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Abstract

Gene expression data holds the potential to offer deep, physiological insights about
the dynamic state of a cell beyond the static coding of the genome alone. I believe that
realizing this potential requires specialized machine learning methods capable of using
underlying biological structure, but the development of such models is hampered by

the lack of an empirical methodological foundation, including published benchmarks
and well characterized baselines.

In this work, we lay that foundation by profiling a battery of classifiers against
newly defined biologically motivated classification tasks on multiple L1000 gene ex-
pression datasets. In addition, on our smallest dataset, a privately produced L1000
corpus, we profile per-subject generalizability to provide a novel assessment of per-
formance that is lost in many typical analyses.

We compare traditional classifiers, including feed-forward artificial neural net-
works (FF-ANNs), linear methods, random forests, decision trees, and K nearest
neighbor classifiers, as well as graph convolutional neural networks (GCNNs), which
augment learning via prior biological domain knowledge. We find GCNNs offer per-
formance improvements given sufficient data, excelling at all tasks on our largest
dataset. On smaller datasets, FF-ANNs offer greatest performance. Linear mod-
els significantly underperform on all dataset scales, but offer the best per-subject
generalizability.

Ultimately, these results suggest that structured models such as GCNNs can rep-
resent a new direction of focus for the field as our scale of data continues to increase.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Introduction

Gene expression data offers a view beyond the static genome into the dynamic work-

ings of the cell. The potential utility of this data modality is staggering, and biologists

have accrued a mass of domain knowledge regarding how gene expression is regulated,

providing extensive, if complicated and uncertain, structure around these data. Fur-

ther, the availability of large-scale, heterogeneous gene expression datasets is rapidly

on the rise, fueled both by falling costs and development of new gene expression

profiling technologies [401.

Simultaneous with the increasing availability of gene expression data, deep learn-

ing techniques have grown vastly more powerful and popular-showing advances in

image processing [19, 13, 24], natural language processing [27, 16, 39], and speech

recognition/generation [34, 28], among other fields. In some limited areas, these ad-

vances have also translated into the biomedical domain-for example, in analyzing

mass spectrometry spectra 1421, DNA sequences [45], amino acid sequences [30, 43, 51,

or biomedical images [13, 191.

However, among non-sequential, non-imaging modalities, such as gene expression

data, "deep" learning methods generally remain limited to simple, unstructured, shal-

low modeling techniques. In particular, while large-scale benchmarks such as the

13



ImageNet challengel and the existence of an underlying mathematical structure have

fueled the development of convolutional neural networks (CNNs) for image process-

ing or recurrent neural network (RNNs) for sequential analysis, bioinformaticians are

limited to unstructured feed-forward artificial neural networks (FF-ANNs), which are

known to be relatively inefficient learners [26].

In this work, we aim to lay a foundation that will help deep learning succeed for

gene expression data as it has in these other domains by providing a fixed definition

of success via benchmarks and offering a potential avenue for using structure to cre-

ate more intelligent modeling approaches. In particular, we define three biologically

motivated benchmarking tasks over two curated views 2 of the public L1000 LINCS

dataset and one privately produced gene expression dataset. On each task, we profile

K nearest neighbor (KNN) classifiers, decision trees, random forests (RFs), linear clas-

sifiers, and two neural classifiers: feed-forward artificial neural networks (FF-ANNs)

and graph convolutional neural networks (GCNNs). GCNNs generalize the notion of

convolutional neural networks (CNNs) onto data structured over arbitrary graphs and

allow us to use prior biological knowledge, namely regulatory relationships between

pairs of genes, to more intelligently model these data. To the best of our knowledge,

this is the first work that uses these techniques to classify gene expression profiles.

We find that GCNNs can perform very well, but require large amounts of data,

excelling at all tasks on our largest dataset, but under-performing FF-ANNs on our

smaller datasets. Of other methods, FF-ANNs perform best, followed consistently by

linear classifiers, then random forests, then decision trees. KNN classifiers perform

very well on our larger datasets, nearly matching FF-ANNs, but they underwhelm

on our smaller datasets.

Gene expression datasets often contain many samples spanning a very small set of

subjects, as a single subject's gene expression profile may be taken many times under

varying conditions (e.g., drugs, etc.). As such, a pronounced risk when modelling gene

1 ImageNet is a dataset containing millions of labeled images; its associated challenge tasks

computer vision researchers to design algorithms to identify the objects in these images among a
fixed set of categories. Many see ImageNet as a critical seed to the current deep learning boom

[17, 37]
2 See https: //github . com/mmcdermott/LINCSDeepLearningBenchmarks
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expression data is that you will learn a model specific to the very limited population

expressed in your data. With datasets such as the LINCS data, which often only

have the equivalent of one or two subjects (i.e., cell lines) per tissue type, assessing

the extent of this overfitting can be difficult, and many works merely report per-

sample performance metrics (allowing the model to train and test on the same set

of subjects). In this work, we use our private, smaller corpus to assess per-subject

generalizability by training on a restricted set of subjects and testing on a held-out

subject. We find that all methods struggle to generalize to unseen subjects, showing

performance drops ranging from 10 to 18 percent of their per-sample accuracies.

In sum, in this work we make the following contributions:

1. We establish biologically meaningful classification benchmarks at deep learning

scale on the largest publicly available gene expression dataset. This is important

because absent a shared, consistent view of the data and definition of success,

deep learning method development is severely hampered.

2. We profile a number of classifiers on these tasks, including non-neural methods

and two variants of neural networks, one of which incorporates prior biological

knowledge and, to the best of our knowledge, has never been profiled on this

data modality.

3. We profile these same classifiers on a similar task on a smaller, privately pro-

duced gene expression corpus to assess which techniques work well in data-

starved environments.

4. We assess how well these techniques transfer to unseen subjects to assess population-

level generalizability.

15



1.2 Gene Expression Data

1.2.1 The Biology

The cellular system is governed at the root by the genome: the sequence of DNA

base pairs that encode all information necessary for the cell's development and day

to day functioning. In order to transmute DNA into useful cellular work, the cell

first transcribes genes into messenger RNA (mRNA), which is then shuttled towards

cellular organelles that translate mRNA sequences into proteins: amino-acid built

macromolecules that carry out all of the necessary functions of the cell. In this way,

we can think of the genome as providing a function library for the cell system, and the

proteins present (i.e., the expressed genes) as the actual mechanisms behind cellular

functioning. A cell's gene expression profile thus captures a view into the dynamic

state of the cell and offers insight far beyond the fixed picture of the DNA alone.

A single cell's gene expression patterns will vary over time and in response to

environmental conditions, such as exposure to drugs. The expression of proteins

coded by DNA is mediated by a host of factors, including other proteins in the cellular

environment and external factors, and is critical to cell function. Understanding the

genetic regulatory network (i.e., which factors govern what transcription and how) is

a topic of intense study.

1.2.2 Measuring Gene Expression/rlanscriptomics

Gene expression can be quantified in many ways. Two broad categories of gene ex-

pression data are proteomics, which directly measures the quantities of produced pro-

teins within the cell, and transcriptomics, which measures the quantities of produced

mRNA transcripts within the cell (Figure 1-1). Transcriptomic gene expression is

far more easily measured and we will focus on this modality in this work.

Note that there is not a direct correspondence between these two measurement

techniques. Protein production is heavily regulated post-transcription, and in using

transcriptomic data, we ignore these additional layers of biological processing in favor

16
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Figure 1-1: Transcriptomics data is measured by quantifying the mRNA produced
during transcription. The output of this process is a vector with each dimension
quantifying the expression of a particular gene. Both technical (e.g., misplaced reads)
and biological (e.g., tissue type) factors add variance to these data. Images: [11, 38].

of the increased availability of data.

1.2.3 Measurement Techniques

Transcriptomics data itself can be measured by many techniques, including RNA-

Seq, single-cell RNA-Seq (sc RNA-Seq), and the L1000 platform, which we focus on

here. The L1000 platform [40] is notably cheaper per-sample than other transcrip-

tomics techniques, which has enabled the creation of large scale public datasets, such

as the LINCS dataset, which was produced with the L1000 platform and contains

approximately 1.3M samples, available on GEO at accession number GSE92742. 3

However, this low price point sacrifices some data quality and coverage. Rather

than quantifying the full transcriptome, the L1000 platform only directly measures

the expression levels of 978 "landmark genes" and requires several additional layers of

processing which add their own sources of technical variability . From this directly

measured subset, the L1000 technique also uses a linear model to impute the remain-

ing genes' expression levels, but we ignore those inferred genes in our analyses and

use only the landmark genes.

L1000 data is often used at one of two levels of pre-processing:

3 https://www.ncbi.nlm.nih.gov/geo/query/acc . cgi?acc=GSE92742
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Figure 1-2: The L1000 technique is cheaper, but requires novel additional technical
pre-processing compared to other measurement technologies. Each step in this flow
induces more technical variability. In this work, the normalized, pre-aggregation data
is referred to as "Level 4" data, whereas the post-aggregation data is referred to as
"Level 5" data. This figure omits imputation of the full transcriptome as we never
use imputed genes in this work. See [401 for full details.

Level 4 (a.k.a. Roast) Level 4 data is fully normalized and z-scored, and pre-

sented at the level of one profile per sample. From a machine learning perspective,

this is what you would expect to work with when thinking of "raw L1000 output."

Level 5 (a.k.a. Brew) Level 5 data takes the Level 4 data and aggregates samples

under identical technical conditions into a single averaged view of that profile (see

[40] for full details). This process reduces variance, but also dataset size. Typically

datasets are reduced to roughly 1 of their original size (L1000 experiments are often

performed "in triplicate," with three identical experimental plates being prepared

so that all samples are run under identical conditions at least three times). This

variance reduction is useful for traditional bioinformatics, but it is not clear how

helpful it should be for machine learning. We would like our classifiers to be able to

fully account for the technical variability inherent between repeated measurements,

but using Level 5 data would deprive us of that opportunity while costing a significant

number of input samples. On the other hand, Level 5 data may be of higher quality.

See Figure 1-2 for a graphical representation of a subset of the L1000 technical

pre-processing pipeline.
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Source Cloned Cells Perturbagen 384 well plates (in triplicate)
Librawy profiled with LIOOO

Figure 1-3: Gene expression corpora axe often produced by cloning a small number of

pluripotent cellular sources, then perturbing and profiling those clones. Image: [111.

1.2.4 Experimental Pipelines

In general, experimental pipelines producing large corpora of gene expression data

work by acquiring some base cellular sample in pluripotent form, either patient derived

or via a stock cell line, cloning that cell line extensively, then perturbing a number of

samples and profiling them (Figure 1-3). In this way, these datasets often have many

more samples than cellular sources. This can lead to population-specific over-fitting,

where a model specializes only to the population within the corpus and, despite

generalizing to unseen samples within the corpus, the model will fail to generalize to

unseen cellular sources.

1.3 Machine Learning on Gene Expression Data

1.3.1 Traditional Analyses

Traditional analyses on these data focus on statistical or geometric tests for differential

gene expression [81, gene set enrichment analyses (GSEA) [411, and (for the L1000

platform specifically) signature based analyses [2, 40]. Some have also used tensor

decomposition/completion to disentangle cell-type from perturbagen effects [22, 231,

and explored traditional classifiers for adverse drug event prediction [441.

19



1.3.2 Neural Representation Learning

Other authors have used neural network models to build embeddings of gene expres-

sion data. In [14], the authors use a twin network architecture to represent gene

expression profiles as 100 dimensional bar-codes. Comparing their representations to

the standard representation (raw z-scores) and a representation based on gene set

enrichment analysis (GSEA) they find that their perturbation barcodes consistently

identify replicates, samples generated from perturbagens with shared targets, and

show better clustering overlap with structural properties. Their architecture is a two

layer deep feed-forward neural network, and notably uses inter-replicate variability (a

sign of the noise within the technique) as a mechanism to help train their network to

learn embeddings that natively differentiate between meaningful biological variation

and confounding noise. However, their approach is aimed towards unsupervised repre-

sentation learning, and thus only can provide soft benchmarking utility, as compared

to a supervised task (though this may be more useful in some practical settings).

In [61, the authors use a 4 layer deep sparse autoencoder to analyze binarized

yeast differential gene expression microarray data (e.g. their model took as input one

feature per gene, with value 1 if that gene was differentially expressed in that sample,

and value 0 if not). Their 4 layer architecture is designed to map to known biolog-

ical levels of processing, and post-training analyses suggested good overlap between

transcription-factor mediated regulatory relationships and the connections trained by

their network between the first input layer and the first hidden layer.

In [31], the authors explore neural network mediated dimensionality reduction for

single cell RNA-Seq data, augmenting traditional networks by adding nodes to the

first hidden layer according to known transcription factor or protein-protein interac-

tions, and only connecting input gene nodes to those regulatory or interaction nodes

as dictated by prior biological knowledge. These augmentations allowed them to sig-

nificantly reduce the parameter space relative to a fully connected, dense network of

equal width.

20



1.3.3 Neural Classification & Regression

In [1], authors use a FF-ANN to classify profiles into categories based on the ther-

apeutic effect of the generating perturbagen. Researchers have also explored neural

techniques for extrapolating the L1000 set of landmark genes to the full transcrip-

tome. In [7] and [33], the authors explore gene expression extrapolation, albeit in

the latter work as a test case for a semi-supervised model architecture rather than

a goal in itself. In both cases, FF-ANN models are able to realize significant per-

formance gains over linear models, again demonstrating that nonlinear relationships

play a significant role on this modality.

1.4 Structured Models via Graph Convolutional Net-

works

1.4.1 Regulatory Graphs

As stated in Section 1.2.1, gene expression is regulated by complex processes and

is a topic of intense study. What we do know of gene expression regulation is of-

ten envisioned as a graph, with genes forming the vertices of this graph and edges

between genes representing regulatory relationships between those two genes. Reg-

ulatory graphs are often represented as directed graphs, with direction representing

the direction of the regulatory interaction, but in this work we will simplify them to

undirected graphs, having them instead simply flag a regulatory relationship in either

direction between two genes. We visualize one such regulatory graph in Figure 1-4.

Many of these relationships are only suspected, and as biologists have yet to

study all possible interactions between sets of genes, these graphs are biased towards

representing commonly studied proteins. Additionally, regulatory relationships them-

selves depend on cell type and, even within a single cell, they are dynamic, chang-

ing in response to perturbations and environmental conditions, among other factors.

Nonetheless, these "regulatory graphs" present at least a partial encoding of the bio-

logical understanding of relationships between different genes, and we use them here

21



to augment neural classifiers with domain knowledge via GCNNs.

1.4.2 Graph Convolutional Networks in Theory

GCNNs are extensions of CNNs onto data defined over arbitrary graphs. Qualita-

tively, we can think of these networks as attempting to analyze data defined over a

graph by repeatedly featurizing the data over local neighborhoods within the graph,

before aggregating those features into higher level signals spanning larger regions of

the graph. This is directly analogous to how convolutional neural networks for image

processing learn featurizations of local patches of the image, then pool those signals

over larger windows.

There are two main strategies to generalize a CNN to other domains: the spectral

approach, which generalizes the notion of a Fourier transform onto a graph via the

graph Laplacian, and the locality approach, which uses the idea of processing data

defined in local patches via neighborhoods in the graph. GCNNs must also generalize

the notion of "pooling" onto graphs, which they generally do via graph clustering

algorithms, using the resulting node clusters to determine pooling neighborhoods.

GCNNs promise to bring the normalization obtained via weight sharing over con-

secutive convolution and pooling operations to features defined over any arbitrary

graph, but they present their own challenges. Both local and spectral methods present

computational challenges, and efficient graph pooling algorithms run afoul of NP-hard

graph clustering algorithms. In practice, many operations are approximated, which

affects the power of these models.

1.4.3 Graph Convolutional Networks in Practice

Graph convolutional networks are often used in forming predictions at the node level,

or in classifying whole graphs. For example, [251 explored node classification on

knowledge and citation graphs. In this vein, GCNNs have also been used in several

biological tasks. For example, [201 classifies proteins viewed as nodes in varying tissue-

specific protein protein interaction graphs, [121 learns representations of molecular
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Figure 1-4: The regulatory relationships between L1000 landmark genes, as deter-

mined according to [32]. Nodes (red dots) are genes and edges between them repre-

sent known or suspected regulatory interactions. Note that many genes only have one

known edge connecting them to much denser clusters within the center of the graph.

This may reflect biological processes, or that some proteins are studied much more

than others.
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compounds interpreted as unique graphs with vertices determined by atoms and edges

by bonds, and [15] learns representations of graphs defined by protein amino acid

sequences for protein interface prediction.

Note that in these node classification tasks the authors are making predictions

about nodes in a graph, rather than making predictions about a graph (such as a

gene expression profile realized as a graph via a regulatory network, e.g. Figure 1-

4). In the latter context, spectral methods are enticing; in fact, this picture is so

appealing that many papers describing novel GCNN algorithms use this example to

frame the impact of their ideas [9, 29, 4, 21J. However, to the best of our knowledge,

no work yet has profiled how these ideas actually serve on gene expression data in

practice. We fill that lack here.
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Chapter 2

Methodology

Our principal goal here is to establish biologically meaningful benchmarking tasks for

gene expression data, and to demonstrate the potential utility of structured methods

that incorporate prior knowledge, across a variety of dataset sizes and levels of hetero-

geneity. To that end, in this section we will first profile the two datasets we will use

and detail the benchmarking tasks we defined on each. Next, we will walk through

the methods we test, paying close attention to the structured method we profile here,

and finally we will detail our technical setup and experimental parameters.

2.1 Datasets

We will now detail the creation of both our views of the public LINCS corpus and

the private MGH NeuroBank corpus. Full details and summary statistics for both

corpora can also be found in Table 2.1.

2.1.1 Curated Views of the Public LINCS Corpus

The full Level 4 LINCS dataset contains approximately 1.3 M gene expression profiles

over 76 cell lines, ranging in frequency from VCAP, profiled over 200,000 times to

NCIH716 with only 43 samples. Each cell line is profiled in diverse conditions-for

example, within prostate tissue (the most frequently sampled tissue type) over 40,000
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unique perturbagens were tested (including both drugs and genetic knockout or over-

expression perturbagens), many sampled only a single time. To be clear, each sample

in this dataset is a complete gene expression profile over the landmark genes-i.e.,

it is a 978 dimensional vector where each number quantifies the expression level of a

particular gene in the genome.

On this dataset, we formed three supervised learning tasks:

Primary Site Predicting primary site (e.g., "breast tissue" or "large-intestine")

forces the classifier to examine deviations within a gene expression profile indica-

tive of the tissue type, and would have applications to quality control within cell

differentiation pipelines. Primary site is cell-line specific.

Subtype Subtype (e.g. "malignant melanoma" or "myoblast") is also cell-line spe-

cific and speaks to disease state and provides another way of aggregating the many

disparate cell lines within LINCS into useful predictive categories.

MOA Predicting drug mechanism of action (MOA, e.g. "ATPase inhibitor" or

"Sodium channel blocker") speaks to drug re-purposing and discovery applications

and aggregates many disparate perturbagens into meaningful predictive categories.

However, note that though we treat this as a standard multi-class classification prob-

lem, in reality many drugs have multiple known MOAs, a distinction we ignore here

for simplicity. To ensure this simplifying assumption adds minimal noise to our clas-

sification task, we only include compounds with only a single known MOA.

Dataset Curation Procedure

We chose to reduce the LINCS dataset to a single curated view simultaneously suitable

for all three of these tasks rather than forming a separate view per task. This causes us

to lose some samples which only meet inclusion criteria for a subset of our tasks, but

it is much more convenient to work with and disseminate. In that pursuit, we reduced

the dataset to only those samples perturbed by compounds (not genetic knock-out
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or over-expression perturbations), and further only those samples perturbed by com-

pounds with a single known MOA. We further restricted the dataset to only those

samples corresponding to MOAs, primary sites, and subtypes that occurred more than

1000 times within the overall dataset, to ensure sufficient training examples for all

classes for our classifiers. We performed these filtering steps independently-i.e., we

removed all gene expression profiles belonging to a class in any of our three tasks that

lacked 1000 full examples at the start. This resulted in some few classes in some of

our tasks having fewer than 1000 examples (because, at the beginning of the process,

they had over 1000 measurements, but after removing some samples due to their class

membership for another task, the class then had fewer than 1000 measurements).

This formed one curated view of our data, and three classification tasks. One

qualm some might have with this dataset is that it is very heterogeneous in terms of

cell type-perhaps it is better to classify samples only derived from a single tissue

type. To that end, we also formed a dataset containing only samples from prostate

tissue (chosen as it was the most frequently sampled tissue type). As in our full

dataset, here we restrict the samples to only those perturbed by compounds with

a single known MOA that occurred at least 1000 times. This formed our "Prostate

Only" dataset, on which we predict MOA only.

Full final dataset sizes, heterogeneity (among cell type) statistics, task statistics

(e.g., class imbalance, number of classes) are shown in Table 2.1. Note that there is

significant class imbalance in this dataset-an unavoidable reflection of the corpus's

original makeup-but by filtering to a baseline number of examples per class we assert

that there are at least a significant number of samples for every label, ensuring learning

power. We have made both of these datasets (though derived from fully public data),

along with the cross-validation folds used in all of our experiments, publicly available,1

so that others can most easily compare novel methodologies against our benchmarks.

We do not claim that these benchmark tasks or views of the data are the best

benchmarks available. But these are biologically meaningful benchmarks on an im-

portant data modality that currently has none. We hope that as future methods

'See https: //github. com/mmcdermott/LINCSDeepLearningBenchmarks

27



evolve to better suit this methodology, we can also derive better benchmark tasks.

Note here that we do not mean to claim that no machine learning tasks have been

used on this modality previously, but rather that no set of systematized, very large

sample size tasks for methodology development currently exist.

Given the very large ratio of samples to cellular sources (e.g. 156k to 36) and the

very large skew in perturbagen frequency (e.g. DMSO accounting for approximately

1/6th of all data), as well as the lack of independence between perturbagen and

cell type, we measure all accuracies on these datasets as per-sample accuracy, not

per-subject, per-drug, or even per-experimental condition (as different experimental

conditions are repeated to varying degrees). This means that our results on these

data should not be interpreted to speak to true generalization outside the LINCS

covariate space, but rather should be viewed only in their capacity to enable rigorous

methodological comparisons.

A flowchart of our dataset curation process can also be seen in Figure 2-1.

2.1.2 MGH NeuroBank Corpus

Our private corpus of L1000 data was measured on a collection of subject-derived

neural progenitor cells, which were perturbed with one of 60 different small-molecule

bioactives at varying doses. Some of these compounds are known to have consistent

gene-expression signatures (e.g., HDAC inhibitors), whereas others have known clini-

cal utility but a less well understood transcriptomic profile (e.g., clozapine), and still

others were unknown on all counts.

These cells come from a population of five individuals, two healthy control sub-

jects, one with Bipolar Disorder, and two with Schizophrenia (all diagnostic labels

are DSM-IV diagnoses confirmed by structured clinical interview). All individuals'

cells were treated with the same compounds. On this data, we predict perturbagen

identity. Note that each perturbagen was profiled at one of several doses, which we

ignore here. We also use this dataset to profile how well classifiers do on Level 4 vs.

Level 5 data and make a first attempt at assessing per-subject generalizability, by

training a model on only four of the five subjects, then testing on the data for the
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Culture into NPCs

Skin Punch

Figure 2-2: The dataset creation pipeline for the MGH NeuroBank Corpus. These
data were created by our collaborators at the Center for Quantiative Health (dir.
Professor Roy Perlis) and Chemical Neurobiology Laboratory (dir. Professor Stephen
Haggarty) at Massachusetts General Hospital. Of particular note are Drs. Jennifer
Wang, Wen-Ning Zhao, and Stephen D. Sheridan.

fifth subject. Per-subject generalizability is an important, oft-overlooked element of

performance in this domain-many studies which rely only on data from the LINCS

public corpora, for example, are often working with only one to two subjects per

tissue type, which means their expected generalizability would likely be worse and

the magnitude of the problem is difficult to assess. Our experiments here will provide

some estimate of the performance delta that should be observed when generalizing to

new subjects.

A graphical representation of the data creation pipeline can also be seen in Fig-

ure 2-2.
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Table 2.1:

Dataset

Full LINCS
Prostate Only LINCS

MGH NeuroBank (Level
MGH NeuroBank (Level

Dataset

LINCS (Full)

LINCS (Prostate Only)
MGH NeuroBank (Level 4)
MGH NeuroBank (Level 5)

4)
5)

Pr

P

P

Population Statistics for our Datasets and Tasks.

Dataset Statistics:
Number of Samples # Cell Lines Most Frequent Cell Line Least Freq

156,461 36 MCF7 (26,546) NCIH

25,565 2 PC3 (13,625) VCAP

5602 5 N/A (1133) N/A

1894 5 N/A (380) N/A

Task Statistics:
Task # Classes Most Frequent Class Least Frequer

imary Site 12 Prostate (43,686) Ovary (4
Subtype 14 Adenocarcinoma (53,245) Embryonal Kidr

MOA 49 DMSO (25,638) IKK Inhibito
MOA 9 DMSO (8833) Serotonin Receptor A

erturbagen 60 DMSO (383) Ruboxistaur

erturbagen 60 DMSO (130) Ruboxistaur

2.2 Models

We compare a variety of standard classifiers, all (save GCNNs) implemented via

scikit-learn [35] for maximal reproducibility and ease of use. GCNNs, as previously

stated, were implemented via the method of [9].

In the interest of space, we will not provide a primer on each of the standard

methods mentioned below in this work, but instead make clear why they were cho-

sen to benchmark for this task and indicate which scikit-learn class was used to

implement them. For a description of GCNNs see Section 1.4.

2.2.1 Classifiers Tested

Feed-forward artificial neural network (FF-ANN) classifiers FF-ANNs are

a common, powerful, non-linear modelling technique, and were used in many of the

prior works on gene expression data. However, partly because they do not assume any

particular structure of their input and are thus least constrained, they are relatively

inefficient learners. Some postulate that this inefficiency is due to simply their larger

parameter overhead; however, the full reason is not yet known. Implemented via the

MLPClassif ier class.

Linear classifiers Linear classifiers, subsuming both logistic regression (LR) and

support vector classifiers (SVCs), are extremely common across all domains, includ-

ing traditional bioinformatics analyses, and are interpretable. Implemented via the

SGDClassif ier class.
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Random forests Random forests are not as commonly used in traditional bioin-

formatics use cases, but are thought to often provide a compelling non-neural but

still non-linear baseline. They are composed of many bagged random decision trees.

Implemented via the Randomf orestClassif ier class.

K nearest neighbors classifiers KNN methods are commonly used in this domain

for clustering analyses, and we hope that investigating their performance here can help

inform further choices for those and other analyses in these domains. They also shed

some light on appropriate distance metrics. Implemented via the KNeighborsClassif ier

class. Index construction, often a computationally intensive task on large datasets,

was done via either brute force search, the construction of a KDTree, or the construc-

tion of a Ball Tree, as determined by scikit-learn's 'algorithm=auto' setting.

Decision trees Decision trees are low powered, but extremely mechanistically in-

terpretable. Implemented via the DecisionTreeClassif ier class.

Graph Convolutional Neural Networks (GCNNs) GCNNs allow us to inject

prior biological knowledge in the form of a genetic regulatory network into a neural

network, offering structural efficiency improvements and domain appropriate bias.

In this work, our GCNN is built using the spectral approach defined by [9]. We

encourage interested readers to refer to the primary source for full details regarding

this algorithm, but we provide a brief explanation of the method here. In particular,

this method of graph convolutional processing approximates localized filters in the

graph Fourier space via polynomials of the graph Laplacian. As follows from the

graph theoretical nature of the Laplacian, restricting the order of these polynomials

yields a localized radius of effect when impacting on the featurization of each graph

node. These polynomials are realized in an efficient manner by relying on the stable

recurrence relation of the Chebyshev polynomials, which form an orthogonal basis of

a relevant Hilbert space and have been used historically in graph signal analysis for

approximate wavelet analysis. Ultimately, this yields a means of producing fast, lo-

calized, graph convolutional filters. Graph pooling is implemented via the coarsening
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phase of the Gracus multilevel clustering algorithm [101.

We use the code of [91 with minor modifications to support multi-component

graphs. We considered a number of potential regulatory graphs, both tissue specific

and tissue independent.

Other Classifiers Considered We also tested NaYve Bayes classifiers, Gaussian

Processes Classifiers, Quadratic Discriminant Analysis, Boosted methods via Ada-

boost, and Kernel Support Vector Classifiers, but these classifiers were removed from

our experimental lineup for reasons varying from poor performance, non-insightful

new results, computational intensivity, or combinations thereof.

2.3 Genetic Regulatory Networks Considered

We considered a number of possible graphs, including those constructed from our

data (a gene-gene pairwise correlation graph) and graphs pulled from the literature.

For our literature sourced graphs, we will offer brief summaries of the source works

here, but interested readers should refer to the primary sources for full details of the

graph constructions-for our purposes it suffices to note that they are constructed to

capture known or suspected genetic regulatory relationships as in Figure 1-4.

Our tissue-independent regulatory network is a network of transcription-factor and

micro-RNA mediated regulatory relationships summarized from 25 literature defined

external datasets [32].2 This graph is unweighted.

Our tissue-dependent regulatory network is built from a probabilistic model of

tissue-specific gene-gene correlations [181 .3 We considered a number of possible tis-

sues, profiling both relevant tissues (neuron for MGH NeuroBank and prostate gland

for the prostate specific LINCS dataset) and irrelevant tissues (tooth, pancreas, skin

fibroblast) to help differentiate whether any performance gains observed with these

graphs were due to the appropriate tissue specificity or simply due to this style of

graph construction being superior. These graphs were all weighted, with edge weights

2 Networks available for download here: http: //www. regnetworkweb. org/download. jsp
3 Networks available for download here: http: //hb. flatironinstitute. org/download
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estimating the confidence in the true existence of that edge, determined via a proba-

bilistic model. Ultimately, no tissue specific graph outperformed the tissue-indepent

graph of [32], so the distinction between relevant or irrelevant tissues proved negligi-

ble.

Last but not least, we considered a learned graph, whose (weighted) adjacency

matrix was determined via correlation coefficients between genes in our data. This

graph is by default fully connected, so to induce effective sparsity, we removed all

edges corresponding to correlative relationships with a p value of less than 0.05. This

graph also offered no performance advantage over the tissue-independent network

in early experiments, so we removed it from our analyses and focused solely on the

literature-defined graphs.

When working with any weighted graphs, we culled all edges with confidence be-

low a cutoff threshold, which was tuned with all other hyperparameters. We treated

all graphs as undirected, allowing them to capture merely a notion of regulatory inter-

action rather than any directed up- or down-regulation. This is certainly a simplifi-

cation, and exploring more complex representations of regulatory graphs is definitely

a promising area of future studies, but using undirected graphs here yields significant

technical simplifications for this work enabling these graphs to work natively within

our chosen graph convolutional framework.

2.4 Experiments

2.4.1 Hyperparameter Search & Technical Setup

Hyperparameters for all classifiers were determined by a random search [31 over all

possible parameters and tasks, including over the number and sizes of hidden lay-

ers for FF-ANNs and number of graph convolution layers/filter sizes/pooling sizes,

loss types, etc. In addition to random search, we also rotated the discovered opti-

mal hyperparameters across tasks during various stages of the search procedure and

made certain manual tweaks in pursuit of obtaining strong performance metrics for
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all models, particularly baseline methods. One notable disparity in the hyperpa-

rameter space searched is that the Scikit Learn FF-ANNs do not support dropout

(only L2 regularization, which was included in our search), whereas the GCNNs do.

To compensate for this potential bias, we took the optimal FF-ANN models found

via the hyperparameter search and re-implemented them in Keras, as identically as

possible, then performed a miniature grid-search over dropout within these models.

This procedure induced a mild performance gain, but not enough to upset the ob-

served model ordering on any tasks where GCNNs performed the best. We also did

not hyperparameter optimize over batch size for FF-ANNs, but we did optimize over

learning rate, a heavily related parameter, and we also tested several smaller batch

sizes with our final models to ensure that we were not biasing the results against this

baseline.

For GCNNs, we notably did not hyperparameter search over the number of epochs,

but rotated progressively through a very limited fixed set of number of epochs for com-

putational reasons. Additionally, GCNNs only supported a single optimizer, whereas

FF-ANNs offered several options. The search process was, however, run over various

considered graphs, as well as over the graph edge weight cutoff, which we used to cull

irrelevant edges from our graphs.

For our benchmarking tasks, a full list of all hyperparameters tested, the distri-

butions used to back our random search, and the final, chosen hyperparameters are

available with our provided code.4 Additionally, the optimal hyperparameters for all

methods across all datasets and tasks can be found in the Appendix.

This random search was performed over 10 fold cross validation on the full LINCS

dataset, and 15 fold cross validation on the private L1000 dataset (as that dataset is

smaller, it warrants additional folds to improve accuracy). In each case, one fold was

held out for testing, one for hyperparameter optimization, and the remaining used

for training. The hyperparameter search optimized for mean accuracy over all folds,

though we also report macro-Fl 5 in our test set results below, as some tasks present

4See https: //github. com/mmcdermott/LINCSDeepLearningBenchmarks
5The F1 score on a binary classifier is the harmonic mean of the classifier's precision and recall.

The macro-Fl score is an unweighted average of the F1 score of each class separately. Gener-
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significant class imbalance. We chose these two metrics to offer, first, a comparatively

understandable metric (accuracy) which allows for a clear baseline measure (majority

class performance) but is often overly forgiving for tasks with large class imbalance,

and second, a less overt, but still commonly used, metric which compensates for class

imbalance. We chose not to use AUC as it is less immediately understandable than

accuracy while also not accounting for class imbalance as directly as macro-Fl, and

to avoid having too many evaluation metrics and thereby diluting our comparisons.

For all results, statistical significance was assessed using paired t-test across all folds,

followed by Benjamini-Hochberg multiple tests FDR adjustment within experimental

conditions.

As different classifiers required different amounts of computational time to run,

we did not run all classifiers for the same number of samples-this induces a mild

bias towards the fastest running classifiers, as they will have had the opportunity to

test additional hyperparameter settings. We did, however, ensure that we measured

at least 60 samples for the standard FF-ANN classifier and linear models to ensure

that we did not conclude any model better than those traditionally strong baselines

simply due to lack of appropriate sampling. Graph convolutional networks, being

highly computationally intensive, in particular on the larger datasets, were under-

sampled compared to the other methods-it is possible that with more compute time

their performance would improve. Note the direction of this bias: were more samples

to improve the performance of the GCNN methods further, it would only strengthen

the performance gap observed on the largest datasets, and potentially cause them to

outperform the simpler models on our smaller datasets. Because this bias is in favor

of our baselines, rather than the more exotic, structured GCNN models, we feel

comfortable still reporting these results even though they may improve later.

For our data-flush regimes (the tasks over the full and prostate only LINCS

datasets), we used only the Level 4 data. This data is less processed, but presents 3

times as much data as the analogous Level 5 data. Note that had we used Level 5 data,

ally, macro-F1 will offer a more conservative measure of performance for tasks with strong class

imbalance.
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our filtering procedure eliminating classes with less than 1000 examples would have

eliminated many classes and made the overall task much easier. For our data-sparse

tests (the task on our private L1000 corpus), we tested methods on both datasets,

wondering whether in this data-sparse regime, the more processed data might prove

more valuable than the relatively small increase in dataset size. Additionally, as in

neither dataset on the MGH corpus did we filter out infrequent classes (given the

dataset size, all classes are infrequent by our standards for the full LINCS data),

this change from Level 5 to Level 4 can be done more transparently than on the full

LINCS datasets.

Along with our code, the results of these hyperparameter searches are all publicly

available. 6

'See https: //github. com/mmcdermott/LINCSDeepLearningBenchmarks
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Chapter 3

Results & Discussion

3.1 LINCS Corpus

3.1.1 Full Corpus

Final results are shown in Table 3.1. Accuracies and macro Fis are reported averaged

across unseen test folds, using hyperparameters found via a separate validation fold.

Included in the results are those obtained using a majority class classifier, which

simply predicts the most frequent class with probability equal to that found in the

training set. This was tested across the same folds and is reported here to ground all

other reported results and variances. Observed differences between mean performance

of any pair of classifiers were statistically significant (p < 0.05).

We note that on all of the tested tasks, GCNNs perform best, by notable margins

in accuracy and macro F1 on both primary site and subtype prediction. The margin

of accuracy in MOA prediction is smaller, but still statistically significant. KNNs per-

formed surprisingly well on all three tasks, offering competitive performance even with

the FF-ANNs. Investigations of why they performed so well revealed two findings:

1. KNN classifiers strongly prefer traditional distance metrics (e.g., Euclidean)

over correlative based "distance metrics." This is notable because correlation

is often used as a signal of biological similarity on these data, which may be

contraindicated by these results.
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2. Our hyperparameter search method also changed the distance metric underlying

the KNN method. Across all tasks and datasets, the optimal distance metric

was the "Canberra?' distance, defined via

d*x y) = x Y
lxi+yi*

Using this distance metric induced performance gains over correlative and tra-

ditional, Euclidean distance measures. The Canberra distance is traditionally

used for integer valued vectors and we are unsure why it would be preferred here.

The KNN algorithm could choose uniformly between one of four classes of dis-

tance metrics, independently across each of our six dataset/task combinations.

This means that if the choice of distance were independent of ultimate perfor-

mance, the repeated use of the Canberra distance as our highest performing

Table 3.1: Performance (mean standard deviation) for the full, tissue-heterogenous
LINCS corpus.

Task Classifier Name Accuracy Macro F1
GCNN 93.9 0.28 90.5 + 0.82

FF-ANN 90.6 0.44 85.6 t 0.97

KNNs 89.6 t 0.30 87.2 + 0.61

Primary Site Linear Classifier 60.9 t 0.50 47.6 t 0.63

Random Forest 57.2 t 0.48 40.2 0.77

Decision Tree 44.4 0.70 24.7 2.22
Majority Class 27.9 0.16 3.63 0.02

GCNN 93.5 0.34 91.7 2.1
FF-ANN 90.5 0.30 88.5 0.54

KNNs 89.8 0.13 90.2 0.27

Subtype Linear Classifier 62.6 0.62 56.3 1.06

Random Forest 51.7 0.37 22.3 0.49
Decision Tree 41.1 0.21 18.4 0.62

Majority Class 34.0 0.21 3.62 0.02

MOA

GCNN

FF-ANN

KNNs
Linear Classifier
Random Forest
Decision Tree
Majority Class

46.4
45.9
43.5
39.1

32.3

28.7

16.4

t
t
t
t

0.35

0.43
0.50

0.29

0.40
0.31

0.16

31.6 0.65

29.6 0.60

29.5 0.58

20.6 0.39

11.5 0.31

8.5 0.29

0.57 0.005
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distance metric would be expected with somewhere between 0.02% chance (pre-

suming the ideal choice of parameters is independent from which dataset/task

is under consideration) and 25% chance (presuming the ideal choice of param-

eters shares is totally deterministic across datasets/tasks). We have performed

no deeper analyses to determine if this apparent distance metric preference is

statistically significant, or to investigate why it might be so.

Linear classifiers robustly performed well. On the MOA task, hyperparameter

search selected a logistic regression model (via the log loss in sc ikit -learn), whereas

on the Subtype and Primary Site tasks, the optimal setting used a modif ied-huber

loss, which is a smooth loss that is tolerant to outliers.

Random forests and decision trees both yielded underwhelming results, particu-

larly with respect to Macro Fl. One hypothesis as to why this may be is that random

forests were less sampled in the hyperparameter search than linear models. Alterna-

tively, these results may suggest that absolute feature values are less meaningful in

our data than are relationships between feature values-an idea that meshes well with

the fact that this dataset is very heterogenous with respect to cell (e.g., tissue) type,

and the same expression level of any individual gene may mean very different things in

different tissue types. Some might postulate that this is perhaps due to a poor search

space of some critical hyperparameters; we intentionally ensured our hyperparameter

search space was very broad, especially over these critical parameters. For number

of trees, we searched over an equal mixture of Poisson distributions centered at 50,

200, and 400, respectively, and the optimal hyperparameters (shown in the appendix)

showed a mix over this entire range. All regularization parameters were also included

in our search space.

3.1.2 Prostate Only Corpus

Final results for prediction of prostate MOA are shown in Table 3.2. All classifier

comparisons were statistically significant (p = 0.05). Here, FF-ANNs perform best,

though GCNNs are quite competitive. Note that GCNNs still preferred tissue non-
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Table 3.2: Performance (mean standard deviation) on the prostate LINCS corpus

and MOA prediction task.

Classifier Name Accuracy Macro F1

GCNN 67.7 + 0.76 46.0 0.42

FF-ANN 68.3 + 0.60 50.4 0.71

KNNs 66.5 + 0.71 46.2 0.89

Linear Classifier 63.8 + 0.52 42.6 t 1.03

Random Forest 60.4 0.48 37.4 0.41

Decision Tree 53.2 t 1.16 32.6 + 0.91

Majority Class 34.54 t 0.05 5.71 0.01

specific regulatory graphs, rather than prostate specific graphs. Again, KNNs perform

well. Here, RFs and decision trees still under-perform the other methods, but per-

form better with respect to macro F1 than they do on the more heterogeneous full

LINCS corpus, suggesting again that perhaps they may be more appropriate on more

homogeneous data sources.

As indicated in Section 2.2.1, we tested both tissue-specific and tissue-independent

regulatory graphs. Surprisingly, on the prostate corpus, the GCNN performed better

using the tissue independent regulatory network than it did using the prostate specific

regulatory graph. This may indicate that our tissue-specific graphs suffer from some

unknown problem, or that tissue-independent graphs simply perform better overall.

Similar to the full system MOA task, the optimal linear model here was a logistic

regression model.

3.2 MGH NeuroBank Corpus

3.2.1 Raw Performance Results

Final results for perturbagen identification on the MGH NeuroBank corpus are shown

in Table 3.3. Results were not statistically significantly different at p = 0.05 between

the Level 5 data and Level 4 data for any classifier save the GCNN. All within-level

classifier comparisons were statistically significant (p = 0.05) save between Level 5

GCNNs and RF, GCNNs and KNNs, and KNNs and RFs.
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Table 3.3: Performance (mean standard deviation) on the perturbagen identity

task on the MGH NeuroBank Corpus.

Classifier Name Level 5 Level 4

Accuracy Macro F1 Accuracy Macro F1

GCNN 46.0 t 9.90 44.0 t 10.8 54.6 t 3.94 56.4 3.94
FF-ANN 63.2 10.3 62.7 + 10.8 57.3 4.12 58.9 + 4.00

KNNs 46.9 8.13 44.7 9.15 44.9 3.74 45.7 3.61

Linear Classifier 52.3 9.61 51.4 10.0 49.1 3.98 50.2 3.63

Random Forest 48.0 8.96 44.7 9.15 43.2 4.87 42.7 4.75
Decision Tree 26.7 8.07 25.6 7.45 27.0 2.02 26.4 1.79

Majority Class 7.56 i 2.37 0.23 0.07 6.88 0.77 0.21 0.02

Here, FF-ANNs lead in performance by a wide margin compared to other meth-

ods. We interpret their strong success here relative to GCNNs to be indicative of a

strong need for very large datasets for the GCNN models. Recall that this dataset

is significantly smaller than our other datasets (see Table 2.1). This intuition is sup-

ported by two observations: 1) the apparent slope in GCNN performance relative to

dataset size is quite steep, exceeding at all tasks on the largest dataset, nearly match-

ing on the prostate only dataset, and failing by a large margin here, and 2) GCNNs

show a statistically significant preference for the larger Level 4 data, whereas no other

classifier cares between the two modalities in a statistically significant manner.

It is also possible that GCNNs are less appropriate on this corpus than on the

larger corpora due to this dataset's strong neural focus. Or, it may be that GCNNs

are most appropriate in heterogeneous datasets spanning many cell types.

Among the other classifiers, linear classifiers perform well, followed by KNNs

and RFs, then, much worse, by decision trees. No classifier save GCNNs shows a

statistically significant preference for Level 5 data over Level 4 data, but all save

GCNNs do show a (again, statistically insignificant) preference for Level 5 data in

terms of absolute measure.

3.2.2 Generalization Experiments

We also used the MGH NeuroBank Corpus to assess population level generalizability,

by training on four of our subjects and testing on the fifth subject. As the MGH Neu-
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roBank Corpus contains only one subject with Bipolar Disorder, we do not ever test

on this subject's data-absent more examples of any subject data in this diagnostic

category, we would not expect a classifier to generalize well to this subject. Including

their results causes a mild but consistent drop in mean generalization accuracy across

almost all classifiers tested. We report all results here using Level 4 data as no classi-

fier statistically significantly preferred Level 5, but the relative drops in performance

observed were similar for that modality.

Results for this experiment are shown in Table 3.4. All methods showed a notable

drop in accuracy on unseen subjects, ranging from a 10.2% drop for linear classifiers to

an 18.5% drop for decision trees (percentages taken of per-sample accuracies, not raw

percentage points). This indicates a definite unmet need for either a) more diverse

datasets or b) novel methods able to better generalize to unseen subjects. Note,

though, that the MGH NeuroBank corpus only contains 5 total subjects to begin

with, so it may be the case that these numbers would improve significantly were

we to have even a only marginally larger subject pool. Note that on a dataset like

LINCS, which is much larger and thus more amenable to higher-capacity learning yet

has relatively fewer cellular sources (and with those cellular sources often differing

by tissue type or primary diagnosis no less), it is reasonable to imagine that this

observed population specific overfitting could forseeably be even worse than what we

observe on the MGH dataset-this point is critical given that this dataset has been

used historically for many machine learning investigations with clinically generalizable

aspirations, unlike our work where the tasks are designed to aid primarily in method

development.
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Table 3.4: Per (Non-BD) Subject Generalization Accuracy (mean
tion) on the MGH NeuroBank Corpus.

Classifier Name
GCNN

FF-ANN

KNNs
Linear Classifier
Random Forest
Decision Tree

Accuracy
47.7i

48.7

37.9 t
44.1 t
38.8

22.0 t

6.78

7.85

5.39
4.03
5.37

3.85

standard devia-

Macro F1

48.9
50.1 

+

39.0

44.7 t
38.3 

+

21.8 t

7.40
8.34

6.68

4.21
6.76

3.59
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Chapter 4

Conclusion

4.1 Summary

In this work we aimed to make the following contributions:

Establish biologically meaningful benchmark tasks for gene expression data

With the curation of the full and prostate-specific views of the LINCS dataset and

specification of the Primary Site, Subtype, and MOA tasks, we meet this goal.

Provide robust benchmarks We provide benchmarks on the tasks defined above

for 6 different types of classifiers. We establish that graph convolutional neural net-

works, which incorporate prior biological knowledge via genetic regulatory graphs,

perform very well when dataset size is very large, and feed-forward artificial neural

networks offer good performance across all dataset sizes. Additionally, we profile

non-neural classifiers, including K nearest neighbor methods, random forests, linear

classifiers and decision trees. K nearest neighbor methods provide surprisingly strong

performance in data rich environments using the Canberra distance.

Assess how these classifiers function in data-scarce regimes We profile these

same classifiers on a similar task on the smaller, privately produced MGH NeuroBank

corpus. Here, we find that graph convolutional neural networks no longer offer com-
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petitive performance, but feed-forward artificial neural networks continue to perform

well, as do linear models.

Assess population level generalizability We demonstrate that subject level gen-

eralizability remains an important challenge in this domain. Linear classifiers general-

ize best, losing only 10.2% of their per-sample accuracy, while decision trees generalize

worst, losing 18.5%. It is important to note that we were only able to assess this on

our smallest dataset, the MGH NeuroBank Corpus, as differing cell lines represented

too divergent demographic conditions in the full LINCS dataset, so this may simply

be a reflection of the small dataset size, or indicative of a more chronic problem due

to the fact that gene expression corpora contain many samples per subject.

4.2 Future Work

There are several notable directions for future work. First, a notable absent classifier

is a self-normalizing neural network (SNNN) [26]. Introduced in late 2017, SNNNs

have demonstrated improvements in a battery of different tasks and warrant inclusion

here. Other types of classifiers capable of using graph structures would also warrant

inclusion. Additionally, there are other graph convolutional networks one could use,

[29, 20], as well as other sources for our regulatory graphs. One notable contender in

that domain is HuRL: The Human Reference Protein Interactome Mapping Project1

which has several large databases of protein-protein interactions found experimentally

through yeast two-hybrid screening methods [36, 15]. Additionally, incorporating di-

rectional information in our regulatory graphs would also enable significantly more

nuanced processing. Finally, we would also like to establish other types of machine

learning benchmark tasks, most notably clustering tasks, or other tasks that can bet-

ter assess generalizability across subjects, drugs, or even measurement technologies.

More investigation into what drove the success of GCNNs here, perhaps by running

dataset size ablation experiments, would also help clarify their strengths. Similarly,

1 http://interactome.baderlab.org/about/
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more investigations into the failings of random forest models or the relative strengths

of differing distance metrics would also be informative.
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Table 1: Optimal Hyperparameters for LINCS Full MOA.

regularization 1.09e-2
num-epochs 350

Fs [[911

M [137, 49]

Ks [[7ij

batch-size 92

GCNN pool apooll
learning-rate 1.23e-3
decay-steps 405
decay-rate 9.91e-1
dropout 6.98e-1
momentum 8.79e-1

Ps [[21|
activation relu
alpha 1.69

power-t 3.30e-1

learning-rate-init 1.09e-1
FF-ANN hiddenlayer-sizes [955J

learning-rate adaptive
momentum 8.64e-1
early-stopping True
nesterovs-momentum True

weights distance
KNNs metric canberra

_n-neighbors 12

penalty 11

11_ratio 4.06e-1
alpha 1.23e-3
loss log

Linear Classifier n-jobs -1

tol 1.00e-5
learning-rate invscaing
eta0 3.17e-4

power -t 1.84e-1

max-depth 100

max-leaf-nodes N73one

criterion gini

Random Forest n-estimators 211

minsamplessplit 2

minweightfractio leaf 1._27e-6

min-impurity-decrease 1.70e-5
min.samplesleaf 1

max-features None
criterion entropy
max-depth 10

splitter best
Decision Tree min-samples-leaf 2

min-impurity-decrease 1.23e-3
min-samples-split - -- Nn2
max-leaf _nodes ne

min-weight-fraction-leaf 2.08-
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Table 2: Optimal Hyperparameters for LINCS Full Subtype

regularization 5.42e-3
num-epochs 30
pool mpooll

M [150, 150, 14]
batch-size 88
Fs [[43]]

GCNN momentum 9.73e-1
learning-rate 2.95e-3
ps [[21]
decay-steps 362

decay-rate 9.76e- 1

Ks [8]

dropout 4.54e-1
activation relu
nesterovsmomentum True
hidden-layer-sizes [997]
learning-rate invscaling

FF-ANN early-stopping False
learning-rate-init 5.53e-2
power-t 2.26e-1
alpha 8.20e-1
momentum 8.67e-1
metric canberra

KNNs weights uniform
n-neighbors 1
learning-rate invscaling
alpha 3.63e-1
power.t 1.14e-1

Linear Classifier 11_ratio 7.37e-1
penalty 12
etaO 9.91e-5
loss modified huber
criterion gini
max-depth 25

minsamples.leaf 1

Random Forest max-lead-nodes 500
n-estimators 411
min-weight-fraction-leaf 4.33e-4
min-samples-split 2
min-impurity-decrease 3.64e-5
min.impurity-decrease 3.19e-5
criterion entropy
minweight-fraction-leaf 1. 12e- 2
max-leat-nodes 100

Decision Tree min-samples-leaf 1

min-samples-split 2
max-depth 5
splitter best
max-features None
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Table 3: Optimal Hyperparameters for LINCS Full Primary Site.

regularization 3.08e-3
num-epochs 350

Fs [[41J
batch-size 68

M [135, 12]
pS [[211

GCNN decay-steps 380

momentum 9.45e-1
learning-rate 3. 13e -3
pool apooll
decay-rate 9.89e- 1
Ks [15]]

dropout 5.62e-1

learning-rate-init 5.53e-2
activation relu
momentum 8.67e-1

nesterovs-momentum 'rue

FF-ANN learning-rate invscaling
power-t 2.26e-1

early-stopping False
hidden-layer-sizes [9971

alpha 8.20e-1

n-neighbors 11

KNNs metric canberra
weights uniform

learning-rate invscaling
11_ratio 7.85e-1
power-t 8.51e-2

Linear Classifier loss modified huber
penalty 12
eta0 2.99e-6
alpha 4.94e-1
criterion entropy
max-depth 100

min.samples.leaf 1

Random Forest min-weight-fraction-leaf 3.87e-4
n-estimators 401

max-leaf-nodes None
min.samples-split 4

min-impurity-decrease 2.89e-4

max-depth 100

min-samples.leaf 1

min-weight-fraction-leaf 2.53e-3

min.samples.split 2
Decision Tree criterion gini

min-impurity-decrease 7.73e-5
max-features 250

splitter best

max.leaf -nodes None
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Table 4: Optimal Hyperparameters for LINCS Prostate Only MOA.

regularization 4.00e-3
num-epochs 200

Fs [[25J1
batch-size 55
M [168, 14, 9]
Ks [[15J]

GCNN ps [12JJ
pool mpooll
learning-rate 5.00e--3
decay-steps 415
decay-rate 9.50e- 1
momentum 9.70e- 1
dropout 5.00e-1
learning-rate invscaling
nesterovsmomentum True

hidden-layer-sizes [997F
learning-rateinit 5.53e-2

FF-ANN momentum 8.67e-1
early-stopping False
alpha 8.20e-1
power-t 2.26e- 1
activation relu
metric canberra

KNNs weights distance
n-neighbors 13

eta0 3.17e-4
11_ratio 4.06e -1
tol 1.00e-5
penalty i1

Linear Classifier learning-rate invscaling
alpha 1.23e-3
n-jobs -1
power-t 1.84e-1
loss log
min-samplesBsplit 2
criterion entropy
min-weight-fraction-leaf 6.Ole-5

Random Forest min-samples-leaf 2
max-depth None
min.impurity-decrease 3.68e-4
max-leaf _nodes None
n-estimators 53

min-impurity-decrease 1.46e-3
min.samples-leaf 1
min-weight-fraction-leaf 1.81e-4
max-depth 25

Decision Tree max-features 250

criterion entropy
max-leaf-nodes None
min-samples-split 2
splitter best
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Table 5: Optimal Hyperparameters for MGH NeuroBank Corpus Level 4.

regularization 2,65e- 2
decay-steps 41_0

learning-rate 1.0le-2
pool mpoo 1

momentum 8.14e-1
num-epochs 350

GCNN batch-size 25

M [138, 601

PS [[2]]
decay-rate 9.98e- 1
Ks [[26]1

Fs [[31]

dropout 6.22e-1
hidden-layer-sizes 976]

alpha 1.16

power-t 3.21e-1
activation relu

FF-ANN learning-rate-init 4.05e-1
early-stopping ra-s1e
momentum 9.07e-1
tol 1.00e-5

nesterovs-momentum True

learning-rate invscaling
n-neighbors 6

KNNs metric canberra
weights distance

learning-rate invscaling
tol 1.00e-5
n_.jobs -1

power-t 1.84e-1
Linear Classifier penalty 11

eta0 3.17e-4
loss log
lilratio 4.06e-1
alpha 1.23e-3
max.depth 25

max-leaf-nodes 500

min-weight-fraction-leaf 4.33e-4

Random Forest min-samples-split 2

min.samples.leaf 1
n-estimators 411
criterion gini

min-impurity-decrease 3.64e-5

min-samples.split 2

max-leaf-nodes None

criterion gini

min-impurity-decrease 7.73e-5
Decision Tree min-weight-fraction-leaf 2.53e-3

min-samples-leaf 1

max.features 250

max-depth 100

splitter best
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Table 6: Optimal Hyperparameters for MGH NeuroBank Corpus Level 5.

regularization 5.00e-2
decay-steps 400
learning-rate 1.__e-3

pool apooll
momentum 9.00e-1
num-epochs 350

GCNN batch-size 20
M [100, 601

ps [[217
decay-rate 9.60e- 1
Ks7[{7
Fs [[251]

dropout 5.00e-1
hidden-layer-sizes [946, 193]

alpha 1.11

power.t 8.87e-1
early-stopping False

FF-ANN learning-rate-init 9.86e- 1
nesterovs_momentum True
learning-rate constant
momentum 8.76e-1
activation reh u
n-neighbors 7

KNNs metric canberra
weights distance
learning-rate invscaling
tol 1.00e-5
njobs -1

power-t 1.84e-1

Linear Classifier penalty _ 1
eta0 3.17e-4
loss og
11_ratio 4.06e-l

alpha 1.23e-3
max-depth 25

max-leaf-nodes 500

min-weight-fraction-leaf 4. 33e-4
Random Forest minsamples-split 2

min.samples.leaf 1

n-estimators 411

criterion gini
min-impurity.decrease 3.64e-5
min-samples-split 2
max-depth 10

criterion entropy

min-impuritydecrease 1.23e-3

Decision Tree max-leaf-nodes None
min-weight-fraction-leaf 2.O8e-3
min-samples-leaf 2

max-features None
splitter Fest
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