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Abstract: The shiitake mushroom is the second-largest edible mushroom in the world, with a high
nutritional and medicinal value. The surface texture of shiitake mushrooms can be quite different due
to different growing environments, consequently leading to fluctuating market prices. To maximize
the economic profit of the mushroom industry, it is necessary to sort the harvested mushrooms
according to their qualities. This paper aimed to develop a deep-learning-based wireless visual sensor
system for shiitake mushroom sorting, in which the visual detection was realized by the collection of
images and cooperative transmission with the help of visual sensors and Wi-Fi modules, respectively.
The model training process was achieved using Vision Transformer, then three data-augmentation
methods, which were Random Erasing, RandAugment, and Label Smoothing, were applied under
the premise of a small sample dataset. The training result of the final model turned out nearly
perfect, with an accuracy rate reaching 99.2%. Meanwhile, the actual mushroom-sorting work using
the developed system obtained an accuracy of 98.53%, with an 8.7 ms processing time for every
single image. The results showed that the system could efficiently complete the sorting of shiitake
mushrooms with a stable and high accuracy. In addition, the system could be extended for other
sorting tasks based on visual features. It is also possible to combine binocular vision and multisensor
technology with the current system to deal with sorting work that requires a higher accuracy and
minor feature identification.

Keywords: mushroom sorting; deep learning; wireless sensor

1. Introduction

The shiitake mushroom is the second-largest edible mushroom in the world. It has a
fresh taste and tender texture, and is of high nutritional and medicinal value [1,2]. During
the growth of shiitake mushrooms, the relatively fast-growing fleshy cells can burst the
epidermal layers, causing the cap to crack, thus forming a brown and white pattern on the
top [3–5]. External environment factors also play an essential role in the surface texture
of the cap of the mushrooms, such as light, temperature, and pH value [6]. As shown in
Figure 1, according to the surface texture of the cap, shiitake mushrooms can be classified
as smooth mushrooms, which appear with no texture on the surface of the cap, as shown in
Figure 1A; camellia mushrooms, which appear with scattered cracks on the surface of the
cap, as shown in Figure 1B; and white mushrooms, which appear with exaggerated cracks
and a star-shaped black spot on the cap, as shown in Figure 1C. Mushrooms with different
textures have different market values [7]. Compared with common smooth mushrooms
(e.g., Figure 1A), the market price of white mushrooms (e.g., Figure 1C) can reach 5 to
8 times that of smooth mushrooms. Therefore, to maximize the profit of the mushroom
industry, it is necessary to sort the mushrooms in line with their cap textures.
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Figure 1. Sorting of shiitake mushrooms according to texture. 
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Figure 1. Sorting of shiitake mushrooms according to texture.

Contrary to the current trend in automated production, the sorting process of shiitake
mushrooms is still mainly carried out manually, leading to high work intensity and low
sorting efficiency. With the development of agricultural science and intelligent detection
technology, machine vision technology was introduced to identify and classify agricultural
products [8,9]. The identification efficiency could be effectively improved since related im-
ages could be collected through cameras, and image-processing algorithms were applied to
analyze the images. Additionally, machine vision avoided the subjective deviation caused
by the emotional influence of the human during detection. Machines surpass humans in
terms of workload, efficiency, and correctness. However, the image-processing algorithms
used in machine vision are confined to relatively simple features and specific targets, such
as the Canny algorithm for edge detection and Hough Transform for geometric figure de-
tection. The textures of mushrooms, considering their randomness and abstraction affected
by the natural environment, were still too difficult for the image-processing algorithm to
identify accurately.

Compared with traditional machine vision and image-processing algorithms, deep
learning technology has significant advantages over conventional machine vision and
image-processing algorithms in image identification, in which the subjects are more abstract
and complex, and features are difficult to extract directly [10]. To analyze a given target
with complex features, it only requires a training set consisting of a certain number of
pictures and their labels with appropriate parameters. The deep learning model can then
automatically extract features and carry out model training. As a result, the workload of
algorithm design is significantly reduced [11].

Vision Transformer (ViT) is a network model that introduces the self-attention mech-
anism into vision. After pretraining with a large amount of data and transferring the
pre-training model to small and medium datasets, ViT is more robust than convolutional
neural networks (CNNs). The required computing resources could be significantly reduced,
as well as the risk of overfitting in small and medium datasets [12,13]. Transformers are
gradually becoming a popular approach in computer vision fields such as image classifica-
tion, image segmentation, and object detection. In this paper, a set of shiitake mushroom
texture images were collected through a visual sensor for training the ViT model, and
finally obtained a ViT model suitable for shiitake mushroom texture sorting.

Subjected to the limited space in the real-world production environment, transmitting
the collected mushroom images wirelessly is more than necessary. Along with high trans-
mission efficiency, wide coverage, and low transmission power, Wi-Fi technology stands
out for its incredible speed and stability in terms of image transmission [14]. Using wireless
transmission technology to transmit the collected mushroom images ensures the flexibility
of other working machines in the production space and facilitates the supervision of the
entire mushroom sorting system.

As described in the above discussion, the main objective of this study was to design
a deep-learning-based wireless visual sensor system for shiitake mushroom sorting. The
visual detection was realized by using collecting images and cooperative transmission
with the aid of visual sensors and Wi-Fi modules, respectively. The training results of
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the ViT model and the shiitake mushroom sorting performance of the entire system were
comprehensively analyzed and discussed. This developed deep-learning-based wireless
visual sensor system could effectively detect the surface texture of mushrooms in real time
and transmit the image to the remote terminal. The sorting of different types of mushrooms
was finally completed after the image was judged by the trained model, improving the
economic benefits for the mushroom industry.

The rest of this paper is organized as follows. The deep-learning-based wireless visual
sensor system’s materials and methods are discussed in Section 2. The performance evalua-
tion results of the deep-learning-based wireless visual sensor system are demonstrated in
Section 3. Finally, the conclusions and future work are presented in Section 4.

2. Materials and Methods

The materials and methods involved in this paper, including the design of the wireless
visual sensor system, the training method of the deep learning model, and the experimental
scheme of the actual mushroom sorting, are presented with more detail in this section.

2.1. Wireless Visual Sensor System

The wireless visual sensor system consisted of a visual sensing module and a remote
terminal. The visual sensor module, as shown in Figures 2 and 3, included a visual sensor
(DCX-OV2640-V2, ALIENTEK, Guangzhou, China) and a microcontroller unit (ESP32-S,
ANXINKE, Shenzhen, China) with an integrated Wi-Fi module. The image resolution of
the visual sensor was 1024 × 768. The remote console consisted of a CPU (Intel Xeon Gold
6240 2.6 GHz), GPU (NVIDIA Tesla V100 32 GB),and internal memory.

Apart from adjusting the sampling interval of the vision sensor and coordinating and
transmitting images, the microcontroller unit could also perform simple image processing
on the collected mushroom texture images to achieve image denoising and optimize the
region of interest. The remote terminal processed the transmitted images through the deep
learning algorithm and then fed back the results to the microcontroller unit for subsequent
packaging of the mushrooms.

The microcontroller unit used in this paper was powered by a 5V DC power sup-
ply. The visual sensor was connected to the control module through the complementary
metal–oxide–semiconductor (CMOS) sensor interface (CSI,) while the Wi-Fi module was
integrated into the chip. Both were powered by the voltage regulator power supply circuit
in the microcontroller unit.

The workflow of the deep-learning-based wireless visual sensor system is shown in
Figure 4. The harvested shiitake mushrooms were arranged one by one on the conveyor
belt, which moved at a speed of 0.3 m/s at a distance of 0.3 m. The visual sensing module
equipped with a camera was fixed on the bracket of the conveyor belt and placed above the
mushroom to be detected. The distance between the camera and the sampling plane of the
mushroom was 0.3 m. Once the microcontroller unit received the signal from the remote
terminal, the camera began collecting mushroom images. The microcontroller unit would
then perform simple image-preprocessing schemes (denoising and cropping) and transmit
the processed image to the remote terminal via the Wi-Fi module. Afterward, the remote
terminal classified the collected texture images of the shiitake mushrooms based on the
deep learning model, and finally sent the sorting results back to the microcontroller unit
for subsequent packaging of the shiitake mushrooms. The process was conducted using
the following machinery on the assembly line.
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2.2. Obtaining Datasets and Preprocessing Images

To train the model, we manually selected 100 shiitake mushrooms from each of the
three types, resulting in a total of 301 samples. Each sample was defined and labeled by
three different expert farmers from an agricultural cooperative, and the results followed the
majority rule. Three images of each sample were taken in different illuminations and angles
to rule out irrelevant features that could result in discrimination. A total of 903 images of
mushrooms were obtained in the end for model training; 80% of these images were used as
training sets, while the other 20% were used as the validation set. The numbers of images
of the three mushroom types were the same in the training set.

After the images were obtained, several methods were used to preprocess them. A
Gaussian filter with a 3 × 3 kernel was firstly used for image denoising. Then, all the
images were cropped to the same size to set the region of interest. After that, they were
resized to 224 × 224 before being sent to the remote terminal for neural network training.

2.3. Augmentation and Regularization

Data augmentation is widely used in neural network training. A large amount of
sample data is often required to train a neural network. Still, due to instrumental limitations,
a dataset with fewer samples (3 classes, a total of 903 images) was used for training. In
addition, the small number of samples obtained by manual sorting was expected to allow
the machine to learn how to complete the subsequent large-scale sorting.

However, with inadequate training samples, a deep learning model will be more
likely to overfit, making it difficult to obtain meaningful training results. Moreover, the
weaker inductive bias of Vision Transformer often leads to increased reliance on data
augmentation or model regularization when trained on smaller training datasets com-
pared to convolutional neural networks [15]. Therefore, a transfer-learning strategy was
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adopted, and three methods of augmentation and regularization were applied to the dataset,
which were Random Erasing, RandAugment and Label Smoothing.

2.3.1. Random Erasing

Random Erasing is a data augmentation method used in visual machine learning.
Applying this method in data augmentation can effectively reduce the risk of overfitting
by a neural network model. As shown in Figure 5, during the training process, the input
samples had a certain probability of undergoing the following processing: a rectangular
area of any size was randomly selected in the picture, in which the pixels were covered
with random values or average values. After the process, a series of augmented images
could be obtained with various occlusion levels [16]. Using this data-augmentation method
could force the neural network model to learn a broader range of features in the sample and
enable the trained model to better cope with scenes in which part of the mushroom texture
was covered, thereby improving the generalization ability and robustness of the model.
At the same time, this method was also a supplement to the previous data-enhancement
methods (such as flipping, shearing, or translation, etc.).
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2.3.2. RandAugment

To further reduce the risk of overfitting and improve the training effect, we also
employ RandAugment in the training. RandAugment is an automatic data-augmentation
strategy. Compared with previous automatic data-augmentation methods, it introduces a
minimal search space with only two interpretable hyperparameters, effectively reducing
the training complexity and computational expense. The available data augmentation
methods included in RandAugment (K = 14) are:

• identity • autoContrast • equalize • rotate
• solarize • color • posterize • contrast
• brightness • sharpness • shear-x • shear-y
• translate-x • translate-y
According to the size of the model and dataset, RandAugment randomly selects

N types of data-augmentation methods from the above for model training, where each
method has an equal probability of being selected, meaning there are C(K, N) potential
augmentation strategies. At the same time, a hyperparameter M is introduced to control
the strength of image data distortion in each method [17]. Since there are only two hyper-
parameters, RandAugment uses a naïve grid search, which significantly reduces its search
space, and can obtain multiangle augmented samples with only a small computational cost.
RandAugment can instantly be used on different tasks and datasets with a high working
efficiency thanks to these properties.
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2.3.3. Label Smoothing

Label Smoothing is a regularization strategy that adds noise through soft one-hot to
reduce the weight of the actual sample label category when calculating the loss function [18],
as given in Equation (1):

yi =

{
1, i = target
0, i 6= target

⇒ ŷi =

{
1− α, i = target
α/K, i 6= target

(1)

where yi is the sample label before and after, α is the label smoothing factor, and K is the
number of categories.

Using Label Smoothing in training can effectively suppress the overfitting problem, en-
hance the model’s generalization ability, and improve the model’s predictive ability in prac-
tical application. In addition, biased manual sorting can sometimes lead to confusion. For
example, some samples own both features of type A and type B mushrooms; Label Smooth-
ing could easily overcome this dilemma and prevent poor generalization performance.

2.4. Vision Transformer (ViT)

ViT is an image-classification model based on a pure transformer structure that, along
with its variants, is gradually being applied in various fields. The core process of ViT
includes creating patches, patch embedding, positional encoding, transformer encoding,
and multilayer perceptron (MLP) classification [19], as shown in Figure 6.
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Figure 6. Structure of Vision Transformer.

The input of ViT is typically an RGB three-channel image. An image x ∈ RH×W×C

(H: height, W: width, C: channels) was firstly be divided into blocks, then reshaped into a
sequence of flattened 2D patches xp ∈ RN×(P2·C), where P× P× C is the size of each patch
and N = HW/P2 was the resulting number of patches. The patches were then flattened
and mapped into vectors of size D using a trainable linear projection as patch embeddings.

It was noteworthy that before these vectors were input into the transformer encoder,
a trainable (class) token was required for classification, and a position embedding was
needed to preserve the position information in the image. The obtained series of vectors
were then used as the input of the transformer encoder. The transformer encoder mainly
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included two parts: MSA (multihead self-attention) and MLP. The forward process can be
summarized as follows:

z0 =
[

xclass; x1
pE; x1

pE; · · · ; xN
p E
]
+ Epos E ∈ R(p2·C)×D, Epos ∈ R(N+1)×D (2)

z′l = MSA(LN(zl−1)) + zl−1 l = 1 · · · L (3)

zl = MLP
(

LN
(
z′l
))

+ z′l l = 1 · · · L (4)

y = LN
(

z0
L

)
(5)

As is shown in Equation (2), x1
p to xN

p stands for N flattened 2D patches, and E
represents the fully connected layer of linear projection, which is used to obtain patch
embeddings. xclass is the trainable (class) token additionally added to obtain the final
output of classification. z0 is finally obtained as the input of the transformer encoder
after adding position-embedding Epos to preserve position information in the image. The
following process contains totally L repeated operations of MSA and MLP. As were shown
in Equations (3) and (4), z′l and zl represent the result of MSA and MLP after one operation,
respectively, LN is the layer norm that all embedded patches had to go through before the
MSA and MLP operations. Ultimately, the state of xclass at the output of the transformer
encoder (z0

L) served as the image representation (y). The final classification result was
obtained by attaching the MLP head to the image representation.

The commonly used ViT models are of 5 different sizes, classified by the number of
embedding dimensions and the number of parameters. The processing speed and accuracy
will differ due to different sizes, so that they can be applied to different problems. Generally,
there are five different sizes of models available, which are Tiny, Small, Base, Large, and
Huge. Their parameter quantities are 6M, 22M, 86M, 307M, and 632M, respectively. In
addition, models of the same size also vary by the size of patches into which an input
image is divided; 8× 8, 14× 14, 16× 16, and 32× 32 are the typical sizes of patches. This
article used the model size and patch size to describe a specific ViT model. For example,
ViT-Base/16 is a ViT model with a size of Base and a patch size of 16× 16. Only Tiny-,
Small-, and Base-sized models were used in the experiments, as the computational cost of
larger models would become unbearable.

2.5. Model Training Methods

All the experiments in this study were carried out on a computer equipped with an
Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz, an NVIDIA Tesla V100 32 GB GPU, and 32 GB
of RAM. The software environments in this study were Python 3.9, Torch 1.11.0, and CUDA
11.0. The operating system was Linux.

Considering the actual production and application situation, we adopted the transfer-
learning method to reduce the time cost of training. The models in this paper were
pretrained on the public dataset ImageNet-21k (14 million images; 21,843 classes).

During the experiment, 40 epochs were set for the finetuning of the model with a
batch size of 64. Adam was used as the optimizer for the gradient descent calculation,
and the learning rate was set to 1× 10−3, with 10 epochs set to the warmup learning rate.
After training for 30 epochs, we decayed the learning rate to 0.1 of its original one. The
probability taken by Random Erasing during the training process was 0.5, which meant
50% of the input images went through Random Erasing. The label-smoothing factor α was
set to 0.1.

To evaluate the progress of our model training, we applied the cross-entropy loss
function, which was the measurement of the difference between two probability distribu-
tions. It has been widely used in the field of machine learning and deep learning [20]. In
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model training, the cross-entropy loss function was used to represent the closeness of the
predicted data distribution to the actual data distribution, as defined below in Equation (6):

Loss =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic) (6)

where M represents the number of categories, and yic is the sample’s label. If the true
category of sample i is equal to c before using label smoothing, yic equals 1; otherwise, it
equals 0. pic represents the predicted probability that the observed sample i belongs to
category c.

2.6. Experimental Scheme

The experiment materials, shiitake mushrooms with no mechanical damage, were
harvested at an agricultural cooperative in Xixia, Henan, central-eastern China. All three
types of shiitake mushrooms, including smooth mushrooms, white mushrooms, and
camellia mushrooms, were manually sorted and packaged by the local farmers.

In the experiment, the camera was set to collect mushroom images at a 1 s interval. We
applied ViT-Base/16 as our final model to sort the mushrooms. A total of 204 mushrooms
were used to test the system’s performance in the experiment, and the sorting results were
ultimately compared to those sorted manually to evaluate the result of the experiment.
Moreover, the experiment was conducted multiple times. Before each experiment was
repeated, the samples were disrupted and distributed randomly to each dataset so that we
could determine whether the small number of samples would affect the reliability of our
experiment results.

During this experiment, the training results of deep learning models, the accuracy of
mushroom sorting, and the possibility of extended usage were analyzed to show the edge
of our model. The performance in shiitake mushroom sorting was evaluated to ensure the
efficiency of the entire sensor system. Finally, we engaged in further discussions to ensure
the reliability of our experiment results.

2.7. Data Analysis

In terms of evaluating the effect of the model after training, the parameters of accuracy,
positive predictive value, true positive rate, F1-score, and processing speed were introduced.

Acc (Accuracy) represented the proportion of correctly predicted samples in the test
sample, as shown in Equation (7):

Acc =
nc

nt
× 100% (7)

where nt is the total number of samples tested, and nc is the number of correctly predicted samples.
The positive predictive value (PPV) represented the proportion of the samples pre-

dicted to be positive and was actually a positive sample, as shown in Equation (8):

PPV =
TP

TP + FP
(8)

where TP is the positive samples that were correctly predicted, and FP is the negative
samples that were incorrectly predicted as positive samples.

The true positive rate (TPR) represented the proportion of correctly predicted positive
samples, as shown in Equation (9):

TPR =
TP

TP + FN
(9)

where FN is the negative samples that were incorrectly predicted as positive samples.
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Since PPV and TPR seldom achieve good results simultaneously, the F1-score was
introduced to comprehensively measure the effects of PPV and TPR output, as shown in
Equation (10):

F1 = 2
PPV·TPR

PPV + TPR
(10)

Python 3.9 and Microsoft Office Excel 2021 were used for the calculation and statistics
of the training result data.

3. Results and Discussions

According to the experimental scenario, the network training results, the performance
in the shiitake mushroom sorting, and the experiment results’ reliability are analyzed and
discussed in this section in more detail.

3.1. Network Training Results

During the model training process, the curves of the Loss value and Acc value of
the validation set were obtained as two functions of epochs. Both curves went flat within
10 epochs, which explained the presentation of the Loss and Acc curves of 10 epochs in
Figure 7. The best results obtained during training and the time spent in training are
dis-played in Table 1.

Table 1. Performance in ViT training.

Method ViT-Tiny/16 ViT-Small/16 ViT-Small/32 ViT-Base/16 ViT-Base/32

Acc (%) 98.3 98.9 97.2 99.2 96.2
Train loss 0.401 0.361 0.391 0.317 0.383

Validation loss 0.127 0.118 0.128 0.057 0.137
Training time 115 s 177 s 139 s 472 s 271 s

As shown in Table 1 and Figure 7, when all models were under the same training
conditions, ViT-Base/16 had the lowest Loss, reaching 0.057, and achieved the best Acc of
0.992, while relatively small models such as ViT-Small/16 took only 177 s to complete an
Acc of 0.989.

The results showed that the ViT model had a stable and high accuracy in the texture
identification of shiitake mushrooms. In addition, the Loss curve decreased rapidly during
training and the training time was short, which could well meet the actual sorting needs.
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3.2. Performance in Shiitake Mushroom Sorting

According to the experimental plan, the deep-learning-based wireless visual sensor
system was used for shiitake mushroom sorting to sort the actually harvested mush-rooms.
Here, we applied ViT-Base/16, and the results are shown in Figure 8 and Table 2. The
same dataset and training strategy were also used to simultaneously test some common
image-classification networks to obtain the results in shown Table 3.

As shown in Figure 8 and Table 2, the overall accuracy rate of the shiitake mushroom
sorting was 98.53%. The resulting model did not mistakenly include other species in Type
A. At the same time, all the given Type B samples were successfully detected correctly.
The F1-scores of the three types were similarly high, which indicated that the model had a
better judgment ability for each type.

As shown in Table 3, compared with the previous CNN model using the same trans-
fer-learning strategy, the ViT model had an Acc of 99.2%, which was higher than that of the
general CNN network. At the same time, its inference speed reached 6.8 ms/image, which
was only half of the time when using a traditional CNN network. With high accuracy and
efficiency, the training time of the ViT model did not become longer, which undoubtedly
highlighted the advantages of the ViT model in the sorting tasks.

The results above showed that this deep-learning-based wireless visual sensor system
could efficiently and accurately complete the work of shiitake mushroom sorting. It
can undoubtedly ensure the production efficiency and economic benefits of the shiitake
mushroom industry. When dealing with classification tasks with very few training samples,
the ViT model performed better, with a faster inference speed and a higher accuracy.
Therefore, the ViT network has good application prospects and value in similar production
tasks of quality sorting.
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Table 2. Sorting results of ViT.

Type Acc (%) PPV TPR F1-Score

Type A
98.53

1 0.9706 0.9851
Type B 0.9714 1 0.9855
Type C 0.9853 0.9853 0.9853

Table 3. Performance of ViT compared to CNN networks.

Methods Params Inference Time/Image Train Time/Epoch Acc (%) Validation Loss

Resnet 50 24 M 13.2 ms 4.3 s 87.0 0.924
Inception v3 22 M 12.8 ms 3.6 s 96.4 0.166
Densenet 121 7 M 18.2 ms 3.6 s 93.8 0.225

SE-ResNeXt 50 26 M 12.5 ms 5.3 s 96.7 0.181
ViT-Tiny/16 6 M 6.8 ms 2.8 s 98.3 0.127
ViT-Base/16 86 M 8.7 ms 11.5 s 99.2 0.057

3.3. Further Discussions of the Reliability of the Results

In the model training, a preselection of the mushrooms was achieved manually by the
farmers. The preselection aimed to ensure that each sample in the dataset could represent a
clear example of its type, so that our model would output results close to manual sorting.
However, manual sorting is often subjective, and the training samples were likely to be
biased. In that case, our system would provide convenience for the sorting work as long as
our model output was consistent with manual sorting.

In addition, multiple experiments with the models showed that for all the ViT models,
the Acc (%) floated within at most 1%, revealing convincing results despite the small scale
of our test set.
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4. Conclusions

This paper developed a deep-learning-based wireless visual sensor system for shiitake
mushroom sorting. The visual detection was realized via the collection of images and coop-
erative transmission with the aid of visual sensors and Wi-Fi modules, respectively. So far,
few relevant studies in this field have combined deep learning models with wireless visual
sensors to solve mushroom-sorting issues. The model training results, the performance in
the shiitake mushroom sorting, and the experiment results’ reliability were analyzed and
discussed in detail and comprehensively.

The training results of the ViT model showed the efficiency of the model training.
The performance in the shiitake mushroom sorting reflected the ViT model’s superiority
compared to CNN. The developed system could classify shiitake mushrooms in real time
with a stable accuracy rate, which ultimately will improve the economic benefits to the
shiitake mushroom industry.

The deep-learning-based wireless sensor system for shiitake mushroom sorting can
also be used to classify more crops with apparent visual features to reduce labor costs
in the industry and improve production efficiency. In addition, it is also possible to
combine binocular vision and multisensor technology with the current system to deal with
classification work that requires a higher accuracy and minor feature identification.
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