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ABSTRACT

Rainfall–runoff modelling is complicated due to numerous complex interactions and feedback in

the water cycle among precipitation and evapotranspiration processes, and also geophysical

characteristics. Consequently, the lack of geophysical characteristics such as soil properties leads to

difficulties in developing physical and analytical models when traditional statistical methods cannot

simulate rainfall–runoff accurately. Machine learning techniques with data-driven methods, which

can capture the nonlinear relationship between prediction and predictors, have been rapidly

developed in the last decades and have many applications in the field of water resources. This study

attempts to develop a novel 1D convolutional neural network (CNN), a deep learning technique, with

a ReLU activation function for rainfall–runoff modelling. The modelling paradigm includes applying

two convolutional filters in parallel to separate time series, which allows for the fast processing of

data and the exploitation of the correlation structure between the multivariate time series.

The developed modelling framework is evaluated with measured data at Chau Doc and Can Tho

hydro-meteorological stations in the Vietnamese Mekong Delta. The proposed model results are

compared with simulations of long short-term memory (LSTM) and traditional models. Both CNN and

LSTM have better performance than the traditional models, and the statistical performance of the

CNN model is slightly better than the LSTM results. We demonstrate that the convolutional network

is suitable for regression-type problems and can effectively learn dependencies in and between the

series without the need for a long historical time series, is a time-efficient and easy to implement

alternative to recurrent-type networks and tends to outperform linear and recurrent models.
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INTRODUCTION

Rainfall–runoff simulation is the fundamental technique of

hydrology when the availability of surface and subsurface

water is an indispensable input for various water resource

studies. However, a proper understanding of rainfall–

runoff relationships has been a long-term challenge to the

hydrological community because of the complex inter-

actions and feedback of soil characteristics, land use, and

land cover dynamics and precipitation patterns (Kumar

et al. ). Physically based and conceptual models require

an in-depth knowledge and profound understanding of the

water cycle. Moreover, building these models is time-con-

suming and laborious. These models also require detailed

soil profiles of study areas which cannot be adequately pro-

vided with current survey and remote sensing techniques. In

contrast, data-driven methods are often inexpensive, accu-

rate, precise, and most importantly more flexible (Abrahart
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& See ; Araghinejad ). Among sophisticated

machine learning techniques, artificial neural network

(ANN) has been applied widely in recent years in water

resource assessments due to its significant capability in

handling nonlinear and non-stationary problems.

Various ANN architectures have successfully been

applied in simulating and predicting hydrological and

hydraulic variables, such as rainfall and runoff and sediment

loads. In many studies, ANN performed better than conven-

tional statistical modelling techniques (Coulibaly et al. ;

Dawson & Wilby ; Sudheer et al. ), and this

network has also been used as an alternative for rainfall–

runoff forecasting. A three-layer feed-forward ANN can

primarily represent the rainfall–runoff process in Halff

et al. () at first. The success of this model then stimulates

afterward numerous studies to employ diverse ANN struc-

tures for rainfall–runoff prediction (e.g., Minns & Hall

; Shamseldin ; de Vos & Rientjes ). Hsu et al.

() propose a linear least squares simplex algorithm to

train ANN models. The results showed a better represen-

tation of the rainfall–runoff relationships than other time-

series models. Mason et al. () use a radial basis function

network for rainfall–runoff modelling, which provides faster

training compared with the conventional back-propagation

technique. Birikundavyi et al. (), again, investigate

ANN models for daily streamflow prediction and conclude

that ANN can provide better performance than other

models such as deterministic models and classic autoregres-

sive models. Toth & Brath () and Duong et al. ()

found that ANN is an excellent tool for rainfall–runoff simu-

lations of continuous periods, provided that an extensive set

of hydro-meteorological data was available for calibration

purposes. Bai et al. () forecast daily reservoir inflows

by using deep belief networks (DBNs).

Most of the studies mentioned above have focused on

the specific form of ANN called the multilayer feed-forward

neural network (FNN), and only a limited number of studies

applied recurrent neural networks (RNNs). Even though

FNN has numerous advantages in simulating statistical

data, there are still several difficulties such as the selection

of optimal parameters for neural networks and the overfit-

ting problem. Thus, the performance of ANN predictions

is also significantly dependent on the user’s experience

(Dawson & Wilby ; de Vos & Rientjes ; Manisha

et al. ). Moreover, the FNN may not capture the distinc-

tive features of data. To model time-series data, the FNN

needs to include temporal information in input data.

RNNs are specifically designed to overcome this problem.

There are several extensions of RNNs such as the Elman

and Jordan network. These models attempt to improve the

capacity of memory and the performance of RNN (Cruse

; Yu et al. ). However, these models suffer from

the exploding and vanishing gradient problems. Sub-

sequently, Hochreiter & Schmidhuber () propose long

short-term memory (LSTM) to overcome these problems.

LSTM is a state-of-the-art model which has particular

advances in deep learning to provide useful insights for tack-

ing complex issues such as image captioning, language

processing, and handwriting recognition (Sutskever et al.

; Donahue et al. ; Vinyals et al. ). The modern

design of LSTM uses several gates with different functions

to control the neurons and store information. LSTM

memory cells can keep relevant information for a more

extended period (Gers et al. ). This feature of holding

information allows LSTM to perform well on processing

or predicting a complex dynamic sequence (Yu et al. ).

Hu et al. () propose deep learning with LSTM for rain-

fall–runoff modelling and conclude that ANN and LSTM

are both suitable for rainfall–runoff models and better than

conceptual- and physical-based models. Kratzert et al.

() used LSTM for rainfall–runoff modelling for 241

catchments and demonstrates the potential of LSTM as a

regional hydrological model in which one model predicts

the discharge for a variety of catchments. Several other

studies have shown that LSTM can achieve better perform-

ance than the Hidden Markov Model and other RNNs in

capturing long-range dependencies and nonlinear dynamics

(Baccouche et al. ; Graves ).

Even though an optimal ANN model can provide accu-

rate forecasts for simple rainfall–runoff problems, it often

yields sub-optimal solutions even with lagged inputs or

tapped delay lines (Coulibaly et al. ). In general, rainfall

and runoff have a quasi-periodic signal with frequently cycli-

cal fluctuations and diverse noises at different levels (Wu

et al. ). A standard ANN model is not well suited for

complex temporal sequence processing owing to its static

memory structure (Giles et al. ; Haykin ). Due to

its seasonal nature and nonlinear characteristics, many
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hybrid methods have been developed to describe this

relationship (Marquez et al. ; Hu et al. ; Wu et al.

; Wu & Chau ). However, there are still gaps that

need to be addressed. For example, these models were

unable to cope with peak values and fit time intervals suc-

cessfully, and they usually underestimated the rainfall–

runoff in extreme events.

Conventional neural network models only capture

natural data in shallow forms without insightful infor-

mation, whereas deep learning can be composed of

multiple processing layers to learn representations of data

with multiple levels of abstraction. It also helps to explore

the insight structure of datasets. Two modern models used

in deep learning are CNN and LSTM for modelling sequen-

tial data to enhance computer vision (Chen et al. ;

Fischer & Krauss ). A convolutional neural network

(CNN) is a biologically inspired type of deep neural net-

work that has recently gained popularity due to its

success in classification problems (e.g. image recognition

(Krizhevsky et al. ) or time-series classification (Wang

et al. )). The CNN consists of a sequence of convolu-

tional layers, the output of which is connected only to

local regions in the input. This can be achieved by sliding

a filter, or weight matrix, over inputs and at each point

computing the dot product between the input and the

filter. This structure allows the model to learn filters that

can recognize specific patterns in the input data. Recent

advances in the CNN for rainfall–runoff forecasting

include Li et al. () where the authors propose deep con-

volution belief neural network for rainfall–runoff

modelling, and they conclude that the presented approach

can accurately predict rainfall–runoff.

In general, the literature on rainfall–runoff with convo-

lutional architectures is still scarce, as these types of

networks are much more commonly applied in classification

problems. Shen () and Mosavi et al. () also stated

that the application of deep learning in earth system model-

ling is still limited. To the best of our knowledge, there are

very few studies using deep learning in hydrology, especially

applying deep learning of CNN and LSTM in rainfall–runoff

modelling. Thus, in this study, we proposed a novel 1D CNN

model for daily rainfall–runoff prediction. The modern CNN

model with two-layer filters using Batch normalization,

ReLU activation, and the max pooling technique is

proposed for this study. The effectiveness and accuracy of

these models were evaluated by comparison with a single

LSTM model. To ensure wider applications of conclusions,

two rain gauge stations and two discharge stations, namely

Chau Doc and Can Tho on the Bassac River in the Vietna-

mese Mekong Delta (VMD), are investigated. This paper is

structured in the following manner. Following the introduc-

tion, the study areas are described, and modelling methods

are presented. The section ‘Methodology’ presents the meth-

odology of this research. In the section ‘Model set-up’, the

optimal model is identified, and the implementation of the

CNN and LSTM models is described. In the section ‘Results

and discussion’, the main results are shown along with dis-

cussions. The section ‘Conclusion’ summarizes the main

conclusions in this study.

STUDY AREA AND DATA

Chau Doc and Can Tho, two long-term and continuous gau-

ging stations (Figure 1) in the VMD, are considered for the

purpose of this studies. The daily rainfall and runoff data

are measured at two meteorological and two hydrological

stations with the same names located at the upstream and

middle of the Bassac River. The data collected daily include

rainfall and discharge data that are measured by the

Southern Regional Hydro-Meteorological Center, and

these data are also used in Dang et al. (, ). The

data period measured at the Chau Doc station spans over

16 years from 1 January 1996 to 31 December 2011, and

we also consider 12 years of data from 1 January 2000 to

31 December 2011 for the Can Tho station. The mean

annual discharge at Chau Doc is approximately 3,200 m3/s,

with an average annual rainfall of 1,700 mm. At Can

Tho, the average discharge is about 9,200 m3/s, with an

average annual rainfall of 1,300 mm. Figure 2 demonstrates

the rainfall and runoff time series measured at the two

stations. The data represent various types of hydrological

conditions and flows range from low to very high. The

input–output dataset in each station is randomly divided

into three subsets, including a training set, cross-validation

set and testing set (70% for training, 15% for cross-validation

and 15% for testing). The training set serves the model train-

ing, and the testing set is used to evaluate the performance
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of models. The cross-validation set has two functions: one is

to implement an early stopping approach, so we can avoid

overfitting of the training data, and the second function is

to select the best prediction from a large number of ANN’s

runs. Moreover, the ANN employs the hyperbolic tangent

function as transfer functions in both hidden and output

layers. Table 1 presents statistical information on rainfall

and streamflow data, including means (μ), standard devi-

ations (Sx), skewness coefficients (Cs), minimum (Xmin),

and maximum (Xmax) values. We implemented this exper-

iment with assumption that no prior knowledge about the

study area is provided.

Figure 1 | Location of Chau Doc and Can Tho stations in VMD.
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METHODOLOGY

Convolutional neural networks

CNNs are developed with the idea of local connectivity. The

spatial extent of each connectivity is referred to as the recep-

tive field of the node. The local connectivity is achieved by

replacing weighted sums from the neural network with con-

volutions. In each layer of the CNN, the input is convolved

with the weight matrix (the filter) to create a feature map. In

other words, the weight matrix slides over the input and

computes the dot product between the input and the

weight matrix. The local connectivity and shared weights

aspect of CNNs reduce the total number of learnable par-

ameters resulting in more efficient training.

The deep CNN can be broadly segregated into two

major parts as shown in Figure 3, the first part contains

the sequence of two 1D convolutional blocks with a convo-

lutional 1D layer of 32 and 64 channels for the first and

second blocks, respectively, Batch norm layer, ReLU acti-

vation functions, and a max pooling 1D layer, and another

part contain the sequence of fully connected layers. Two

main convolutional blocks encode the input signal by redu-

cing its length and increasing the number of channels. The

Figure 2 | Daily rainfall–runoff time series (a) Chau Doc and (b) Can Tho.
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output of the second convolutional block is concatenated

with the input signal using a residual skip connection. This

identity shortcut connection does not add extra parameters

and computation complexity to the whole network, but it

can help the network retain information from input at

the deeper layers (He et al. ). After concatenating the

input signal and the output of convolutional blocks, the

fully connected layer is used for the last decision layer,

which generates the output.

The output value of the Conv1D layer with input size

(N, Cin, L) and output (N, Cout, Lout):

out (Ni, Coutj ) ¼ bias (Coutj )

þ
X

Cin�1

k¼0

weight (Coutj , k) � input (Ni, k)

(1)

where � is the valid cross-correlation operator (in this case, it is

a convolutional operator),Ni is a batch-size ith, Cout j is a chan-

nel jth, L is the length of signal sequence (if the input is image,

width and height should be used instead of length).

And the length of output signal sequence can be calcu-

lated by using the following formula:

Lout ¼
Lin þ2× padding�dilation× (kernelsize�1)�1

stride
þ1

� �

(2)

where:

• stride is the stride of the cross-correlation

• padding is the amount of zero-paddings on both sides

• dilation is the spacing between the kernel elements

• kernelsize is the size of the convolution kernel

Table 1 | Statistical information on rainfall and streamflow data

Hydrological stations and

datasets

Statistical parameters

μ Sx Cs Xmin Xmax

Chau Doc

Rainfall (mm)

Original data 3.741 10.825 7.354 0 294.5

Training 3.746 11.084 8.260 0 294.5

Cross-validation 4.231 11.162 4.231 0 94.10

Testing 3.055 9.092 5.027 0 105.8

Runoff (m3/s)

Original data 2,583 2,146 0.649 133 8,210

Training 2,570 2,153 0.658 133 8,150

Cross-validation 2,361 1,901 0.607 214 6,420

Testing 2,868 2,312 0.543 238 8,210

Can Tho

Rainfall (mm)

Original data 4.254 10.908 5.769 0 230.4

Training 4.281 11.213 6.139 0 230.4

Cross-validation 3.801 8.763 3.103 0 60.90

Testing 4.232 10.975 4.872 0 109.0

Runoff (m3/s)

Original data 6,371 4,928 0.592 0 34,190

Training 6,165 4,836 0.637 0 34,190

Cross-validation 6,968 4,582 0.288 0 16,600

Testing 6,736 5,581 0.601 0 19,600

Figure 3 | CNN with two BatchNormþ ReLU and max pooling, and fully connected.
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For the Max Pooling 1D, the output value with the

input size (N, C, L) and output (N, C, Lout) could be

described as:

out(Ni, Coutj ) ¼ max
m¼0,...,kernel size�1

input(Ni, Cj, stride × kþm)

(3)

where Ni is the input ith; Cj is the channel jth.

• kernelsize is the size of the window for taking the max

over.

• stride is the stride of the window.

• padding is the amount of zero to be added on both sides.

• dilation is a parameter that controls the stride of elements

in the window.

The length of output signal sequence for the max pool-

ing 1D layer can be calculated using the similar formula in

the Conv1D layer.

LSTM recurrent neural network

Although RNNs have proved successful in tasks such as

speech recognition (Vinyals et al. ) and text generation

(Sutskever et al. ), it can be difficult to train them to

learn long-term dynamics, partially due to the vanishing

and exploding gradient problems (Hochreiter & Schmidhuber

) that can result from propagating the gradients down

through the many layers of the recurrent network, each cor-

responding to a particular time step. LSTM provides a

solution by incorporating memory units that allow networks

to learn when to forget previously hidden states and when to

update hidden states given new information (Figure 4).

LSTM extends the RNN with memory cells, instead of

recurrent units, to store an output information, easing the

learning of temporal relationships on long time scales. The

major innovation of LSTM is its memory cell which essen-

tially acts as an accumulator of the state information.

LSTM makes use of the concept of gating – a mechanism

based on the component-wise multiplication of the input,

which defines the behaviour of each memory cell. LSTM

updates cell states according to the activation of the gates.

One advantage of using the memory cell and gates to control

information flow is that the gradient will be trapped in the

cell and be prevented from vanishing too quickly, a critical

problem for the vanilla RNN model (Hochreiter & Schmid-

huber ; Pascanu et al. ). The input provided to

LSTM is fed into different gates when operation is per-

formed on the cell memory: write (input gate), read

(output gate), or reset (forget gate). The activation of

LSTM units is calculated as in the RNN. The computation

of a hidden value ht of an LSTM cell is updated at every

time step t. The vector representation (vectors denoting all

units in a layer) of the update of an LSTM layer is denoted

as an input gate it, a forget gate ft, an output gate ot, a

memory cell ct, and a hidden state ht.

As research on LSTM has progressed, hidden units with

varying connections within the memory unit have been pro-

posed. We use the LSTM unit as described in Figure 2,

which is described in detail in Graves & Jaitly (). Letting

the sigmoid nonlinearity which squashes real-valued inputs

to a [0; 1] range, and letting the hyperbolic tangent

Figure 4 | A diagram of an LSTM network (left) and LSTM memory cell (right) (Donahue et al. 2015).
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nonlinearity, similarly squashing its inputs to a [�1; 1] range,

LSTM updates for time step t given inputs xt, ht�1, and ct�1

are:

it ¼ σ(Wxixt þWhiht�1 þ bi)

ft ¼ σ(Wxfxt þWhfht�1 þ bf)

ot ¼ σ(Wxoxt þWhoht�1 þ bo) (4)

gt ¼ ϕ(Wxcxt þWhcht�1 þ bc)

ct ¼ ft ⊙ ct þ it ⊙ gt

ht ¼ ot ⊙ ϕ(ct)

where i, f, o, c, and g are, respectively, the input gate, forget

gate, output gate, cell activation, and input modulation gate

vectors. All gate vectors are the same size as the vector h

that defines the hidden value. Terms represent an element-

wise application of the sigmoid (logistic) function. The

term xt, is the input to the memory cell layer at time

t; Wxi, Wxf , Wxo, Wxc, Whi, Whf , Who, Whc are weight

matrices, with subscripts representing from–to relationships

(the input–input gate matrix, the hidden–input gate matrix,

etc.). bi, bf , bo, bc are bias vectors; ϕ stands for an

element-wise application of the tanh function; ⊙ denotes

element-wise multiplication.

The Adam optimizer is applied for training the LSTM

model. This algorithm is widely used for deep learning

models that need the first-order, gradient-based descent

with small memory and a computer adaptive learning rate

for different parameters (Jangid & Srivastava ). This

method is easy to implement and computationally efficient

and has proved better than the RMSprop and Rprop optimi-

zers (He et al. ). The rescaling process of the gradient is

dependent on the magnitudes of parameter updates. The

Adam optimizer does not need a stationary object and

works with limited gradients. We compute the decaying

averages of past and past squared gradients mt and vt,

respectively, as follows:

mt ¼ β1mt�1 þ (1� β1)gt (5)

vt ¼ β2vt�1 þ (1� β2)g
2
t (6)

mt and vt are estimates of the first moment (the mean) and

the second moment (the uncentred variance) of the gradi-

ents, respectively. mt and vt are initialized as vectors of

00s, the authors of Adam observe that they are biased

towards zero, especially during the initial time steps, and

especially when the decay rates are small (i.e. β1 and β2 are

close to 1). They counteract these biases by computing

bias-corrected first- and second-moment estimates:

m̂t ¼
mt

1� βt1
(7)

v̂t ¼
vt

1� βt2
(8)

They then use these to update the parameters:

θtþ1 ¼ θt �
η

ffiffiffiffi

v̂t
p

þ ϵ1

m̂t (9)

In this study, we use the default value: β1 ¼ 0:9,

β2 ¼ 0:999 and ϵ ¼ 10�8 , and the learning rate η ¼ 0:001.

More detail about this method is available in Kingma &

Ba ().

MODEL SET-UP

Potential input variables

Screening possible variables for model inputs in the neural

network method is an important step to select an optimal

architecture of models. The causal variables in the

rainfall–runoff relationship may include rainfall, evaporation,

and temperature. The number of different variables depends

on the availability of data and the objectives of the studies.

Most studies applied rainfall and previous discharges with

different time steps and combinations as inputs (Sivapraga-

sam et al. ; Xu & Li ; Jeong & Kim ; Kumar

et al. ), while other studies attempted to apply other fac-

tors such as temperature or evapotranspiration, or relative

humidity (Coulibaly et al. ; Abebe & Price ; Solo-

matine & Dulal ; Wilby et al. ; Hu et al. ;

Toth & Brath ; Solomatine & Shrestha ; Soloma-

tine et al. ). However, some studies pointed out that
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evaporation or temperature as an input variable seemed

unnecessary and may lead to chaos and noises during the

training process (Abrahart et al. ; Anctil et al. ;

Toth & Brath ). Anctil et al. () pointed out that

potential evapotranspiration did not contribute to improving

the ANN performance of rainfall–runoff models. Toth &

Brath () also concluded that considering potential eva-

potranspiration data did not enhance model performance

and may yield poorer results in comparison with the non-

use of these data in the models. These results may be

explained by the fact that the addition of evapotranspiration

or temperature input nodes increases the network complex-

ity and therefore the risk of overfitting (Wu & Chau ).

Thus, in this study, we use rainfall and streamflow as input

variables in model development.

Model development

This study developed a rainfall–runoff relationship with the

CNN and LSTMmodels for the two hydrological stations on

the Bassac River. The general representative data-driven

model can be defined as:

Q̂t ¼ f(Xt)

¼ f(Qt�1, Qt�2, Qt�n, . . . , Rt�1, Rt�2, Rt�m) (10)

where Q̂t stands for the predicted flow at time instance t;

Qt�1, Qt�2, Qt�3 are the antecedent flow (up to t–1, t–2,

t–n … time steps); Rt�1, Rt�2, Rt�m are the antecedent rain-

fall (t–1, t–2, t–m time steps). The predictability of future

behaviours is a consequence of the correct identification

of the system transfer function of f(.). We test three different

correlation types including Kendall, Pearson, and Spearman

to analyse the correlation between Q and Qt�1, Qt�2, Qt�3,

and correlation between Q with Rt�1, Rt�2, Rt�3, Rt�4.

From Table 2, the correlations for discharge and rainfall

and the correlation between Q and Qt�1, Qt�2, Qt�3 are

still high, while the autocorrelations between Q and

Rt�1, Rt�2, Rt�3 reduce significantly, meaning the later

antecedent rainfall from t� 4 time step does not contribute

considerably to the forecast performance (autocorrelation

for 4 lag day <0.1 for rainfall data). Therefore, we consider

the antecedent flow and rainfall values from t to t� 3 time

steps.

Since the appropriate number of hidden layers and

dependent nodes for the models is unknown, a trial-and-

error method was used to find the best network’s configur-

ation. An optimal architecture was determined by

changing the number of the channel from 8, 16, 32, and

64 for CNN and 10, 15, 20, 25, and 30 memory blocks for

LSTM, and was based upon minimizing the difference

among the neural network predicted values and the desired

outputs. The total architectures of both models are 30

obtained from four different channels and five numbers of

memory blocks and six input combinations. The training

of the neural network models was stopped when either the

acceptable level of errors was achieved, or the number of

iterations exceeded a prescribed value. The neural network

model configuration that minimized the mean absolute

error (MAE) and root mean square error (RMSE) and opti-

mized the R was selected as the optimum and the whole

analysis was repeated several times. The CNN and LSTM

architectures were modified by changing the number of

Table 2 | The Kendall, Pearson, and Spearman correlations between Q and R for all data at Chau Doc and Can Tho stations

Correlations

Discharge Rainfall

Qt–Qt�1 Qt–Qt�2 Qt–Qt�3 Qt–Rt Qt–Rt�1 Qt–Rt�2 Qt–Rt�3 Qt–Rt�4

Kendall Chau Doc 0.9594 0.9382 0.9267 0.1997 0.205 0.2103 0.2153 0.2203

Can Tho 0.9054 0.8663 0.8352 0.3243 0.3253 0.3282 0.3309 0.3317

Pearson Chau Doc 0.9990 0.9974 0.9953 0.1609 0.1626 0.164 0.1656 0.1673

Can Tho 0.9851 0.9781 0.9701 0.2027 0.2038 0.2054 0.2053 0.2060

Spearman Chau Doc 0.9962 0.9925 0.9888 0.2683 0.2754 0.2827 0.2895 0.2963

Can Tho 0.9854 0.9738 0.9629 0.4413 0.4426 0.4458 0.4494 0.4507
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hidden layers and its neurons, of the initial weights, as well

as the type of input and output functions. Each modification

was tested with 50 trials, which served as the basis for the

performance assessment of mean values.

The LSTM rainfall–runoff model was developed based

on the recurrent neural network, but the structure of net-

work is more complicated with input, output, and forget

gates in memory blocks. The input units are fully connected

to a hidden layer consisting of memory blocks with one cell

each. The cell outputs are fully connected to the cell inputs,

to all gates, and to the output units. All gates, the cell itself,

and the output unit are biased. Bias weights to input and

output gates are initialized block-wise: �0.5 for the first

block, �1.0 for the second, �0.5 for the third, and so

forth. Forget gates are initialized with symmetric positive

values: þ0.5 for the first block, þ1 for the second block,

etc. These are standard values that we use for all exper-

iments. All other weights are randomly initialized in the

range [�0.1; 0.1]. The cell’s input squashing function g is a

sigmoid function with the range [�1.0; 1.0]. The squashing

function of the output unit is the identity function.

A critical concern in the CNN and LSTM application is

how to select the best model structure from the possible

input variables and to define the number of hidden nodes,

but there is no general rule to deal with this problem. There-

fore, the trial-and-error procedure is a unique technique to

handle this obstacle. To select the input variables of CNN

and LSTM, we propose the input combination based on cor-

relation and lag analysis and the candidate input variables as

rainfall and runoff at different time steps. There are six

selected combinations of input variables for model training

and the construction of model structure:

C1: R(t� 1), Q(t� 1)

C2: R(t� 1), Q(t� 1), Q(t� 2)

C3: R(t� 1), R(t� 2), Q(t� 1), Q(t� 2)

C4: R(t� 1), R(t� 2), Q(t� 1)

C5: R(t� 1), Q(t� 1), Q(t� 2), Q(t� 3)

C6: R(t� 1), R(t� 2), Q(t� 1), Q(t� 2), Q(t� 3)

Evaluation of model performance

The evaluation of model performance is based on the stat-

istical properties of model outputs. Legates & McCabe

() concluded that only one statistical index as the

correlation coefficient (R) is an inappropriate measure in

hydrologic model evaluation. Ritter & Muñoz-Carpena

() recommended that a combination of graphical results,

absolute value error statistics (i.e., RMSE), and normalized

goodness-of-fit statistics is applied. Moreover, Moriasi et al.

() also recommended that three quantitative statistics

(Nash–Sutcliffe, percent bias, and the ratio of the RMSE)

should be used to evaluate the model efficiency. Therefore,

we applied the three different indices for presenting good-

ness of fit, including the RMSE, MAE, and R. To better

compare the performance of different model architectures,

the present study additionally uses another statistical

index, mean absolute percentage error (MAPE). The

MAPE is a statistical measure of predictive accuracy

expressed as a percentage. The MAPE is useful for evaluat-

ing the performance of predictive models due to its

relative values. The MAPE effectively reflects relative differ-

ences between models because it is unaffected by the size or

unit of actual and predicted values (Kaveh et al. ). Four

measures are, therefore, used in this study and are listed

below:

R ¼
n
Pn

i¼1 (QiQ̂i)�
Pn

i¼1 Qi

� �
Pn

i¼1 Q̂i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1 Q
2
i �

Pn
i¼1 Qi

� �2
h i

× n
Pn

i¼1 Q̂
2
i �

Pn
i¼1 Q̂i

� �2
� �

s

(11)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

(Qi � Q̂i)
2

v

u

u

t (12)

MAE ¼
1

n

X

n

i¼1

jQi � Q̂ij (13)

MAPE ¼
1

n

X

n

i¼1

jQi � Q̂ij

jQij
× 100% (14)

where n is the number of observations, Q̂i is the predicted

flow, Qi represents the observed river flow.
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RESULTS AND DISCUSSION

The predictions of daily runoff were modelled by 24 differ-

ent architectures of CNN and 30 topologies of LSTM for

the two hydrological stations and six input combinations

based on the testing dataset. Tables 3 and 4 present respect-

ive obtained results for the CNN and LSTM models. In

Table 3, the CNNmodel using input data of the combination

C5 provides the best result for Chau Doc and Can Tho

stations in the testing period. In this combination, the

CNN structure consists of 32 channels at the layer 1 and

64 channels at the layer 2 for both Chau Doc and Can

Tho stations.

According to Table 4, at the Chau Doc station, the

LSTM model, trained with 30 memory blocks and 50,000

loops, provides the best efficiency using the combination

C2 with a high value of R¼ 0.993 and the lowest RMSE¼

187.221 m3/s and MAE¼ 148.475 m3/s in the testing

phase. From this table, it is also seen that for the Can Tho

station, the LSTM using the input combination C5 performs

Table 3 | Performance of the CNN model for discharge estimation in both stations (testing dataset)

Combination C1 C2 C3 C4 C5 C6

Station Chau Doc

Layer 1 out channel 8 16 16 32 32 32

Layer 2 out channel 16 32 32 64 64 64

R 0.9992 0.9994 0.9994 0.9980 0.9994 0.9994

RMSE 104.907 96.405 97.760 155.187 89.571 94.784

MAE 80.535 71.237 75.468 117.602 66.348 71.802

Station Can Tho

Layer 1 out channel 16 8 16 32 32 32

Layer 2 out channel 32 16 32 64 64 64

R 0.955 0.963 0.948 0.942 0.978 0.953

RMSE 1,187.327 1,076.937 1,273.694 1,341.636 834.01 1,212.653

MAE 822.854 798.793 897.18 903.554 652.742 850.076

Bold values indicate the best performance evaluation metrics.

Table 4 | Performance of the LSTM model for discharge estimation in both stations (testing dataset)

Combination C1 C2 C3 C4 C5 C6

Station Chau Doc

LSTM: memory blocks 30 30 20 20 20 25

Number of loops 10,000 50,000 100,000 100,000 20,000 100,000

R 0.98 0.993 0.997 0.981 0.992 0.981

RMSE 329.675 187.221 353.788 321.351 210.258 322.655

MAE 225.602 148.475 264.536 219.69 172.287 220.808

Station Can Tho

LSTM: memory blocks 20 25 25 10 15 25

Number of loops 10,000 20,000 50,000 10,000 10,000 20,000

R 0.971 0.989 0.982 0.9710 0.9872 0.9825

RMSE 2,084.928 1,143.519 1,514.089 2,020.234 1,021.185 1,277.535

MAE 991.933 817.654 993.076 1,263.875 790.801 954.217

Bold values indicate the best performance evaluation metrics.
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better than the models using other combinations. This

model uses 15 memory blocks and 10,000 loops.

Tables 3 and 4 also show that the CNN model can sig-

nificantly improve the prediction efficiency in the testing

period at Chau Doc and Can Tho stations. The best CNN

model improves the RMSE, MAE, and R values from

89.571, 66.348, and 0.9994 for Chau Doc and 834.01,

652.742, and 0.978 for Can Tho, respectively.

The temporal variations in the observed and predicted

discharges using both models and the best input combi-

nations (C5 and C5 for CNN, and C2 and C5 for LSTMs)

for Chau Doc and Can Tho stations are, respectively, illus-

trated in Figures 5 and 6, which shows that the predicted

discharges are plotted against observed discharges.

To assess the model efficiency for improving the fore-

casting accuracy, some researchers carried out runoff

predictions using ANN with two different inputs: inputs

with previously observed runoffs only and inputs with

both previous rainfalls and runoffs. Only a few researchers

applied the pre-processing technique to improve the ANN

model ability for time-series prediction. For example,

Antar et al. () used rainfall and runoff as an input for

ANN model training, and the results were compared with

distributed rainfall–runoff models. The results obtained

from ANN show that the ANN technique has great potential

in simulating the rainfall–runoff process adequately. Tokar

& Johnson () also investigated different ANN architec-

tures for runoff prediction using daily precipitation,

temperature, and snowmelt as the model inputs. Nine

models were built to test the effect of a number of input vari-

ables, and the ratio of the standard error to the standard

deviation of runoff used as goodness-of-fit indices indicated

that the highest values were in a range of 0.7–0.82 for train-

ing and testing. Sivapragasam et al. () applied ANN

combined with genetic programming to forecast flows

using both rainfall and runoff data. Results indicated that

the model with rainfall and flow data as inputs made a

more accurate prediction than that with only a flow input.

Furthermore, Wu & Chau () carried out runoff predic-

tion using ANN coupled with singular spectrum analysis

(SSA) as a pre-processing technique. The results show that

the coefficient of efficiency (CE) varies in a range of 0.74–

0.89 for both using rainfall and flow as model input variables

without using SSA and the CE varies from 0.87 to 0.94 for

the case using SSA. From the statistical performance evalu-

ation, it is clear that our study used CNN and LSTM models

Figure 5 | Predicted discharge for the Can Tho station in the testing period (a) CNN-C5 and (b) LSTM-C5.
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only without the pre-processing technique, but the model

performances are better than the above-mentioned models

in terms of model efficiency.

From Table 2, it can be concluded that rainfall did not

significantly contribute to the runoff prediction because

the most important factor to CNN and LSTM models is pre-

vious flows. In general, the inclusion of rainfall in the input

could be helpful in improving the accuracy of predictions;

and adding local rainfall help capturing climatic variability

of the studied watershed (Wu & Chau ).

As illustrated in Figure 5, the CNN model yields better

results for discharge prediction than those predicted by the

LSTM model. Both models underestimate the discharge

peaks. However, in this instance, the CNN model performs

better than the LSTM model, and the results obtained by the

CNN model are closer to the 45� straight line in the scatter

plots. This point is also obvious from the temporal plot

where the CNN model demonstrates an improved agree-

ment with the observed time series at the peaks than the

LSTM model.

Figure 6 proves that the best results obtained by the

CNN and LSTM models are very close to the observed

data and the differences between their prediction results

are insignificant. This point makes the graphical comparison

between these models difficult. As a consequence, the stat-

istical performance presented in Tables 3 and 4 provides

statistical indices that show better efficiency comparison.

Figure 7 shows the performance index MAPE of the

CNN and LSTM models for the two stations and all differ-

ent input combinations. As can be observed, the CNN

model performs better than the LSTM model for all the

input combinations at the Chau Doc station. The CNN

model shows the lower MAPE values with all combinations

for Chau Doc and Can Tho stations, except for C2 at the

Can Tho station. The differences between the two values

for both models are significant. This proves that the CNN

model can work efficiently to predict rainfall–runoff.

Tables 3 and 4 present a comparison of runoff predic-

tions using CNN and LSTM with rainfall and flow rates as

input variables including different previous days of past rain-

fall and flow as input variables. It can be observed that, for

the case study of Chau Doc and Can Tho, the inclusion of

one previous rainfall (combination C5) in input results in

the improvement of model performance of CNN. While

for the case of Chau Doc, the inclusion of two previous

flow and one previous rainfall as input variables (combi-

nation C2) can result in the highest LSTM model

efficiency. However, the LSTM model can simulate runoff

Figure 6 | Predicted discharge for the Chau Doc station in the testing period (a) CNN-C5 and (b) LSTM-C5.
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with the best efficiency falling into the combination C5 with

one previous rainfall and three previous flows. Results indi-

cate that the architectures of the LSTM model are strongly

influenced by the quality of input data (e.g., length, magni-

tude, and noise).

Figures 8–11 are the scatter plots, showing the corre-

lation between observed and predicted discharge time

series for the six combination at Chau Doc and Can Tho

stations. Both of the LSTM and CNN prediction results exhi-

bit that if we adopt equalled or more input variables from

rainfall data compared to discharge data (combinations

C1, C3, and C4), the goodness-of-fit statistics is reduced.

This also reveals that the impact of upstream inflows

contributes more significantly to the flow in the delta

compared to rainfall. In Li et al. (), the authors entered

the same number of discharge and rainfall inputs for the

model (the number of considered days for rainfall and dis-

charge data is similar), but this may ignore the fact that

soil layers delay runoff generation. Water, basically, can be

absorbed into soil owing to the infiltration and percolation

processes (Hu et al. ), and soil layers then release

water later in the form of baseflow when saturated. As a

result, when Hu et al. () increase the number of days

(N) considered, the model yields a more accurate predic-

tion. The lack of model parameter information is the main

barrier of traditional physical-based and conceptual hydrolo-

gical models (Kratzert et al. ). Although deep learning

models are normally considered as ‘black box’ as the

Figure 7 | Performance index MPAE for different input combinations (a) Chau Doc station and (b) Can Tho station.

Figure 8 | Scatterplots of six combinations for the Chau Doc station by the CNN model.
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nature of nodes and their weights are unknown, these

advance techniques can actually solve the problem of the

lack of observation data of the conventional models. How-

ever, we suggest feeding the LSTM and CNN models with

input variables for rainfall–runoff prediction at different

time steps.

CNN and LSTM seem also successfully capturing both

seasonal and daily flow fluctuations. The flow in the

Mekong Basin mostly comes from rainfall in the lower

basin, and the amount of rainfall fluctuates. Higher

flows observed in the rainy season are due to the develop-

ment of tropical typhoons and depression on the

Figure 9 | Scatterplots of six combinations for the Chau Doc station by the LSTM model.

Figure 10 | Scatterplots of six combinations for the Can Tho station by the CNN model.
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Vietnamese East Sea during the monsoonal season. How-

ever, due to the uneven distribution of rainfall in space

and time, the flows at the two gauged stations are different

over time. Historical data exhibit that local rainfall con-

tributes an important amount during the late stage of the

wet season in the basin and in the dry season. In both

models (CNN and LSTM), the first combination (C1)

and the fourth combination (C4) have lower performance

during the peak flow period, especially at Can Tho. These

characteristics confirm the influence of upstream flows on

these stations during the wet season. In the low-flow

period, the prediction is quite accurate for all the combi-

nations, which suggests a stable increase/decrease in

flows.

It is also worth noticing that CNN performs better curve

fitting than LSTM at Chau Doc, while at Can Tho, there was

an opposite trend. This is, however, related to the hydrologi-

cal characteristics of the study area. Dang et al. (),

modelling the VMD with a hydrodynamic model, concluded

that Can Tho is slightly influenced by tide originated from

the East Sea. Subsequently, the changes in discharge at

Can Tho is more drastic than at Chau Doc. LSTM is an aug-

mented form of RNNs which mostly deal with a sequence of

values (Graves & Jaitly ) and are more sensitive to both

distant and recent events. In the case of Chau Doc, the CNN

likely provides more accurate prediction with high consist-

ent inputs.

Finally, we compared the performance of deep learning

(CNN and LSTM) with traditional methods such as ANN,

GA-SA, SARIMA, and ARIMA which were often carried

out for tasks like rainfall–runoff modelling. Table 5 shows

the statistical performance of the traditional models at two

gauged stations (Chau Doc and Can Tho) on the mainstream

of the Mekong River. Figures 12–15 are scatterplots exhibit-

ing the relationship between the observed and predicted

data at the stations. These results demonstrated that both

CNN and LSTM have the ability to outperform linear and

recurrent benchmarked models. In other words, CNN and

LSTM are more suitable for rainfall–runoff modelling than

the traditional models.

In the Mekong basin, although dozens of dams have

been installed recently for electricity generation, the

impact of dams on the water cycle in the VMD is still limited

(Dang et al. ), and the river flow is still stable. Conse-

quently, the CNN is effective for modelling. Nevertheless,

the number of dams will increase dramatically in the next

decades to fulfil the thirst for energy of surrounding econom-

ies (Hecht et al. ). More studies will be very much

needed to understand if deep machine learning can capture

regulated behaviours of river flows.

Figure 11 | Scatterplots of six combinations for the Can Tho station by the LSTM model.
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CONCLUSION

An attempt was made in this paper to investigate the use

of the CNN and LSTM models for predicting daily

rainfall–runoff at Chau Doc and Can Tho stations, the

VMD. Both the CNN and LSTM models have a high poten-

tial for predicting daily rainfall–runoff, so as the CNN and

LSTM models were assessed in this study with a Python

Table 5 | The statistical performance of ANN, GA-SA, SARIMA, and ARIMA models

Combination C1 C2 C3 C4 C5 C6

ANN

Station Chau Doc

R 0.925 0.954 0.929 0.921 0.941 0.93

RMSE 631.836 495.265 614.069 650.265 559.747 610.255

MAE 527.141 402.819 518.852 557.982 460.525 491.862

Station Can Tho

R 0.807 0.793 0.8 0.805 0.869 0.788

RMSE 2,450.187 2,538.106 2,493.204 2,467.135 2,014.845 2,567.692

MAE 1,717.062 1,824.27 1,849.792 1,689.624 1,525.442 1,655.324

GA-SA

Station Chau Doc

R 0.88 0.893 0.899 0.869 0.885 0.895

RMSE 800.205 756.104 734.565 835.735 783.534 749.035

MAE 693.561 659.242 640.103 729.406 687.416 627.801

Station Can Tho

R 0.618 0.665 0.697 0.646 0.689 0.668

RMSE 3,452.377 3,231.273 3,070.225 3,321.072 3,109.263 3,215.501

MAE 2,657.278 2,192.053 2,211.622 2,493.402 2,399.565 2,277.55

SARIMA

Station Chau Doc

R 0.757 0.75 0.753 0.752 0.783 0.824

RMSE 1,140.072 1,154.929 1,149.346 1,150.177 1,077.725 970.298

MAE 1,014.372 1,026.436 1,026.329 1,016.723 955.191 838.18

Station Can Tho

R 0.58 0.623 0.635 0.63 0.675 0.649

RMSE 3,619.059 3,424.806 3,370.358 3,392.235 3,181.232 3,305.287

MAE 2,742.88 2,552.046 2,572.373 2,551.126 2,445.713 2,355.786

ARIMA

Station Chau Doc

R 0.724 0.746 0.752 0. 658 0.608 0.673

RMSE 1,214.163 1,164.335 1,151.102 1,352.029 1,446.547 1,322.157

MAE 1,079.491 1,034.709 1,028.007 1,200.062 1,293.49 1,162.63

Station Can Tho

R 0.518 0.566 0.576 0.584 0.581 0.625

RMSE 3,876.193 3,676.701 3,633.099 3,597.69 3,608.899 3,417.165

MAE 2,991.4 2,744.319 2,729.966 2,718.979 2,788.73 2,451.029
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Figure 12 | Scatterplot for ANN simulations (Can Tho: top panel, Chau Doc: bottom panel).

Figure 13 | Scatterplot for GA-SA simulations (Can Tho: top panel, Chau Doc: bottom panel).

Figure 14 | Scatterplot for SARIMA simulations (Can Tho: top panel, Chau Doc: bottom panel).
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script. The CNN model provided better results for discharge

prediction than those predicted by the LSTM model at the

Can Tho station, especially for the peaks. For the high dis-

charge values at both stations, the results obtained by the

CNNmodel were closer to the 45� straight line in the scatter

plots. At the Chau Doc station, the predicted results of the

two models were close to each other, and the CNN model

provided slightly better predictions. While both CNN and

LSTM are superior to traditional methods as shown in this

study, it can be concluded that both the proposed models

can be used as alternatives to improve the prediction of

hydrological variables. More opportunities exist for deep

learning to advance our knowledge in earth system sciences.

Since upstream flows have been increasingly regulated in

the basin, studies on using deep learning to predict regulated

flows should be devoted, so as policymakers could be more

proactive in proposing adaptation measures.
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