dataset, are not solved here. In contrast, the

approaches in the second sub-category are exempted from

these two problems as they do not require a pre-defined

intention set. However, due to dynamic definition of modes,

they are prone to converge to a single mode [20] or not being

able to explore all the existing modes.

4) Occupancy map: In these approaches, instead of predict-

ing vehicles trajectories, the occupancy of each cell in a BEV

map of the driving environment is estimated for future time-
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TABLE II
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON OUTPUT TYPE AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages Disadvantages Work Summary of Output Type

Manoeuvre

Intention

- Usually has low computational

cost.

- Only provides a high-level

understanding of the vehicle behaviour.

- Usually covers manoeuvres that are

specifically defined for a single driving

scenario.

[19],

[18]

The destination of travel at a roundabout and

a T-junction.

[23]
The probabilities of turning right, left, and

going straight at an intersection.

[27]
Lane change behaviour of the TV in

highway driving scenarios.

[34] Right/left cut-in of left/right preceding TVs.

Unimodal

Trajectory

General:

- Less computational cost

compared to multimodal models.

Conditioned on intended

manoeuvre:

- Fixes the problem of convergence

to the mean of behaviour modes.

General:

- Does not fully represent the vehicle

behaviour prediction space which is

multimodal.

Independent from intended

manoeuvre:

- Is prone to convergence to the mean

of behaviour modes.

Conditioned on intended

manoeuvre:

- Is prone to trajectory prediction error

if the vehicle’s intention is not among

pre-defined intentions.

- Manual labelling is required.

[47],

[29],

[38]

The positions of the TV over

time.

[31],

[25]

The displacement of the TV relative to its

last position for each step.

[28]
Longitudinal velocities and lateral

positions over time.

[36] The x-y position and the standard deviation.

[32]

The mean and variance of a bivariate

Gaussian distribution corresponding to

x- and y- positions.

[43]
The bounding box (e.g. location and

heading angle) of the TV.

[21]
The TV’s trajectory (based on lane change

estimation for highway driving).

[30],

[44]

The TV’s trajectory (based on intention

estimation for urban driving).

Multimodal

Trajectory

General:

Potentially can fully represent the

vehicle behaviour prediction

multimodal space.

Dynamic modes:

- No manual labelling for behaviour

modes is required.

- Potentially can adopt to different

driving situations.

General:

- High computational cost.

Dynamic modes:

- Is prone to convergence to one

behaviour mode or not to explore

all the modes.

Static modes:

Same drawbacks of unimodal

models conditioned on intention.

[37],

[24]

The trajectory distribution per each of six

predefined manoeuvres and

their probability.

[39],

[20],

[22]

A number of samples from the estimated

distribution of trajectory.

[35]
A number of deterministic trajectories

sequences and their probabilities.

Occupancy

Map

- Can potentially predict multiple

modes.

- prediction accuracy is limited by

size of cells of the map.

[41],

[42]

The probability of occupancy for each

pixel of BEV grid map of the driving

environment.

steps. In [41], [42], the trajectory is predicted by estimating

the vehicles occupancy likelihood for each cell in the dynamic

occupancy grid map (DOGMa [40]) and each time-step in

prediction horizon. They create DOGMa by assigning a grid

map to a bird’s eye view of the environment around the EV.

Their model can dynamically predict multiple trajectory modes

by assigning high probability to separate groups of cells in

front of a TV. The drawback of such approaches is that their

prediction accuracy is limited by the size of the cells in the

map. Increasing the number of cells in the grid will reduce the

cells’ size; however, it results in higher computational costs.

Table II provides a summary of classification of existing

studies based on output type. It also summarizes the advan-

tages and disadvantages of each class.

C. Prediction Method

In this subsection, we classify existing studies based on the

prediction model used into three classes, namely recurrent

neural networks, convolutional neural networks, and other

methods.

1) Recurrent neural networks: The simplest recurrent neu-

ral network (a.k.a. Vanilla RNN) can be considered as an

extension to two-layer fully-connected neural network where

the hidden layer has a feedback. This small change allows

to model sequential data more efficiently. At each sequence

step, the Vanilla RNN processes the input data from current

step alongside the memory of past steps, which is carried in

the previous hidden neurons. A Vanilla RNN with sufficient

number of hidden units can, in principle, learn to approximate

any sequence to sequence mapping [52]. However, it is difficult

to train this network to learn long sequences in practice due

to gradient vanishing or exploding, which is why gated RNNs

are introduced [53]. In each cell of these networks, instead of

a simple fully connected hidden layer, a gated architecture is

deployed. Long short-term memory (LSTM) [54] and Gated

recurrent unit (GRU) [55] are the most commonly used gated

RNNs. In vehicle behaviour prediction, LSTMs are the most

used deep models. Here, we sub-categorize recent studies

based on the complexity of network architecture:

• Single RNN: In these models, either a single recurrent

neural network is used in the simplest form of behaviour
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TABLE III
SUMMARY OF CLASSIFICATION OF EXISTING STUDIES BASED ON THE PREDICTION METHOD AND THE ADVANTAGES/DISADVANTAGES OF EACH CLASS

Class Advantages/Disadvantages Work Summary of Prediction Method

Recurrent

Neural

Networks

- Good at processing

temporal dependencies.

Single RNN:

- Requires additional

mechanism to model

interaction and contextual

features.

[19],

[18],

[23]

Single RNN: Multi-layer LSTM network is used as a sequence classifier.

[30] Single RNN: Two-layer LSTM is used to predict the parameters of acceleration distribution.

[28] Single RNN: Single-layer LSTM is used to predict future x-y position of the TV.

[22]
Single RNN: An encoder-decoder LSTM is used to predict the probability of the occupancy

on a grid BEV.

[27]
Multiple RNNs: A group of GRUs is used to model the pairwise interaction between the TV

and each of the SVs.

[25]
Multiple RNNs: One group of LSTMs is used to model individual vehicles’ trajectory, another

group is used to model pairwise interaction.

[21]
Multiple RNNs: One LSTM is used to estimate the target lane, another LSTM is used to

predict the trajectory based on estimated target lane.

[20] Multiple RNNs: Multi-layer LSTM are used to predict mixtures of Gaussian distribution.

[24]

Multiple RNNs: One LSTM encoder is applied to the input sequence. The hidden state is fed

to six LSTM decoders (one per manoeuvre). Another LSTM encoder is used to predict the

probability of each manoeuvre.

[32]

Multiple RNNs: multiple LSTMs are grouped as two layers: instance layer and category layer.

The former learns instance movement and their interactions, while the latter reason about the

similarities of the instance in the same category.

Convolutional

Neural

Networks

- Good at processing

spatial dependencies.

- 2D CNNs lack a mechanism

to model data series.

[34]
Six layer CNN with convolution and fully connected layers are used to predict the intention

of surrounding vehicles.

[35],

[36]
MobileNetV2 [48] is used as feature extractor.

[41]
A convolution-deconvolution architecture, introduced in [49], is used to predict

vehicle behaviour.

[43]

First, 3D convolutions are applied to the temporal dimension of input data. Then, a series of

2D convolution is used to capture spatial features. Finally, two branches of convolution

layers are used to find the probability of being a vehicle and predict the bounding box over

current and future frames.

[44]

First, two backbone CNNs are used to extract the features of lidar data and rasterized map

separately. Then three different networks are applied to the concatenation of extracted

features to detect vehicles and predict their future intention and trajectory.

Other Methods

Fully-connected NNs:

- Usually rely on current state

only.

[26]
Parameters of vehicle behaviour distribution are estimated using multi-layer fully-connected

network.

Combination of RNNs

and CNNs:

- Can take advantage of

capabilities of both

RNNs and CNNs.

[37]
An LSTM is applied to each vehicle trajectory. The result is represented in a BEV grid structure

and then is fed to a CNN. The output is fed to six LSTM decoders (one per manoeuvre).

[42]

A convolution network extracts spatial features from the input image. These features are fed to

encoder-decoder LSTM. The result is fed to deconvolution network to map to output image with

the same size as input.

[39]
CVAE-based encoder-decoder GRU generates trajectory distribution. A number of samples from

this distribution are ranked and refined based on contextual features.

[38]

A concatenated vector of agents’ movement and static scene encoded by LSTMs and CNNs,

respectively are fed to a U-net like network. The encoded movement in the input and output of

the mentioned network is fed to LSTM decoders to predict future trajectory for the agents.

Graph Neural Networks:

- Comply with graph

structure of traffic.

- Static scene context is

usually neglected.

[31]
Graph Convolutional Network (GCN[50]) and Graph Attention Network (GAT[51]) are

used with some adaptations.

[29] Graph Convolutional Model is used which consists of several convolutional and graph operation

layers.
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prediction (e.g., intention prediction or unimodal trajectory

prediction) or a secondary model is used alongside a single

RNN to support more sophisticated features like interaction-

awareness and/or multimodal prediction. To predict the in-

tention of vehicles, an LSTM is used by [19], [18], [23]

as a sequence classifier. In this task a sequence of features

is fed to successive cells of an LSTM. Then, the hidden

state of the last cell in the sequence is mapped to output

dimension (i.e., the number of defined classes). In [19], [18],

the input is embedded using a fully-connected layer and is

fed to a three-layer LSTM; while, a two-layer LSTM without

embedding is used in [23]. Altché and de La Fortelle [28]

use a single layer LSTM to predict the future x-y position of

the TV as a regression task. Despite having less parameters

and complexity, single layer LSTMs are reported to achieve

competitive results compared to the multilayer counterpart in

some tasks [56], [57]. To predict an intention-based trajectory,

Ding and Shen [30] use an LSTM encoder to predict the

intention of the TV using its states. Then, the predicted

intention and map information are used to generate an initial

future trajectory for the TV. Finally, a nonlinear optimization

method is used to refine the initial future trajectory based on

the vehicles interaction, traffic rules (e.g. red lights), and road

geometry. To predict multimodal behaviour, Zyner et al. [20]

first use an encoder-decoder three-layer LSTM to predict the

parameters of a weighted Gaussian Mixture Model (GMM) for

each step of the future trajectory. Then, a clustering approach

is used to extract the trajectories that correspond to the modes

with highest probabilities. Park et al. [22] use an encoder

decoder LSTM to predict the probability of occupancy on a

grid map and apply a beam search algorithm [58] to select k

most probable future trajectory candidates.

• Multiple RNNs: To deal with multimodality and/or in-

teraction awareness within recurrent neural networks, usually

an architecture of several RNNs are used in existing studies.

Ding et al. [27] use a group of GRU encoders to model

the pairwise interaction between the TV and each of SVs,

based on which the intention of the TV is predicted for a

longer horizon. Dai et al. [25] use two groups of LSTM

networks for the TV’s trajectory prediction, one group for

modelling the TV and each of SVs individual trajectory and

the other for modelling the interaction between the TV and

each of the SVs. Xin et al. [21] exploit one LSTM to predict

the target lane of the TV and another LSTM to predict the

trajectory based on the TV’s states and the predicted target

lane. To predict multimodal trajectories, the authors in [24]

use six different decoder LSTMs which correlate with six

specific manoeuvres of highway driving. An encoder LSTM

is applied to the past trajectory of vehicles. The hidden state

of each decoder LSTM is initialized with the concatenation

of the last hidden state of the encoder LSTM and a one-hot

vector representing the manoeuvre specific to each decoder.

The decoder LSTMs predict the parameters of manoeuvre-

conditioned bivariate Gaussian distribution of future locations

of the TV. Another encoder LSTM is also used to predict

the probability of each of six manoeuvres. Multiple LSTMs

are structured in [32] as two main layers, named as instance

layer and category layer. The former learns the instance (i.e.

agents) movement and their interactions and the latter reason

about the similarities among the instances of same category.

This network is applied to a graph representation of input data

containing 4 dimensions for the instances, their interactions,

time, and high-level categorization of instances.

Although RNNs are one of the main neural networks

associated with data series analysis and prediction such as

trajectory prediction, they have deficiency in modelling spatial

relationship such as vehicles spatial interaction and image-

like data such as driving scene context. This explains why

sophisticated solutions using RNNs usually exploit additional

methods to compensate the weakness of single RNN.

2) Convolutional neural networks: Convolutional neural

networks (CNNs) include convolution layers, where a filter

with learnable weights is convolved over the input, pool-

ing layers, which reduce the spatial size of input by sub-

sampling, and fully-connected layers, which map their input to

desired output dimension. CNNs are commonly used to extract

features from image data. They have achieved successful

results in the computer vision domain [59], [60]. This success

motivates researchers in other domains to represent their data

as an image to be able to apply CNNs on them [61]. However,

recently one-dimensional CNNs are also widely used to extract

features from one-dimensional signals [62].

Lee et al. [34] use a six-layer CNN to predict the intention

of surrounding vehicles using a binary BEV representation.

MobileNetV2 [48], which is a memory-efficient CNN de-

signed for mobile applications, is used in [35], [36] to extract

relevant features from a relatively complex BEV representa-

tion. Hoermann et al. [41] use a convolution-deconvolution

architecture, which was previously introduced in [49] for

image segmentation task, to output the probability of occu-

pancy for future time steps in a BEV image. This model

first generates a feature vector using a convolutional network.

Then, a deconvolutional network is used to upscale this vector

to the output image. A more complex architecture is used

in [44], [43] to deal with the tasks of object detection and

behaviour prediction simultaneously. In [43], 3D convolution

is performed on the temporal dimension of 4D representation

of voxelized lidar data to capture temporal features, then

a series of 2D convolutions are applied to extract spatial

features. Finally, two branches of convolution layers are added

to predict the bounding boxes over the detected objects for

current and future frames and estimate the probability of being

a vehicle for the detected objects, respectively. In [44], two

backbone CNNs are used to separately process the BEV lidar

input data and the rasterized map. The extracted features are

concatenated and fed to three different networks to detect the

vehicles, estimate their intention, and predict their trajectories.

Convolutional neural network are valued in vehicle be-

haviour prediction for their capabilities in taking image-

like data, generating image-like output, and keeping spatial

relationship of the input data while processing it. These

capabilities enables modelling vehicles’ interaction and driving

scene context and producing occupancy map output. However,

2D CNNs lack a mechanism to model data series which

is required in vehicle behaviour prediction for modelling

temporal dependencies among vehicles’ states over time.
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3) Other Methods:

• Fully-connected Neural Networks: A simplistic approach

for vehicle behaviour modelling is to rely only on the current

state of the vehicles, which might be inevitable due to un-

availability of states history of vehicles or first-order Markov

assumption. In this case, the input data is not a sequence

and any feed-forward neural networks (e.g. fully-connected

neural network) can be used instead of RNNs. In [63], it

is shown that in some driving scenarios, feed-forward neural

networks can have competitive results with faster processing

time compared to recurrent neural networks. Hu et al. [26] use

a multi-layer fully connected network to predict the parameters

of a Gaussian Mixture Model (GMM). The GMM models the

multimodal distribution of arriving time and final location for

the TV.

• Combination of RNNs and CNNs: In existing works,

recurrent neural networks are used because of their temporal

feature extracting power, and convolutional neural networks

are used for their spatial feature extracting ability. This inspires

some researchers to use both in their models to process both

the temporal and spatial dimensions of the data. Nachiket et

al. [37] use one encoder-LSTM per vehicle to extract the

temporal dynamics of the vehicle. The internal states of these

LSTMs form a social tensor which is fed to a convolutional

neural network to learn the spatial interdependencies. Finally,

six decoder LSTMs are used to produce the manoeuvre-

conditioned distribution of the future trajectory of the TV.

In [42], a CNN is applied on simplified BEV images each

representing the environment around the TV at different time

frame. Then, the sequence of extracted features is fed to an

Encoder-Decoder LSTM to learn the temporal dynamics of

the input data. The decoder LSTM outputs are fed to a de-

convolutional neural network to produce output images which

represent how the environment around the TV will evolve in

the following time steps. In [39], an encoder-decoder GRU is

used to generate the distribution of trajectories, then multiple

samples of this distribution are fed to decoder GRU to refine

and rank them. The latter module also receives the contextual

features which are extracted by a CNN model applied on

the scene representation. Multi-Agent Tensor Fusion (MATF)

encoding and decoding is introduced in [38]. In the encoding

part, a social tensor, augmented with convolutional encoded

scene context channels, is fed to a U-net [64] like fully convo-

lutional network to fuse interaction among agents and between

agents and scene context while keeping spatial locality. Finally,

the fused vectors for each vehicle are extracted from the output

layer of the U-net like network and are added to the LSTM

encoded vectors of the vehicles dynamics and then are fed to

LSTM decoders to predict future trajectory per vehicle.

• Graph Neural Networks: The vehicles in a driving sce-

nario and their interaction can be considered as a graph in

which the nodes are the vehicles and the edges represent the

interaction among them. Using this representation, Graph Neu-

ral Networks (GNNs) [65], [66] can be used to predict TV’s

behaviour. Diehl et al. [31] compare the trajectory prediction

performance of two state-of-the-art graph neural networks,

namely, Graph Convolutional Network(GCN) [50] and Graph

Attention Network (GAT) [51]. They also propose some adap-

tations to improve the performance of these networks for the

vehicle behaviour prediction problem. Li et al. [29] propose

a graph-based interaction-aware trajectory prediction (GRIP)

model. They use a graph convolutional model, which consists

of several convolutional layers as well as graph operations, to

model the interaction among the vehicles. The output of the

graph convolutional model is fed to an LSTM encoder-decoder

to predict the trajectory for multiple TVs. One drawback of

current graph-based approach is that static scene context is

usually neglected in the modelling procedure.

Table III provides a summary of classification of existing

studies based on the prediction method.

IV. EVALUATION

In this section, first we present evaluation metrics that are

commonly used for vehicle behaviour prediction in existing

studies. Then, the performance of some of existing works is

discussed. Finally, we identify and discuss the main research

gaps and opportunities.

A. Evaluation Metrics

We discuss the evaluation metrics for intention prediction

models and trajectory prediction models separately, as the

former is a classification problem and the latter is a regression

problem and each problem has a separate set of metrics.

1) Intention Prediction Metrics:

• Accuracy: One of the most common classification met-

rics is accuracy which is defined as total number of correctly

classified data samples divided by total number of data sam-

ples. However, relying only on the accuracy can be misleading

for an imbalanced dataset. For example, the number of lane

changes in a highway driving dataset is usually much less

than lane keeping. Thus, an intention predictor that regardless

of input data always output lane keeping gains high accuracy

score. Therefore, other metrics like precision, recall, and F1

score are also used in existing studies [23], [44].

• Precision: For a given class, precision is defined as the

ratio of total number of data samples which are correctly

classified in that class to the total number of samples classified

as the given class. A low precision indicates a large number

of incorrectly classified data as the given class.

• Recall: For a given class, recall is defined as the ratio of

total number of data samples which are correctly classified in

that class to the total number of samples in the given class. A

low Recall indicates a large number of data in the given class

that are incorrectly classified in other classes.

• F1 Score: The F1 score (a.k.a. F-score or F-measure) is

a balance between precision and recall and is defined as:

F1 = 2 ·
precision · recall

precision+ recall
(3)

• Negative Log Likelihood (NLL): For each data sample in

a multi-class classification task, NLL is calculated as:

NLL = −

M
∑

c=1

yclog(ŷc) (4)
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TABLE IV
COMPARISON OF TRAJECTORY PREDICTION ERROR OF SOME OF THE EXISTING WORKS FOR DIFFERENT PREDICTION HORIZONS

Works
Classification RMSE

Input Representation Output Type Prediction Model 1 s 2 s 3 s 4 s 5 s

CV - - - 0.73 1.78 3.13 4.78 6.68

[28] Track history of the TV and SVs Unimodal Trajectory RNN (Single RNN) 0.72 2 3.76 5.97 9.01

[21] Track history of the TV Unimodal Trajectory RNN (Multiple RNNs) 0.49 1.41 2.6 4.06 5.79

MATF [38] Simplified Bird’s Eye View Unimodal Trajectory Combination of RNNs and CNNs 0.57 1.51 2.51 3.71 5.12

M-LSTM [24] Track history of the TV and SVs Multimodal Trajectory RNN (Multiple RNNs) 0.58 1.26 2.12 3.24 4.66

CS-LSTM [37] Simplified Bird’s Eye View Multimodal Trajectory Combination of RNNs and CNNs 0.61 1.27 2.09 3.1 4.37

ST-LSTM [25] Track history of the TV and SVs Unimodal Trajectory RNN (Multiple RNNs) 0.56 1.19 1.93 2.78 3.76

GRIP [29] Track history of the TV and SVs Unimodal Trajectory Graph Neural Networks 0.64 1.13 1.8 2.62 3.6

Where yc is a binary indicator of correctness of predicting

the data sample in class c, ŷc is the predicted probability of

the data sample belonging to class c, and M is the number

of classes. Although NLL values are not as interpretable as

previously discussed metrics, it can be used to compare the

uncertainty of different intention prediction models [27].

• Average Prediction Time: This metric is used in intention

prediction approaches [27], [26], such as lane change predic-

tion, where the approach is applied on a sliding window of

the input data series to predict the occurrence of a positive

class(e.g., lane change). The metric is obtained by taking

the average of the time of the first correct positive class

prediction for all samples, considering the time of lane change

occurrence as the origin. In [27], they considered the time

when a consistent correct lane change prediction starts to

increase robustness of the metric.

2) Trajectory Prediction Metrics: The following metrics

are the commonly used metrics in the literature. A detailed

discussion on other trajectory prediction metrics can be found

in [67].

• Final Displacement Error (FDE): This error measures

the distance between predicted final location ŷtfinal
and true

final location of the TV ytfinal
at the end of prediction horizon

tfinal , while it does not consider the prediction error occurred

in other time steps in the prediction horizon.

FDE = |ŷtfinal
− ytfinal

| (5)

• Mean Absolute Error (MAE) or Root Mean Squared

Error (RMSE): MAE measures the average magnitude of

prediction error et, while RMSE measures the square root of

the average of the squared prediction error:

MAE =
1

n

n
∑

t=1

|et| (6)

RMSE =

√

√

√

√

1

n

n
∑

t=1

e2t (7)

Where n is number of data samples and et can be defined

as the displacement error between the predicted trajectory

and the ground truth. MAE and RMSE are two of the most

common metrics for regression problems and act roughly

similar. However, RMSE is more sensitive to large errors due

to usage of squared error in its definition.

• Minimum of K Metric: In some of existing multimodal

trajectory prediction studies [4], [35], [39], [68], where K

trajectories are predicted for different modes, the metric (e.g.,

MSE, FDE) is calculated using one of the K trajectories that

minimize the metric (i.e., best predicted trajectory). The main

shortcoming of this evaluation method, also discussed in [68],

is that the quality of ignored K−1 trajectories is not examined.

Therefore, a model, reported to have high performance using

this metric, can have mostly poor predictions.

• Cross Entropy: For a modelled trajectory distribution q,

and ground truth data distribution p, the cross entropy can be

calculated as:

H(p, q) = E
x∼p

−log(q(x)) (8)

Cross entropy (a.k.a. Negative Log Likelihood) can be reported

as a metric in both intention prediction and trajectory predic-

tion; however, in multimodal trajectory prediction this metric

can be more important as both MAE and RMSE are biased

in favour of models that predict the average of modes [37]

which is not necessarily a good prediction, as discussed before.

Although cross entropy penalises a multimodal prediction

model for not covering all the modes of ground truth data

distribution, it will assign relatively low penalty for a model

that predict other modes in addition to ground truth modes.

Therefore, Rhinehart et al. [68] propose using a symmetrized

cross entropy metric which is defined as:

H(p, q) +H(q, p̄) = E
x∼p

−log(q(x)) + E
x∼q

−log(p̄(x)) (9)

where p̄ is an approximate to p, as it is not possible to evaluate

the ground truth data distribution p′s PDF.

• Computation Time: The trajectory prediction models

are usually more complex compared to intention prediction

models. Therefore, they can take more computation time which

might make them impractical for on-board implementation in

autonomous vehicles. Thus, it is crucial to report and compare

computation time in trajectory prediction models.
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B. Performance of Existing Methods

In this part we compare the performance of some of re-

viewed trajectory prediction methods. The selected studies for

comparison are the ones that used common publicly available

datasets and common metrics. These studies report RMSE

errors for prediction horizons of 1.0 to 5.0s on NGSIM I-80

and US-101 highway driving datasets [69]. Table IV provides

the reported error for each model which is obtained from the

original paper (except the RMSE calculation of [28] which

has been modified by [21] to match the position error in SI

units). Note that the RMSE error is reported for longitudinal

and lateral position separately in [21]; however, we calculated

the total RMSE error to be consistent with other studies.

Furthermore, in [25] the error is calculated for US-101 and

I-80 separately; while, we report the average of them. We

also report the prediction result of a constant velocity Kalman

Filter(CV) model as a simple baseline which is obtained

from [29].

To compare the performance of selected works, Table IV

states the category each work belongs to. According to the

table IV, most of deep learning-based methods surpass the

simple baseline constant velocity model (CV) with a high

margin. Among reviewed deep learning-based models, com-

plex models (e.g., Multiple RNNs or Combination of RNNs

and CNNs) achieve better performance compared to simple

models like single RNN. Nonetheless, increasing the complex-

ity of output, by predicting multimodal trajectory instead of

unimodal trajectory, does not always result in lower RMSE.

For example, the models named GRIP [29] and ST-LSTM [25]

achieve better performance compared to M-LSTM [24] and

CS-LSTM [37], while the former studies predict unimodal

trajectories and the latter ones predict multimodal trajectories.

This can be due to limited model capacity or limited data

used in training the discussed multimodal trajectory prediction

models.

C. Research Gaps and New Opportunities

We discuss some of the main research gaps in vehicle

behaviour prediction problem, which can be considered as

opportunities for future works:

1) Unlike object detection which has unified way of eval-

uation [46], there is no benchmark for evaluating existing

studies on vehicle behaviour prediction. This prevents a fair

comparison among different deep learning-based approaches

and between deep learning-based and other methods. For

example, among the reviewed deep learning-based papers,

there are only seven works that use unified evaluation method

(the works that we compare their performance in this paper).

In addition, only a few works report the computation time

of their algorithms, while this metric is highly important in

autonomous driving applications. As a future work, a bench-

mark can be defined and used in vehicle behaviour prediction

to be able to thoroughly compare the performance of different

studies.

2) Most of the existing works consider full observability

of the surrounding environment and vehicles’ states which

is not feasible in practice. Infrastructure sensors can provide

Fig. 4. An illustration of the vehicle behaviour prediction problem for con-
nected autonomous vehicles. The sensors implemented in other autonomous
vehicles and infrastructure can provide more information about the SVs and
reduce the object occlusion problem in ego vehicle.

non-occluded top-down view of the environment; however, it

is impractical to cover all road sections with such sensors.

Therefore, a realistic solution for behaviour prediction should

always consider sensor impairments (e.g. occlusion, noise)

which can limit the number of observable vehicles around

the TV and in turn may reduce the accuracy of behaviour

predictors in autonomous vehicles. One possible solution is

the utilization of connected autonomous vehicles. In this case,

the connected vehicle can exploit the information gained

by sensors implemented in other vehicles or infrastructure

through V2V and V2I communication (see Figure 4).

3) In recent studies, traffic rules are rarely considered as

an explicit input to the model; while, they can reshape the

behaviour of a vehicle in a driving scenario. Some of the

existing studies include road direction or traffic light as an

input to the prediction model [23], [30] which are only a small

part of traffic signs and rules.

4) In addition to the vehicle’s states and scene information

which both are usually considered in recent works, other visual

and auditory data of vehicles, like vehicle’s signalling lights

and vehicle horn can also be used to infer about its future

behaviour.

5) Most of the existing works are limited to a specific

driving scenario such as roundabout, intersection, and T-

junction. However, a vehicle behaviour prediction module

in fully autonomous vehicle should be able to predict the

behaviour in any driving scenario. Developing a model which

can be applied to a variety of driving environment can be a

direction for future research.

V. CONCLUSION

Although deep learning-based behaviour prediction solu-

tions have shown promising performance, especially in com-

plex driving scenarios, by utilizing sophisticated input repre-

sentation and output type, there are several open challenges

that need to be addressed to enable their adoption in au-

tonomous driving applications. Particularly, while most of

existing solutions considered the interaction among vehicles,

factors such as environment conditions and set of traffic

rules are not directly inputted to the prediction model. In

addition, practical limitations such as sensor impairments and

limited computational resources have not been fully taken into

account.
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[51] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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