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ABSTRACT Streamflow forecasting is essential for hydrological engineering. In accordance with the
advancement of computer aids in this field, various machine learning (ML) models have been explored to
solve this highly non-stationary, stochastic, and nonlinear problem. In the current research, a newly explored
version of an ML model called the long short-term memory (LSTM) was investigated for streamflow
prediction using historical data for forecasting for a particular period. For a case study located in a tropical
environment, the Kelantan river in the northeast region of the Malaysia Peninsula was selected. The
modelling was performed according to several perspectives: (i) The feasibility of applying the developed
LSTM model to streamflow prediction was verified, and the performance of the developed LSTM model
was compared with the classic backpropagation neural network model; (ii) In the experimental process of
applying the LSTM model to the prediction of streamflow, the influence of the training set size on the
performance of the developed LSTM model was tested; (iii) The effect of the time interval between the
training set and the testing set on the performance of the developed LSTM model was tested; (iv) The effect
of the time span of the prediction data on the performance of the developed LSTM model was tested. The
experimental data show that not only does the developed LSTMmodel have obvious advantages in processing
steady streamflow data in the dry season but it also shows good ability to capture data features in the rapidly
fluctuant streamflow data in the rainy season.

INDEX TERMS Deep learning model, streamflow forecasting, tropical environment, window scale fore-
casting, LSTM.

I. INTRODUCTION

Studies have consistently evidenced the complex nature of
predicting streamflow due to the involvement of natural vari-
abilities, such as the complex nature, non-linearity, random-
ness, and non-stationarity of river systems [1], [2]. Several
research efforts have been reported in the field of hydrology
pertaining to the improvement of the reliability and accuracy
of hydrological variable prediction [3]–[7]. Until now, many
hydro-meteorological studies have been reported, but there
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has been no single approach that can be said to be efficient
in modelling hydrological events under varying conditions,
particularly as there are various catchment features that play
a part. This is due to certain physical processes that char-
acterize river flows, such as the periodicity of the methods
and the current patterns in the model data [8]. It could be
said that, currently, a model that outperforms other models
in various hydrological conditions is non-existent. It may not
be feasible to generate consistent prediction using several
models due to the dynamic nature and non-stationarity of
historical data; hence, studies are needed to develop more
efficient models based on the available historical data [9].
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The recent advancements in computational models can
also be exploited to improve modelling accuracy of such
models [7], [10], [11]. The feasibility of using novel
data-intelligence techniques in developing efficient forecast-
ing models should also be explored.
For the purposes of water resource management, it is

important to understand the hydrological processes that con-
trol streamflow patterns. Several studies have been conducted
in recent years on streamflow phenomena due to the interest
in both global and regional changes in hydrologic patterns
that result in drought and flooding [1], [12]–[14]. Evidence in
the literature suggests that streamflow patterns can be mod-
elled using either physically based models or artificial intel-
ligence (AI) based models [15]. Meanwhile, there is a need
for more studies on the hydrological parameters to develop
the required initial and boundary criteria for simulating the
elemental processes of specific watersheds with the aid of
physically based models [16], [17].
From the reported studies on streamflow simulation, it is

evident that classical regression tools are commonly used
despite being associated with low accuracy levels [18];
this has motivated the development of AI methods, which
offer more accuracy. Several reviews in the field of hydrol-
ogy suggest that various AI models have been investigated
for streamflow simulation; such models include support
vector machine (SVM), artificial neural network (ANN),
adaptive neuro-fuzzy inference system, complementary
wavelet-AI, as well as hybrid evolutionary computing
models [1], [12]–[14], [19]–[21]. However, several chal-
lenges are still associated with these models, especially
regarding their implementation as expert systems for
sustainable river engineering. Other challenges are their
time-inefficiency and manual modelling processes. In var-
ious studies, various model optimisation methods such as
input vector optimisation, prediction interval optimisation,
integration, hybridisation, and data decomposition have been
proposed [22]–[24]. Thus, it is necessary to come up with
a universally applicable and automated AI model that is
applicable across different local scales.
The non-linear relationships between the estimators

and the simulated parameters can be understood using
conceptually-based methods as they rely on historical input
data and do not require previous flow information [25]. Such
models could be beneficial as they demand few hydrological
inputs [26]. The basic steps in the AI-based models are as
follows: problem analysis, data collection & preprocessing,
data-driven model selection, identification of the optimal
model from the host of trained models, and evaluation of
the selected model. The most important of these steps is
the data-driven model identification as this is where the
learning process is performed, and the features are extracted.
The optimal model approximation is performed by reducing
the training error between the actual and predicted matrix;
the selection of the optimal model is made from the host of
trained models as the model with the lowest mean squared
error after a series of independent validation processes.

The approximation performance of AI models can also be
influenced by factors that affect actual hydrological condi-
tions, such as the determination of the model input, the con-
figuration of the model, and the time-scale horizon.

As compared to the traditional ANNmodel, the long short-
term memory (LSTM) network model adds the setting of
the forget gate. The addition of thresholds allows the LSTM
model to be reset internally at the appropriate times to avoid
network crashes. LSTM has better time series capture capa-
bilities and better long-term memory, and can solve complex
artificial long-time-lag problems [27], [28]. During the past
two years, the application of LSTM to time series forecasting
has received increasing attention [29]. LSTM is widely used
for forecasting various time series, including flood debris,
groundwater levels, lake water levels, watershed runoff, and
meteorological problems [30]–[38].

The advantages and feasibility of LSTM in capturing the
long-term dependence of time series were highlighted by
comparing LSTM with the autoregressive integrated mov-
ing average and the generalised regression neural network
models [39]. In 2018, Zhang et al. applied LSTM to the
analysis of countercurrent problems in wastewater treatment
plants and compared it with the Elman and NARX (non-
linear autoregressive network with exogenous inputs) net-
works [40]. Zhang et al. added a loss layer based on LSTM
to predict the depth of the water table [41]. In the group’s
study, the new forecasting model was compared with the
feed-forward neural network and the double LSTM model.
The results show that the new model is more accurate for
groundwater level forecasting. Later, LSTM was combined
with the lion optimiser algorithm model of the ant colony
optimisation (ALO) model to form the LSTM-ALO model,
which was applied to flow forecasting for the Astor River
basin [42]. Widiasari et al. applied an LSTM model to fore-
cast river water levels in the lower reaches of the Semarang
region. The results demonstrated the role of LSTM in flood
control and disaster mitigation [43].

In an additional study, LSTM was applied to studying the
water level fluctuations and reservoir operations in Dongting
Lake [44]. The LSTM model was compared with the SVM
model, and a comprehensive examination of the influence
of the Three Gorges Dam on the water level of Dongting
Lake was conducted. The accuracy of the LSTM model used
in the study was much better than that of the SVM model,
especially in forecasting high water-level values, where it
showed an excellent performance [44]. In the research related
to reservoir operation, multiple studies were conducted for
different time scales and different flow regimes, and the
forecasting results of three different models, LSTM, back-
propagation (BP), and SVM, were compared. Compared to
the BP and SVM models, the LSTM model predicted the
operating modes under different conditions more quickly and
accurately [45]. Tian et al. explored the potential of the LSTM
model for runoff simulations of the Xiangjiang River and
the Qujiang River basins. In this study, LSTM demonstrated
excellent time series capture and better long-term memory
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compared to SVM [46]. In 2019, Huang et al. published
a study in which LSTM was combined with the E1 Nino-
Southern Oscillation index. In comparison with the linear
regression model, LSTM used the nonlinear evolution of the
data better and demonstrated its statistical advantage in long
leads [47].
As highlighted in the previous paragraphs, the LSTM

model has been increasingly used for various aspects of
hydrology research. In the literature survey, the applica-
tion of LSTM in groundwater level forecasting, reservoir
operation forecasting, runoff problems in the Xiangjiang
River and Qujiang River basins, and E1 Nino-Southern
Oscillation positively demonstrated the feasibility of using
LSTM to predict water conservancy and climate-related
issues [48]. The streamflow problem is an important issue
that combines water conservancy and climate. The applica-
tion of LSTM in streamflow forecasting research has impor-
tant practical significance for flood control and disaster
reduction.
As compared with previous studies, this innovative study

was conducted from the following perspectives.

i. The first objective was to examine the feasibility
of applyingthe developed LSTM to streamflow fore-
casting located in a highly stochastic environment.
The time series characteristics of streamflow peri-
odicity and the reliable accuracy of the developed
LSTM model for streamflow forecasting results illus-
trate the feasibility of using the LSTM in streamflow
forecasting.

ii. Based on the first objective, the effects of the size of
the training set on the performance of the model were
explored.

iii. Based on the second objective, the effects of thetime
intervalbetween thetraining set dataand testing set data
on the performance of the model were explored.

iv. Based on thethird objective, the effects of the time span
of predicted data on the performance of the model were
explored.

II. STUDY AREA DESCRIPTION AND DATA AVAILABILITY

In this study, the daily scale streamflow information used was
collected from the Kelantan River located in the northeastern
region of the Malaysia Peninsula. The location of the river is
presented in Fig. 1. Permission to collect the historical data
was obtained from the Malaysian Department of Irrigation
and Drainage. The measurements of the streamflow were
collected using telemetry methods, where a sensor placed at
the targeted area of the river calculates the water level pres-
sure. The case study site is predisposed to flooding because
of heavy monsoon rainfall events. Hence, the adoption of
such an intelligent model for streamflow prediction can be
an important step in flood hydrology assessments. It can also
be of significant economic, agricultural, and infrastructural
importance. The total length of the Kelantan River is 248 km,
and its drainage area is approximately 13,170 km2. The
daily flow data of the river were obtained for the observed

FIGURE 1. Kelantan river case study area located in the northeastern
region of the Malaysia Peninsula.

period of 1964 – 2004. The data set includes data such as
streamflow and daily precipitation. The typical characteris-
tics of the streamflow of the Kelantan River are presented
in Table 1.

The original data of the Kelantan River used in this study
include two datasets: streamflow and rainfall. Fig. 2 (a) shows
the streamflow. The time series includes a total of 14,976 data
observations for the 50 years from January 1, 1964 to
December 31, 2004. Fig. 2 (b) shows the rainfall. The time
series includes a total of 14,976 data observations over the
50 years from January 1, 1964 to December 31, 2004. The
changes in the streamflow of the Kelantan River have obvious
periodic characteristics.

III. METHODOLOGY

In this study, the LSTM model was performed by Tensor-
Flow to predict the streamflow. The complete forecasting
process is shown in Fig. 3. The original streamflow data
is standardised by z-score normalisation, and then a cyclic
neural network is created. The LSTM model is well-trained
by means of parameter adjustment, and the pre-processed
data are input into the trained LSTM. Finally, the predicted
data are output to complete the LSTM-based streamflow
forecast.

A. LONG SHORT-TERM MEMORY MODEL

The LSTM model was proposed by Hochreiter et al.
in 1997 [27], and Gers et al. conducted a detailed study and
elaboration of LSTM’s forget gate in 1999 [28]. As shown
in Fig. 4, the input gate, output gate, and forget gate
are adopted by the LSTM model cell, which makes the
model choose the states that have more influence on the
current state, compared with the recurrent neural network
model.
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TABLE 1. Kelantan streamflow characteristics from 1996 to 2005.

FIGURE 2. Schematic diagram of Kelantan River’s original dataset, including (a) the streamflow, and
(b) the rainfall.

B. MODEL STRUCTURE

1) FORECASTING PROCESS

The LSTMmodel adopted in this study is a three-layer neural
network, which consists of an input layer, a hidden layer, and
an output layer. The neuron number of the hidden layer is set
according to Formula (1).

M =
√
a+ b+ c (1)

where a is the neuron number of the input layer, b is the
neuron number of the output layer, and c is a constant within
the interval [0, 10].

In the work described in this article, the input layer size
is 2, and the output layer size is 1. Combining Formula (1)

and Table 2, we consider the number of hidden layer units
as 30.

Three thresholds in the LSTM cell follow Formulas (2)
to (4).

i(t) = σ

(

Wi ·
[

h(t−1), x(t)
]

+ bi

)

(2)

f (t) = σ

(

Wf ·
[

h(t−1), x(t)
]

+ bf

)

(3)

o(t) = σ

(

Wo ·
[

h(t−1), x(t)
]

+ bo

)

(4)

where i(t) is the input threshold at time t , f (t) is the forget
threshold at time t, o(t) is the output threshold at time t ,
x(t) is the input of the training sample at time t , h(t) is the
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TABLE 2. Test results of various parameters of the developed LSTM model.

FIGURE 3. Schematic diagram of the modelling process of the streamflow
prediction model.

output of the current unit at time t ,W is the connection weight
of the model, and b is the offset value of the model.

Thus, the state function and output function of the
LSTM unit follow Formulas (5) to (7).

h(t) = o(t) ∗ tanh
(

C(t)
)

(5)

C(t) = f (t) ∗ C(t−1) + i(t) ∗ C̃(t) (6)

C̃(t) = tanh
(

WC ·
[

h(t−1), x(t)
]

+ bC

)

(7)

where h(t−1) is the output of the current unit, h(t) is the output
of the unit at the previous time, C̃(t) is the unit status at the
previous time, and C(t) is the state of the unit at the current
moment.

FIGURE 4. Schematic of a cell in the long short-term memory model.

The loss function of the LSTMmodel follows Formula (8).

L =

√

∑n

i=1

(yi − ŷi)2

n
(8)

where n is the number of the testing samples, yi is the
observed value at time i, and ŷi is the predicted value at
time i.

During the training process of the model, the weights of
the LSTM units are adjusted according to the error. The
adjustment method follows Formulas (9) and (10).

x
(t)
h = ∂L

∂h(t)
(9)

x
(t)
C = ∂L

∂C(t)
(10)

where x(t)
h is the weight of the hidden layer, and x(t)

C is the
weight between the hidden layer and the output layer.
During the training process, the error direction propagation

of the input gate, output gate, and forget gate follow Formu-
las (11) to (13).

δ
(t)
i = f ′

(

h
(t)
i

)

∑C

c=1
g

(

h(t)
)

x
(t)
C (11)

δ(t)
o = l ′

(

h(t)
o

)

∑C

c=1
h

(

C(t)
)

x
(t)
h (12)

δ
(t)
f = l ′

(

h
(t)
f

)

∑C

c=1
g

(

h(t)
)

x
(t)
C (13)
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TABLE 3. Main functions involved in the long short-term memory model used in this study.

where l is the activation function of the control gate, g is
the activation input function of the unit, and h is the output
activation function of the unit.
If the error is less than the minimum value of the expected

error, themodel will converge, and if themaximumnumber of
iterations is reached, the training process is complete. Then,
the testing data are input into the neural network to forecast
the streamflow.

2) LONG SHORT-TERM MEMORY MODEL PARAMETERS

USED IN THE EXPERIMENTS

The operating system used in this study was Microsoft Win-
dows 10. TensorFlow 1.7.0, Cuda 9.0, and Python 3.6 were
selected as the development environment.
The learning rate is one of the key parameters of the

developed LSTMmodel. The optimised value of the learning
rate is set to 0.00001, as shown in Table 2.
The other optimised values of the parameters of the devel-

oped LSTMmodel are as follows: the number of hidden layer
units is 30; the input layer size is 2; the output layer size is 1;
the learning rate is 0.00001; and the cycle index is 2000.
Themain functions involved in the LSTMmodel are shown

in Table 3.

C. APPLICATION OF DATA AND EVALUATION PARAMETERS

1) DATA APPLICATION

In the experiments, 14976 sets of streamflow data and rain-
fall data in the period from 01/01/1964 to 31/12/2004 were
selected as the original data set for streamflow prediction.
Considering that the original data has a large variation range,
the z-score-normalised preprocess method was performed,
as shown by Formulas (14) to (16).

x̄ = 1

n

∑n

i=1
xi (14)

s =
√

1

n− 1

∑n

i=1
(xi − x̄)2 (15)

x ′
i = xi − x̄

s
(16)

where x̄ is the average of the original time series data, s is the
standard deviation of the original time series data, and x ′

i is
the new sequence data formed by z-score normalisation.

2) PERFORMANCE METRICS

Various statistical performance indicators were computed,
including the mean absolute percentage error (MAPE), root
mean square error (RMSE), root mean square relative error
(RMSRE), mean absolute error (MAE), mean relative error
(MRE), BIAS, andNash-Sutcliffe efficiency (NSE) [49], [50].
MAPE is the average of absolute percentage errors. The

closer theMAPE is to 0, the better the prediction result.

MAPE = 100
1

n

∑n

i=1

∣

∣Sf o − Sf f
∣

∣

S̄f o
(17)

where n is the number of the testing samples, Sf o and Sf f are
the actual and forecasted streamflow values, respectively, and
S̄f o is the mean value of the actual streamflow.
RMSE is the square root of the ratio of the square of the

deviation of the predicted value from the true value to the
number of observations. The RMSE reflects the precision
of the measurement and is used to measure the deviation
between the predicted value and the true value. The value
range of RMSE is [0, ∞]. When RMSE is 0, the prediction
result is the best.

RMSE =

√

∑n

i=1

(Sf o − Sf f )
2

n
(18)

RMSRE is the root of the mean squared relative error. The
closer the RMSRE approaches 0, the better the prediction.

RMSRE =

√

1

n

∑n

i=1

(

Sf o − Sf f

Sf o

)2

(19)

MAE is the average of the absolute values of the deviations.
It uses the absolute value of the deviation, which avoids the
positive and negative offset of the deviation and reflects the
actual situation of the predicted value error. The MAE value
range is [0,∞]. WhenMAE is 0, the prediction is the best.

MAE =
∑n

i=1

∣

∣Sf o − Sf f
∣

∣

n
(20)

MRE is the average of the ratio of the deviation to the true
value. The closer the MRE approaches 0, the better the pre-
diction.

MRE = 1

n

∑n

i=1

(

Sf o − Sf f

Sf o

)

(21)
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TABLE 4. Table of related information of experimental training set and test set of each group.

BIAS reflects how much the predicted value deviates from
the true value. The closer BIAS approaches 0, the better the
prediction.

BIAS =
∑n

i=1 (Sf o − Sf f )
∑n

i=1 (Sf o)
(22)

NSE reflects how well the model predicts. The value range of
NSE is [−∞, 1]. The closer the NSE is to 1, the higher the
reliability of the model. The closer the NSE is to 0, the closer
the predicted value is to the average of the actual values. The
overall model result is credible, but the process prediction
error is large. If the NSE is much less than 0, the model is
unreliable.

NSE = 1 −
∑n

i=1 (Sf o − Sf f )
2

∑n
i=1 (Sf o − S̄f o)

2
(23)

IV. APPLICATION RESULTS AND ANALYSIS

The three aspects of research involved in the forecasting of
streamflow are analysed in this section.
This section is divided into four parts: A, B, C, and D.

These four parts discuss the performance stability of the
LSTM model from four different perspectives: feasibility,
differences in training set size, differences in the period of
the dataset used in the training set, and predictions of different
durations. As shown in Table 4, the four parts correspond to
the relevant information of the training set and the test set in
the experiment.

A. FEASIBILITY VERIFICATION OF THE STREAMFLOW

PREDICTION MODEL BASED ON LSTM

In this section, the feasibility of applying the LSTM model
for streamflow prediction is verified. The classic BP model
is adopted as a reference model to be compared with the
LSTM model. The streamflow data and rainfall data during
the period from 20/12/1995 to 06/03/2004 were used as the
training set. The streamflow data and rainfall data during
the period from 07/03/2004 to 31/12/2004 were used as the
testing set.

As shown in Fig. 5, the curve of LSTM prediction results
fits the curve of actual observation data well. Whether it was
a smooth stream flow in the dry season or a rapidly fluctuant
stream flow in the rainy season, there were significant devi-
ations for the prediction results by the BP model compared
with the actual observation data.

As shown in Fig. 6, the residual distribution of prediction
results by LSTM was better than the residual distribution of
prediction results by BP. The residual of prediction results
by LSTM was less than 175 m3/s in the worst case scenario
where the streamflow changed rapidly at the pointsmarked by
the vertical dashed line in the rainy season. The LSTMmodel
showed stronger robustness to residual distribution than the
BP model. The corresponding residuals of prediction results
by BP increased significantly in the worst case when the
streamflow changed rapidly in the rainy season. Therefore,
compared with BP, the residual fluctuation of LSTM has a
clear advantage.

Fig. 7 shows the distribution of predicted and observed
data by LSTM and BP. As shown in Fig. 7 (a), the predicted
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FIGURE 5. Schematic diagram of LSTM and BP prediction results.

FIGURE 6. Residual distribution of LSTM and BP prediction results. The left vertical axis denotes the observed value of daily
streamflow. Please note that the coordinate values are the opposite of the regular pattern. The right vertical axis denotes the
residuals of the LSTM (red dot) and BP (blue dot) prediction results.

data of LSTM were close to the observed data except for a
few numerical points with large errors (still in the acceptable
range). As shown in Fig. 7 (b), the BPmodel was not sensitive
to data changes in low stream flow segments, resulting in
lower prediction accuracy. Although the sensitivity of the BP
model to the data in the high streamflow segments is better,
its prediction accuracy was still lower than that of LSTM.
Table 5 shows the evaluation index values for the prediction

results of the LSTM and BP models. The LSTM model
outperforms the BP model in all seven evaluation indices.
The MAPE of LSTM is 0.08296, which is nearly 0.22 lower
than that of BP. The RMSE of LSTM is 38.83468, which
is 54.5 lower than that of BP. According to RMSRE, MAE,
and MRE, there are substantial performance improvements
for LSTM compared with BP. The absolute values of BIAS

TABLE 5. Evaluation indices of lstm and bp prediction results.

corresponding to the two models are similar, but BP’s BIAS
is slightly better than LSTM’s. The NSE of LSTM is 0.98039,
which is an improvement of nearly 0.1 compared to BP.
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FIGURE 7. Distribution of predicted and observed data by LSTM and BP. (a) prediction result of the LSTM model, (b) prediction
result of the BP model.

TABLE 6. Prediction results using different sized training sets.

The LSTM model is perfectly suitable for the task of
streamflow prediction for the Kelantan River. Moreover,
compared with the classic BP model, the LSTM model
has obvious prediction accuracy advantages, irrespective of
whether it was a smooth streamflow in the dry season or a
rapidly fluctuant streamflow in the rainy season.

B. EVALUATION OF TRAINING SET SIZE ON THE

PERFORMANCE OF THE STREAMFLOW PREDICTION

MODEL BASED ON LSTM

In this section, the effect of training set size on the perfor-
mance of the streamflow prediction model based on LSTM
is investigated. In the experiment, original data in the period
from 07/03/2004 to 31/12/2004 (almost 300 days) was used
as the testing set. For the training set, the deadline was fixed
at 06/03/2004. By adjusting the start date of the training set,
five training sets with different sizes were created. The data
size of the five training sets were: 2000, 3000, 4000, 5000,
and 6000 days.
The experimental results of our investigation of the impact

of training set size on the prediction performance of the

LSTM model are shown in Fig. 8 and Fig. 9. Fig. 8 is a
data curve diagram of the prediction results of the LSTM
model under different training set conditions. On the whole,
the prediction result curves of the LSTM model have a good
fit with the actual observations. For the streamflow prediction
in the dry season, such as during the period from 5/2004 to
6/2004, as shown in the enlarged part (a), the curves have
the best fit when 3000 and 4000 days of data are chosen as
the training sets. However, for the streamflow prediction in
the rainy season, such as during the period from 7/2004 to
8/2004 and from 8/2004 to 9/2004, as shown in the enlarged
part (b) and (c), larger training sets make the prediction curve
better fit the observed values.

According to Fig. 9, as the training set size increases, the
distribution of the predicted values of the LSTM model has
a tendency to approach the observed values gradually. There-
fore, with an increase of the training set size, the prediction
ability of the LSTM model improved.

Table 6 shows the evaluation indices of the prediction
results by the LSTM model with the five training datasets.
As the size of the training set increases, the MAPE, RMSRE,
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FIGURE 8. Data curves of prediction results of LSTM models under different training set sizes.

MRE, and BIAS values tend to decrease first and then
increase. RMSE, MAE, and NSE are steady and are not
sensitive to the training dataset size changes. From the point
of view of all seven evaluation indices, the training sets
with 3000 days data and 4000 days data have the optimal
performance for streamflow prediction.
In Fig. 10, the distribution ranges of MAPE, RMSE, and

NSE corresponding to the experimental results of each train-
ing set are shown. In general, the prediction results of each
training set were good. As the training sets increase in size,
the three indices showed certain regularity. Fig. 10 (a) shows
the change trend of the MAPE. The MAPE of each training
set was relatively stable. However, the MAPE floating ranges
using 3000-day and 5000-day training sets were large, and the
MAPE floating ranges using 2000-day and 6000-day training
sets were small. The MAPE floating ranges had the optimal
value when the training set size was 4000 days. Fig. 10 (b)
shows the change trend of the RMSE and Fig. 10 (c) shows the
change trend of the NSE. Both RMSE and NSE had similar
variation regularity as MAPE. Hence, the training set with
4000 days of data was the best choice for optimal prediction
performance of the developed model.
Fig. 11 shows the change curve of the loss value of the

LSTM model under different training set conditions. The
developed model converged faster as the size of the training
set increased.
In summary, for the LSTM model trained with the his-

torical streamflow data of the Kelantan River, as the size
of training set data increases, the prediction performance of
the model is optimised to a certain extent, and the model
convergence speed is accelerated. However, there are certain
limitations in optimising the prediction performance of the
LSTM model simply by increasing the training set. The
weights of parameters of the developed model will tend to
occur overfitting phenomenon by an oversized training set.

C. EVALUATION OF THE TIME INTERVAL BETWEEN THE

TRAINING SET AND TESTING SET ON THE PERFORMANCE

OF THE STREAMFLOW PREDICTION MODEL

BASED ON LSTM

In this section, the effect of the time interval between the
training set and testing set on the prediction performance
of the LSTM model is investigated. The purpose of the
experiments was to test whether the selection of historical
data from different time intervals as the training set will
affect the prediction performance of the LSTM model. In the
experiment, the size of the training set is set to 3000 days, and
the size of the testing set is set to 300 days. Historical data
in the period from 07/03/2004 to 31/12/2004 was selected as
the testing set. Six groups of training sets with different time
intervals to the testing set were selected, namely, no interval
(that is, the data selected by the training set and the testing set
are continuous), 1000 days, 2000 days, 3000 days, 6000 days,
and 9000 days. The duration of the training set data was from
20/12/1995 to 06/03/2004. Hence, with a fixed size for the
training set and different time intervals between the training
set and testing set, experiments were performed to evaluate
the performance of the streamflow prediction model based
on LSTM.

To further investigate the effect of the time interval between
the training set and testing set on the prediction performance
of the LSTM model, more analysis has been done, as shown
in Fig. 12 and Fig. 13. Fig. 12 is a data curve diagram of
the prediction results by the LSTMmodel with different time
intervals. The corresponding prediction result curves of each
experimental group are close to the actual observation data,
and the results of each group are satisfactory. According to the
detailed local information of curves, the experimental data of
each group accorded with the multi-peak fluctuations.

Fig. 13 shows the distribution of predicted and observed
values for the LSTM model at different time intervals.
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FIGURE 9. Distribution of predicted and observed values of LSTM models under different training set sizes. (a) -
(e) correspond to the prediction results of the five training sets of 2000 - 6000 days, respectively.

As shown in the figures, there was no significant change in
the overall distribution of the predicted values of each group,
and only a few numerical points changed significantly.

Table 7 shows the predictive evaluation indices of the
LSTM model with different training set and testing set
intervals. MAPE, RMSE, RMSRE, and MAE achieve the

minimum value at the interval of 9000 days and the max-
imum value at the intervals of 1000 days and 3000 days.
Both MRE and BIAS values are negative. The NSE val-
ues of each group are small and steady. Considering that
the different data characteristics of different training sets,
the seven evaluation indices of each group have a small range
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FIGURE 10. Schematic diagrams of the influence of training set size on prediction indicators (a) MAPE, (b) RMSE, (c) NSE.

FIGURE 11. Loss value curve of LSTM model prediction process under the condition of different training set sizes.

of fluctuation. The interesting finding is that multiple predic-
tive evaluation indices obtained the optimal value when the
time interval between the training set and testing set was set
to 9000 days.
Fig. 14 shows the MAPE, RMSE, and NSE of the pre-

dictions of the developed model by changing the time inter-
vals between the training set and testing set. As the time
interval increased, the value distribution of the three indices
showed multi-peak fluctuations. When the interval was set to
1000 days, the three indices achieved poor results. When the
interval was set to 6000 days, the three indices achieved better
results. When the interval was set to 3000 days, the three
indices were at their most stable stage, but the probability of
the occurrence of extreme values increased.
The results shown in Table 7 are consistent with the

trend of performance changes in Fig. 14. When the time

intervals between the training set and testing set data change,
the prediction performance of the LSTM model shows a
small multi-peak fluctuation. Extreme points appeared in
experiments when the time intervals were set to 1000 days,
2000 days, and 3000 days.

As shown in Fig. 15, the time intervals between the training
set and testing set had little impact on the convergence speeds
of the model.When the time interval was set to 4000 days, the
model convergence speed decreased slightly, and the other
groups all have similar convergence speeds.

In summary, according to the experimental results shown
in Table 7 and Fig. 12 to Fig. 15, the time interval between the
training set and testing set has little impact on the prediction
performance of the developed LSTM model trained with the
historical streamflow data of the Kelantan River. It is a good
feature for the model training process in the case that a small
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FIGURE 12. Prediction results of the LSTM model under different time intervals.

TABLE 7. Predictive performance evaluation indices of lstm models under different time intervals.

TABLE 8. Prediction results using different time spans of data.

amount of the historical data is missing. Missing historical
data will not affect the prediction ability of the developed
model.

D. EVALUATION OF THE TIME SPAN OF PREDICTION DATA

ON THE PERFORMANCE OF THE STREAMFLOW

PREDICTION MODEL BASED ON LSTM

In this section, the effect of the time span of prediction data
on the prediction performance of the developed LSTMmodel
is investigated. The experimental settings of this section are
as follows: the training set size is set to 3000 days, and the

training set and the testing set have no time interval. The
training set is selected from the data set in the period from
23/06/1993 to 08/09/2001. For the testing set, each group took
09/09/2001 as the initial date of the testing set. Then, testing
sets with different time spans were selected. In the experi-
ment, the time spans of the following five groups of testing
data were set as 100 days, 300 days, 500 days, 700 days, and
1000 days.

Fig. 16 shows the curves of predicted data and the cor-
responding observed data using the five groups of testing
data. As shown in Fig. 16 (a), the predicted data with a
100-day span can fit the observed data well. In Fig. 16 (b),
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FIGURE 13. Distribution of predicted and observed values of the LSTM model at different time intervals.
(a) – (f) correspond to time intervals of 0, 1000, 2000, 3000, 6000, and 9000 days, respectively.

the predicted data in the period from 01/09/2001 to
01/10/2001 has obvious errors. Hence, the prediction accu-
racy is lower for the 300-day span than for the 100-day

span. Similarly, the two curves cannot fit well in the
period from 01/07/2002 to 01/08/2002 in Fig. 16 (c), in the
period from 01/07/2002 to 01/08/2002 in Fig. 16 (d),
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FIGURE 14. Effect of the time interval between the training set and testing set on the prediction index of the LSTM model. (a) MAPE, (b) RMSE,
(c) NSE.

FIGURE 15. Loss value predicted by LSTM model under different time intervals.

and in the period from 01/09/2003 to 01/10/2003
in Fig. 16 (e).
In Fig. 17 (a) to Fig. 17 (e), the diagrams show the dis-

tribution of predicted data and observed data with the five
time spans, showing that as the time span increased, the data
distribution became worse.
Table 8 shows the evaluation index values of the LSTM

model prediction results with different prediction data time
spans. Prediction results with a 100-day span achieved
the best performance in terms of the indices. The other
four testing groups have similar MAPE and NSE val-
ues. Compared to the prediction results with 500 days,
700 days, and 900 days, the prediction results with 300 days
have better RMSE and MAE, but worse RMSRE, MRE,
and BIAS.

Fig. 18 is a schematic diagram of the stability of the predic-
tion results of the LSTMmodel using different time spans for
the prediction data. As shown in Fig. 18 (a), the MAPE using
100-day data shows a clear advantage, and the remaining four
groups of prediction results are similar. If the time span is
more than 500 days, the probability of extreme values will
increase. As shown in Fig. 18 (b) and Fig. 18 (c), RMSE
and NSE with 100-day data also achieved the best perfor-
mance. Although the RMSE and NSE with 300-day data
have good values, the predicted data have a large fluctuation
range.

The results in Fig. 18 and Table 8 show that stabil-
ity and accuracy of the prediction performance of the
LSTM model slightly decreased as the time spans became
larger. From the point of view of performance indices, each
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FIGURE 16. LSTM model prediction results using different time spans for the prediction data. (a) - (e) correspond to the
prediction results of time spans of 100, 300, 500, 700, and 1000 days, respectively.
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FIGURE 17. Distribution of predicted and observed values of the LSTM model using different time spans of
predicted data. (a) - (e) correspond to time spans of 100, 300, 500, 700, and 1000 days, respectively.

experimental group also obtained good prediction results
which still meet the requirements for high-accuracy predic-
tion of streamflow.

In summary, for the LSTM model trained with the his-
torical streamflow data of the Kelantan River, the results of
this experiment show that the model can complete prediction
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FIGURE 18. Effect of time span and the stability of the prediction results of the LSTM model. (a) MAPE, (b) RMSE, (c) NSE.

tasks with different prediction data time spans, and can ensure
the accuracy and stability of prediction results. The LSTM
model can be used for streamflow prediction in a variety of
time spans.

V. CONCLUSION

In this study, a deep learning data-intelligence model based
on LSTM was developed to forecast the streamflow of the
Kelantan River. The following four aspects were studied:
(i) the feasibility of applying the developed LSTM to stream-
flow forecasting, and the performance comparison between
the developed LSTM model and the classic BP model;
(ii) the impact of the amount of data in the training set
on the prediction accuracy of the developed LSTM model;
(iii) the impact of the time interval between the training set
and testing set on the performance of the developed LSTM
model; (iv) the impact of the time span of predicted data
on the developed LSTM performance. The main conclusions
from this study are as follows.
1. The developed LSTM model shows excellent accuracy

in capturing the time series of streamflow. Compared with the
classic BP model, the developed LSTM model has obvious
advantages in prediction accuracy no matter whether it was
smooth streamflow in the dry season or rapidly fluctuant
streamflow in the rainy season.
2. As the size of the training set data increases, the predic-

tion performance of the developed LSTMmodel is optimised
to a certain extent, and the model convergence speed is accel-
erated. However, according to the performance indices, there
are certain limitations in optimising the prediction perfor-
mance of the developed LSTM model simply by increasing
the training set. The reason is probably that the developed
LSTM model is overfitting the data.
3. The time interval between the training set and testing

set has little impact on the prediction performance of the
developed LSTM model trained with historical streamflow
data of the Kelantan River. It is a good feature of the model
training process that small amounts of missing historical data
will not affect the prediction ability of the developed model.

4. In the task of predicting different time spans, although
the stability and accuracy of the prediction performance of
the developed LSTM model slightly decreases as the time
spans become larger, from the point of view of performance
indices, each experimental group can also obtain good predic-
tion results that still meet the requirement for high-accuracy
streamflow prediction. Based on this strength, the developed
LSTM model can be used for streamflow prediction in a
variety of time spans.

With this method, there is still room for improvement.
In subsequent research, in the pre-processing phase, a bionic
intelligent algorithm can be introduced into the LSTMmodel.
In the forecasting model phase, a combination of the LSTM
model and other models is an important consideration for
future research.
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